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YAK 519.713.2+519.171
V. M. Skochko (Taras Shevchenko National University of Kyiv)

TRANSITION GRAPHS OF ITERATIONS OF INITIAL
(2,2)-AUTOMATA

The iterations of an automaton A naturally produces a sequence of finite graphs G4(n) which
describe the transitions in A = Ao Ao...o A (n times). We consider combinatorial properties
of the graphs G 4(n) for initial invertible automata with two states over the binary alphabet. We
compute the chromatic number and girth of the graphs G4(n) and show that all of them are
imbalance graphic.

Itepamnil aBromaTa A TPUPOAHBO MOPOIZKYIOTH NOCALNOBHICTE cKinyenanx rpadis G4(n), mo onu-
cyfors mepexoau B apromarax A(™ = Ao Ao ... o A (n pasis). Mu posriszaemo KombinaTopmi
Baacrusocti rpadis G4 (n) s iniujasbHux 060POTHUX ABTOMATIB 3 ABOMA CTaHAMU HAJL GiHADHUM
andasiTom. Y crarti mopaxoBaHO XpoOMaTUYHE YUCI0 1 obxBar g rpadis G 4(n) i qoBeaeHo, 1o
BCi BoHU € iM0OajiaHCHO rpadivyauMu.

1. Introduction. Let a be a Mealy automaton with the same input-output alpha-
bet. Then we can consider the sequence of its iterations (a"),>1, where the n-th
iteration " is the minimization of ao...oa (n times composition of a with itself).
The study of iterations of invertible automata is at the heart of famous examples of
Burnside automaton groups and groups of intermediate growth (see [6,9]).

Important information about a™ is contained in its transition graph whose ver-
tices are the states of a™ and arrows correspond to transitions. We will be interested
in the graph G, (n), which is a simple graph obtained from the transition graph of a”
by ignoring loops, directions, and multiple edges. The graphs G,(n) for non-initial
automata were intensively studied for the last twenty years as Schreier graphs of
automaton groups (see [2-4] and the references therein). In particular, the study of
spectrum of graphs G,(n) for certain automaton lead to the solution of the Atiyah
problem about the range of L?-Betti numbers of closed manifolds (see [5]).

In this paper we study the graphs G,(n) for initial invertible automata with two
states over the binary alphabet or just (2,2)-automata for short. This class con-
tains 18 minimal automata, eleven of which have finite order and the corresponding
sequence (G4(n))n>1 consists of at most two graphs. The sequence (G4 (n))n>1 con-
tains infinitely many graphs for the seven (2, 2)-automata of infinite order, which are
the adding machine, two states of the cyclic automaton (they generate Cy,), and two
states of the lamplighter automaton and its inverse (they generate the lamplighter
group Zs ! Z). The growth function for every (2,2)-automaton a, which computes
the number of vertices of G,(n), i.e., the number of states of a", was calculated
in [10]. We compute the chromatic number x(G) and girth g(G) of these graphs.

Theorem 1. The chromatic number and girth of the graphs G,(n) for a (2,2)-
automaton a are the following:

e if a is trivial or acts as permutation of every letter, then G,(n) is acyclic and
X(Ga(n)) =1 for alln > 1;

e if a has order two and do not act as permutation of every letter, then G,(n)
is acyclic and x(Gq(n)) =14 (n mod 2) for alln > 1;
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130 V. M. SKOCHKO

e if a is the adding machine or a state of the cyclic automaton, then G.(n) is
acyclic and x(Ga(n)) = 2 forn = 2, k > 0 and g(Gu(n)) = x(G4(n)) = 3

otherwise;

e if a is a state of the lamplighter automaton or its inverse, then G,(1) is acyclic
with x(G4(1)) =2 and g(G.(n)) = x(Gu(n)) = 3 forn > 2.

Also we consider graph imbalances introduced in [1] as a measure of graph ir-
regularity. A graph is imbalance graphic if its imbalance multiset coincides with a
degree multiset for some other graph. This property was studied in [8]. We prove

Theorem 2. Let a be a (2,2)-automaton. Then the graph G,(n) is imbalance
graphic for every n € N.

Acknowledgment. The author would like to thank his advisor Ievgen Bon-
darenko for his help in problem formulation and corrections of this paper.

2. Preliminaries. In this section we recall necessary information on chromatic
number, girth and imbalances of graphs (see [7] for more information and references).
Throughout the paper we consider only finite simple undirected graphs without
loops.

Let G be a graph. The chromatic number x(G) is the smallest number of colors
that can be used to color the vertices of G in such a way that no two adjacent
vertices share the same color. We will use the following well-known theorem that
gives us an upper bound for the graph chromatic number based on the maximal
vertex degree.

Theorem 3 (Brooks, 1941). Let G be a connected graph with the mazimal vertex
degree d. Then x(G) is at most d+ 1. Moreover, x(G) = d + 1 if and only if G is
a complete graph or an odd cycle.

The girth g(G) of a graph G is the length of the smallest cycle in G or infinity if
there are no cycles. If the girth is high, then locally around every vertex the graph
looks like a tree, and one could expect that its chromatic number is small. However,
this is not the case; in 1959 Erdos has proved using probabilistic arguments that for
any positive integers y and 7 there exist graphs with chromatic number y and girth
~. Since then, many explicit constructions of such graphs were proposed.

Edge imbalances of graphs were introduced in [1] as a tool to investigate graph
irregularity. Let G be a graph with the vertex set V(G) and the edge set E(G). The
degree of a vertex v € V(G) will be denoted by d(v).

Definition 1. Let e € E(G) be an edge which is incident to the vertices u and
v. The imbalance of the edge e is defined as imb(e) = |d(u) — d(v)|.

For a graph G we consider the following two multisets: M (G) is the multiset of
all edge imbalances and D(G) is the multiset of vertex degrees.

Definition 2. A multiset M is graphic if there exists some graph I' such that
D) = M. A graph G is called imbalance graphic if its imbalance multiset is
graphic.

Every path and every regular graph are imbalance graphic. Examples of graphs
that are not imbalance graphic were constructed in [8].
We need the following lemma for further proofs.
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Lemma 1. Let G be a graph such that its imbalance multiset M(G) contains only
values 0, 1 and 2 with the following property. If there are exactly 1 or 2 imbalances
with value 2 then there exists an imbalance with value 1 in M(G). Then M(G) is
graphic.

Proof. Let us construct the graph I" such that D(I') = M(G). Note that every
0 imbalance can be always realized by some isolated vertex. In addition, we know
that the sum of all imbalances for any graph is even. This means that in the given
situation we have an even number of values 1 in M(G).

If we have at least three values 2 in M (G) then we can realize them by a cycle.
Otherwise, we can construct the path of length 1, 2 or 3 depending on how many
values 2 there are in M(G). This is possible as the multiset M (G) contains at least
two values 1. All other values 1 can be realized by paths of length 1. Therefore,
M(G) is graphic.

3. Automata and their transition graphs. In this section we recall neces-
sary information on automata-transducers (see [6] for more details).

We consider automata given by triples A = (X, S, \), where X is a finite set
(input-output alphabet), S is a finite set of states, and X\ : S x X — X x S is an
output-transition map. An initial automaton is an automaton A = (X, S, \) with a
fixed initial state a € S. We will denote initial automaton by its initial state a.

Let X* be the set of all words over X. Then every initial automaton a defines a
transformation of X* as follows. The image of an input word x5 ...z, is defined
recursively by the rule:

a(r1zy ... xy) = y1b(xe ... zy), if AMa,z1) = (y1,0).

An automaton a is called invertible if the corresponding transformation of X* is
invertible.

Two initial automata over X are called equivalent if they define the same trans-
formation of X*. An initial automaton is called minimal if it has the minimal
number of states among the equivalent automata. Every automaton can be mini-
mized using the classical Hopcroft’s algorithm (1971). Note that every automaton
transformation can be defined by a unique minimal automaton. Since we are go-
ing to work only with minimal automata, we can identify initial automata and the
corresponding transformations of X*.

Definition 3. The n-th iteration a™ of an initial automaton a is the minimal
automaton which defines the n-th iteration of the transformation defined by a.

In other words, we define a composition of automata via the composition of
corresponding transformations. Note that this agrees with the standard composition
of automata, where the output of the first automaton is connected to the input of
the second automaton.

Definition 4. An initial automaton a has finite order if there exists a positive
integer n. such that a” defines the trivial transformation of X*.

In order to simplify presentation of automata and calculation of automaton com-
position, people consider wreath recursion notation for automata.

Definition 5. A state sy of an automaton is a projection of a state si if there
exists a letter x € X such that X(s1,z) = (y, s2) for some letter y € X.
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Every state s of an automaton over X = {1,2,...,d} can be written using its
projections in the wreath recursion notation s = (s1, g, . .., $4)7s, where g : X — X
is a map on the alphabet defined by a and A(s,i) = (ms(7),s;). Note that every
automaton can be uniquely given by the system of wreath recursion for all of its
states.

Definition 6. Let a be a minimal initial automaton. For every n € N we define
the graph G,(n) with the vertex set V(Gy(n)) = States(a™), where two vertices sy
and sy are adjacent if one of them is a projection of another.

In other words, the graph G,(n) is a simple graph obtained from the transition
graph of a” by ignoring loops, directions, and multiple edges.
Definition 7. An initial finite automaton a is called imbalance graphic if for

every n € N the graph G,(n) is imbalance graphic.

Let us note that not all automata are imbalance graphic. For example, the
following wreath recursion defines an automaton with six states over the binary
alphabet X = {1,2} that is not imbalance graphic:

a = (a,b)o, b= (c,d)o,
c=(d,e), d= (e, e)o,
e= (e f)o, f=0,

where o is the transposition (1,2). Indeed, the graph G,(1) has two imbalances of
value 2 and all other imbalances are equal to 0. Such a multiset is not graphic.

4. The graphs G,(n) for initial (2, 2)-automata. Up to symmetry and letters
interchanging, there are ten minimal non-initial invertible automata with two states
S = {a, b} over the alphabet X = {1,2}:

1) b=(b,b), a = (a,a)o;

2) b= (b,b), a = (b,b)o;

3) b= (a,a), a=(a,a)0;

4) b= (a,a), a = (b,b)o;

5) b= (a,b), a=(a,a)0;

6) b= (a,b), a=(b,b)o;

7) b= (b,b), a = (b,a)o (the adding machine);

8) b= (a,a), a= (a,b)o (the cyclic automaton);

9) b= (a,b), a= (b,a)o (the lamplighter automaton);
10) b= (a,b), a = (a,b)o (inverse to the lamplighter automaton),
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where ¢ is the transposition (1,2). By fixing an initial state, we get eleven initial
(2,2)-automata of finite order and seven automata of infinite order.

For automata of finite order, the order is one or two. This means that it is
enough to consider only the graphs G,(1) and G,(2). These graphs are acyclic
and imbalance graphic. The chromatic number is x(G,(n)) = 1 for two of these
automata and y(G4(n)) = 1+ (n mod 2) for the other and for all n > 1. We have
checked Theorems 1 and 2 for automata of finite order.

Further we consider one by one the seven automata of infinite order.

Proposition 1. Let a be the adding machine. Then the graph G,(n) is imbalance
graphic for every n € N.

Proof. The structure of the graphs G,(n) is described in [10]. For n = 2* the
graph G,(n) is a path of length k + 2. Therefore, it is imbalance graphic.

Now we consider other values of n. Every state a™, 2 < m < n, has one or two
projections. Since the automaton is minimal, each state except a™ is a projection
of some state a'. Each automaton can be a projection for at most two other states.
As a result we get that the vertex which corresponds to the state a™ can have only
degrees from the set {2,3,4}. Moreover, the vertex a” has degree 1 if n is even and
2 otherwise. These facts together with a direct check of states a’, a and a? give us
the result that all imbalances of G,(n) can be equal only to 0, 1 or 2.

Moreover, every automaton a” contains the trivial state a” which is connected
only with state a. The imbalance of the corresponding edge is always equal to 2.

On the other hand, the automaton a™ contains a state a* for an odd k > 1. We
take the biggest such a value k. If n = k then we get the imbalance 1 for the edge
which contains the vertex a™ and its projection with odd power. If n = 2%k then
it is easy to check that for s > 1 we will get the imbalance 1 on the edge between
n and 2°7'k. If s = 1 then the vertex a™ has degree 1 and connected only with a*
which has degree 3. But a* has two projections al3! and al31*1. One of these powers
is even and the corresponding vertex has degree 2. So we get the imbalance 1 in the
graph.

Thus the multiset M (G) satisfies all the conditions of Lemma 1. The statement
is proved.

Proposition 2. Let a be the adding machine. Then Gu(n) is acyclic for n = 2~
and g(G4(n)) = 3 for the other values of n. The chromatic number is

2, if n is a power of two;
X(Ga(n)) = { 3, otherwise.

Proof. For n = 2* the graph G,(n) is a path and x(G4(n)) = 2. For the other
values of n the graph G,(n) contains a cycle of length 3 (vertices a3, a* and a');
therefore, g(G4(n)) = 3 and x(G4(n)) < 3. We can color the graph G,(n) by three
colors as follows. The state a” is colored by the first color, its projections should be
colored by the second one, while for the next projections we can use the first color
again. This approach can be used until we get one of the vertex from the cycle.

Therefore, x(G.(n)) = 3.

Now we consider the case of the cyclic automaton. The structure of the graphs
Ga(n) for the cyclic automaton is described in [10]. Each state of a™ is a projection
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Figure 1. The graphs G,(1) and G,(2) for the state a of the lamplighter
automaton.

of at most two other states and has only one or two projections. Therefore, the
degree of each state (except for maybe a™) in the graph G,(n) is 2, 3 or 4. Also we
can prove in the same way as for the adding machine that if there exists imbalance
with value 2 then there exists an edge with imbalance 1. Therefore, G,(n) satisfies
all the conditions of Lemma 1 and it is imbalance graphic. The chromatic number
and girth is calculated in the same way as for the adding machine. For the state b
we get the same results, because Gy(n) = G2(n) = G4(2n).

It is left to consider the lamplighter automaton b = (a,b), a = (b,a)o and its
inverse d = (¢,d), ¢ = (¢,d)o. Since the transformations defined by ¢ and d are
inverse to the transformations defined by a and b respectively, the graphs G.(n) and
G, (n) are isomorphic, and the graphs Gy(n) and G4(n) are isomorphic.

Proposition 3. Let a be a state of the lamplighter automaton. Then the graph
Go(n) is imbalance graphic for every n € N.

Proof. It was proved in [10] that for every n the automata a™ and b" contain
exactly 2" states. Moreover, each state is a word of length n over the alphabet
{a,b}. This means that the graphs G,(n) and G,(n) are the same for every n € N.

First of all we can directly check the cases n = 1 and n = 2 (see Figure 1). In
this case M(G,(1)) = {0} and M(G,(2)) = {0,1,1,1,1}. Both of these multisets
are graphic.

Now we consider the case when n > 2. Fach state of the automaton a™ has two
different projections, because one of them is a word over {a,b} with the first letter
a while the other one has the first letter b. However, for some states one of the
projections can coincide with the state.

Let us show that each state s of the automaton a” can be a projection only for
one or two other states. Let the first letter of s as a word over {a, b} is a then it can
be only the first projection of a state which starts with b or the second projection
of the state which starts with a. Then we take the second letter of s. It is easy to
see that for each case we will get only one possible second letter for state to contain
s as a projection. After repeating of this procedure we get that each state can be
projection only for two states. While in some cases s can be a projection of itself as
it was described above. The other possible situation is when the two different states
s1 and sy are the projection each to other. Let us prove that the last two properties
can not hold simultaneously. It is easy to show that the only state that can be a
projection of itself are b™ and b" 'a. This follows from the fact that the word that
corresponds to such a state can not contain subwords of type ab and aa. On the
other hand the state a™ is a projection of b but not vice versa. Also the state " 'a
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Figure 2. The neighborhood of the vertex " in the graph G(a™).

contains the state a”'b as a projection but not vice versa.

As a result we have that each vertex in G,(n), n > 2 has degree 2, 3 or 4.
Therefore, the imbalance multiset M(G,(n)) can contain only values 0, 1 and 2.

Let us consider the state b” and corresponding vertex. It is connected with the
states a™ and ab"~!. Then the corresponding vertex of the graph G(a™) has degree
2. Moreover, each of these states is not a projection of itself and a™ has two different
projections (ab)[zla” and (ba)!z16", where r is the remainder modulo 2. But ab"
has a™ and b" as projections. Then it is a projection for some other two different
states and the corresponding vertex in the graph G,(n) has degree 4. This pattern
gives us two edges with imbalance 2 (see Figure 2).

As was mentioned above the state " 'a also is a projection of itself. Thus, the
corresponding vertex has the degree 2. Now we can use the following approach.
Since G,(n) is connected and the vertices corresponding to " 'a and b™ are not
adjacent, there is a path of the length not less than two between them. Moreover,
such a path contains either the vertex a™ or the vertex ab"~!. Both of these vertices
have degree 4. Then on the path between such a vertex and a vertex for 5" 'a there
is at least one edge with imbalance 2 or 1.

Hence the multiset M (G,(n)) satisfies all the conditions of Lemma 1. The state-
ment is proved, what completes the proof of Theorem 2.

Proposition 4. Let a be a state of the lamplighter automaton. Then G,(1) is
acyclic with x(G4(1)) = 2 and g(G4(n)) = x(Gu(n)) =3 forn > 2.

Proof. By directly check we have that G,(1) is acyclic with x(G,(1)) = 2, while
X(G4(2)) = 3. It was shown in the previous proof that every graph G,(n) for n > 2
contains a triangle and therefore g(G,(n)) = 3. In particular, x(G4(n)) > 3. On
the other hand, the maximal vertex degree is 4 and the graphs are neither complete
nor the odd cycle. Hence, x(Gq4(n)) < 4 by the Brook’s theorem.

Let us prove that x(G,(n)) = 3. Let a state w be a word of length n > 2
over {a,b} and it has two projections w; and wy with the same length and these
projections are not coincide with w (this is true for all states except for v and
ab™1). Let us assume by induction that the graph G,(n) can be colored in three
colors. Now we consider the graph G,(n + 1). Note, that we can match a vertex w
of G,(n) with two vertices aw and bw of G,(n + 1). Moreover, both of these states
have the same projections aw; and bws. If we will color aw and bw in the same color
as w is colored in the graph G,(n) for every word w, then the number of colors will
not be changed. But we get two edges with the same colored vertices when bw is
a projection of aw. These cases appear when w = wy, € {b", 0" *a}. The first edge
connects b"*! and ab”, while the second connects b"a and ab” 'a. Note that the
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vertices b" ™! and b"a have degree 2 in G,(n + 1), and they always can be colored
properly because we use three colors. Then we can left colors for ab” and ab" 'a
by using the colors of o™ and b"'a respectively. Hence, the chromatic number is 3.
The statement is proved. The proof of Theorem 1 is complete.
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