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SHOR’S BOUNDS FOR THE WEIGHTED INDEPENDENCE
NUMBER

Application of a technique of dual Lagrangian quadratic bounds of N.Z. Shor to studying
the Maximum Weighted Independent Set problem is described. By the technique, two such
N.Z. Shor’s upper bounds are obtained. These are bounds of the graph weighted indepen-
dence number a(G,w), which can be found in polynomial time. The first bound (G, w)
is associated with a quadratic model of the Maximum Weighted Independent Set problem
and coincides with the known Lovédsz number (G, w). The second bound (G, w) corre-
sponds to the same quadratic model supplemented by a family of functionally redundant
quadratic constraints and is able to improve the accuracy of the upper bound «(G,w) for
special graph families. It is shown that, if graph is bipartite or perfect, ¥ (G, w) = a(G, w),
while ¥1 (G, w) = (G, w) for t- or W,-perfect graphs. Based on the graph classes that were
singled out, a technique is demonstrated, which enables us to form new classes of graphs
for which polynomial solvability of the Maximum Weighted Independent Set problem is
preserved. Thus, by an example of the Maximum Weighted Independent Set problem in
a graph, it is shown how the Lagrangian bounds’ technique can be applied to solving an
issue of single outing new classes of polynomial solvable combinatorial optimization prob-
lems. This approach can be used for improving known bounds of the objective function in
combinatorial optimization problems as well as for justifying their polynomial solvability.

Keywords: Maximum Weighted Independent Set problem, the graph weighted indepen-
dence number, quadratic optimization, Lagrangian dual bounds, polyhedral relaxation,
perfect graph, bipartite graph.

1. Introduction. A great contribution to the development of Computational
Complexity Theory for continuous and discrete optimization problems was made
by N. Z. Shor, who proposed a technique of Lagrangian (dual) bounds on the global
extremum in non-convex quadratic problems [1|. In minimization problems, these
will be lower bounds while in maximization problems, these will be upper bounds.
This technique includes algorithms for finding Lagrangian bounds based on applying
non-differentiable optimization and utilizing functionally redundant constraints to
improve the Lagrangian bounds’ accuracy. The Lagrangian bounds technique can be
used to find effective bounds of the global extremum of objective functions in multi-
objective optimization problems, which can be formulated as non-convex quadratic
problems. We can single out subclasses of NP-hard problems solvable in polynomial
time through application of the technique.
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72 P. I. STETSYUK, O. S. PICHUGINA

The technique of Lagrangian bounds plays a significant role in a study of
NP-hard combinatorial Boolean problems. A Boolean constraint on the variable
x € {0,1} is representable by a quadratic equality z*> — x = 0. Such formulations
of combinatorial problems as nonlinear quadratic problems allow obtaining more
accurate dual estimates than the ones that can be derived by relaxing the Boolean
optimization problems to the corresponding linear programs. In a monograph [1], this
is illustrated by extremal graph problems such as the Maximum Weight Independent
Set problem, the Maximum Cut problem, the Maximum Graph Bisection problem,
the Minimal k-partition problem, etc. Very interesting were the results for the
problem of finding the Maximum Independent (Stable) Set problem, where the dual
bounds obtained by N. Z. Shor are closely related to the well-known Lovasz numbers
(G, w) and ¥ (G, w) [2].

In the paper, we continue a study [3] and present new properties of Shor’s bounds
for the weighted independence number of undirected graphs. It will be shown that
the technique of Lagrangian bounds allows single outing such classes of this NP-hard
problem that are solvable in polynomial time. The order of presenting the material
will be as follows. First, we describe a method for evaluating upper Lagrangian
bounds of objective functions in general quadratic maximization problems. Next,
we demonstrate that functionally redundant constraints are able to improve the
accuracy of these bounds. Then, the Maximum Independent Set problem will be
considered in detail, and the difficulty of its solving will be highlighted. It will be
followed by presenting an improved Shor’s bound for bipartite and perfect graphs
and establishing its connection with the Lovasz numbers. Then, an improved Shor’s
bound will be presented along with its properties for particular graph families such as
t-perfect, h-perfect, and W-perfect graphs. Besides, it will be shown that the derived
properties of the improved Shor’s bound make it possible single outing a family of
graphs for which the weighted independence number can be found in polynomial
time.

2. Shor’s bounds ¢* and v)j. Let us consider a quadratic optimization problem
in the following formulation: it is required to find

Qo = sup Qo(x) (1)
zeR”
subject to constraints
Qi(z) =0, i=1,...,m. (2)
Here, Q,(x) are quadratic functions @Q,(z) = (K,z,x) + (b,,x) + ¢,, where K,
are symmetric matrices of order n; b, € R"; ¢, are scalars, v = 0,1,...,m. Also,
some of the quadratic functions @, (z),v = 0,1,...,m can be linear.

Generally, the problem (1), (2) is multi-extremal and belongs to the class of N P-
hard problems. The upper bound for )f can be obtained as follows. Let
u = (ug,...,uy,) € R™ be a vector of Lagrange multipliers corresponding to the
constraints (2). To the problem (1), (2), the following Lagrangian corresponds:

L(z,u) = Qo(z) + iuiQi(ff) = (K(wz,2) + (b(u), z) + c(u),
where

K(u) = Ko(z) + Z wKi(z), blu) = b+ Z wby, c(u) = co+ Z uic;.
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Consider the following function

vlu) = sup Lz, u) = sup [(K(u)z.z) + (u). ) + clu)]
zER? TzER™

Let Q7 = {u : Mae[K(u)] < 0} be a subset of those u-components for which

K (u) is negative definite matrix, while Q2° be a subset of the components for which

Amaz | K (u)] = 0. Here, Ajor (K (w)) is the maximum eigenvalue of symmetric matrix

K (u) of order n. The domain of function ¢ (u) (denoted by dom ) consists of 2~

and a subset of points u € ° for which the next system of equations is compatible:

2K (u)x + b(u) = 0. (3)

For the remaining points, ¢(u) = +o0. If dom # (), then there is a nontrivial
upper bound for Q)

*= inf 4
Y= dnf <(u) (4)
(the condition 1* = —oo means that the system (2) is incompatible). In this class

of Lagrangian bounds, the bound (4) is the optimal (the best) upper bound for
Q- With any predetermined accuracy, the bound 1* can be found in polynomial
time by methods for minimizing convex non-differentiable functions, such as the
ellipsoid method or specific versions of r-algorithms [1]. For instance, an outline of
the r-algorithm with an adaptive step control is described in detail in [4].

If ¢* is attained at u* € )7, then

P =1p(u”) = Qf = Qofx(u”)),

where x(u*) is a solution of the system (3) for u = u*. Otherwise, ¢* is attained at
the boundary of the domain €27. In this case, there may exist a so-called "duality
gapll

A* =Y* — Q5 > 0.

The method of reducing A* proposed by N. Z. Shor is associated with introducing
functionally redundant constraints (the set of variables can increase as well), the
addition of which leaves many optimal solutions to the problem (1), (2) unchanged.
However, the Lagrangian changes in this case, which in some cases can cause reducing
the gap between the optimal value ) of the objective function and the Lagrangian
(dual) bound ¢¥*. When quadratic functionally redundant constraints

Qm-i—l(x) < 07 cee an-&-T(x) < 0,7" > 17

are added to to the original problem (1), (2), then a new quadratic problem is
formed: find

Qo = sup Qo()

reR™

subject to
Qi(x)=0,1=1,...,m,

Qi(z) <0, i=m+1,...,m+r.

It corresponds to a longer vector of Lagrange multipliers
U={{u},umi1, s Umir}, Ums1 < 0,00 Uy <0,

Hayk. Bicuuk Y:kropog. yu-ty. Cepisg «Mar. i indopm.», 2019, Bun. Ne 2(35). ISSN 2616-7700



74 P. I. STETSYUK, O. S. PICHUGINA

and the Lagrangian will have the following form:

m+r m+r
Li(z,U) = Qo(z) + Z%Qz(l’) = L(z,u) + Z u; Qi ().
i=1 i=m+1
Since L(xz,u) = Ly(z, ({u},0,...,0)), ¥1({u},0,...,0) = ¢(u), then
vi= nf 0i(U) < inf o(u) =97, ()

and the functionally redundant constraints can improve Lagrangian bounds.

Note that any constraints, which are linear combinations of existing ones, do
not affect the accuracy of the bound vj. The contribution of such constraints to
the Lagrangian is equivalent only to a certain change in the Lagrange multipliers
satisfying the existing constraints. At the same time, the addition of functionally
redundant constraints, which are nontrivial consequences of the original problem
constraints, in some cases, can result in 17, which is more accurate and exact bound
on Qj (¥ = Q).

3. The number o(G,w) and its approximations. Let G = (V, E) be an
undirected graph (without loops) with vertex set V(G) and edge set E(G). For
each vertex i € V(G), a positive integer weight w; is assigned. A subset of vertices
S C V(@) is called a stable (or independent) set of graph G, if for any i,j € S, an
edge (i,7) does not belong to E(G). The weighted independence number o(G, w)
of graph G is defined as a(G,w) = max ), qw;, where S C V(G) is stable set.
A subset S*, where a(G, w) is attained, is called the maximum weighted stable (or
independent) set of G.

Generally, the problem of finding o(G, w) is N P-hard [2]. Its complexity is easily
understood through the general statement of the problem of finding a(G, w) through
utilizing a stable set polytope of graph G. Let x° € RVl be an ”incident” vector of
a vertex subset S C V(G). This means that ¥ =1ifi € S, and x¥ = 0if i € V\S.
A convex hull of "incident” vectors such as y° for each stable set S in graph G is
called a stable set polytope and is denoted by:

STAB(G) := conv{x® : S C V(G) — is a stable set}.

Thus, finding a(G,w) is associated with a maximization of linear function on
the convex polytope STAB(G), namely,

a(G,w) = max Z wiz;, x € STAB(G). (6)
1€V (GQ)

The maximum in the problem (6) is attained at one or several vertices of the
polytope STAB(G). Generally, the polytope ST AB(G) can possess a highly complex
structure, that is why the problem (6) belongs to a class of N P-hard problems.

A polynomial solvability of the problem (6) concerns those graphs whose polyto-
pes STAB(G) possess specific properties. This is due to a very simple fact. Let
LSTAB(G) be a polytope given a system of linear inequalities, which is an outer
approximation of the polytope STAB(G). Then a solution to the following linear
program (LP-program)
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aj (G, w) = max Z wix;, x € LSTAB(QG) (7)
eV (G)

yields a bound o (G, w) being an upper bound for a(G, w). It is due to the polytope
LSTAB(G) is an outer approximation of the polytope STAB(G). Wherefrom,
we have of (G,w) > a(G,w). The number of linear inequality-constraints in the
LP-program (7) can be exponential. If for a certain family of graphs the polytope
LSTAB(G) coincides with the polytope STAB(G), then, for this family, the bound
o) (G, w) will be exact, i.e., af (G, w) = a(G, w). If the bound o} (G, w) can be found
in polynomial time, then, for any graph G from this family, the problem of finding
a(G, w) is solvable in polynomial time as well.

This principle provides justification of a polynomial solvability of a problem of
finding (G, w) for bipartite, perfect, t-perfect, W-perfect, and some other graphs
(see [2], Ch. 9). Each of these graph families posses its own polytopes LSTAB(G)
having specific titles in many cases. For example, FF'STAB(G) is a fractional stable
set polytope, QSTAB(G) is a clique polytope. Also, there exists an odd-cycle
polytope, a wheel polytope, etc. Note that, to each of the above graph families, a
specific way of finding the bound o} (G, w) is developed. For instance, for a family of
perfect graphs STAB(G) = QSTAB(G). For them, finding o, (G, w) in polynomi-
al time is provided by a well-known Lovasz number ¢¥(G,w) [2]. The bound is a
more precise upper bound for a(G,w) than the bound af(G,w) for an arbitrary
graph G. Similarly, for t-perfect graphs STAB(G) = CSTAB(G). For the fami-
ly, the polynomial solvability of the problem of finding a(G,w) is caused by the
bound o (G, w) peculiarities. For instance, for graph G from the family, a(G,w)
can be found in polynomial time. Note that, to all these polynomially solvable cases,
the same meaning can easily be given. For that, the upper bounds for a(G,w)
constructed by N. Z. Shor in the scope of study of non-convex quadratic problems
can be applied.

4. The bound (G, w) for bipartite and perfect graphs. The simplest
upper bound for a(G, w) (further referred to as (G, w)) was proposed by N. Z. Shor
in [1]. It concerns a statement of the problem of finding a(G,w) as the following
non-convex quadratic problem:

a(G, w) = max Z Wi T (8)

i€V (Q)
subject to
i -1, =0 VieV(Q), (10)

where the Boolean variable z; € {0, 1} is equal to one, if the vertex i is included in
a stable set, otherwise, it is equal to zero. Here, Boolean variables are described by
equalities (10). The constraints (9) imply that two vertices cannot simultaneously
belong to a stable set if they are linked by an edge in graph G.

In the quadratic problem (8)-(10), the bound (G, w) is the optimal upper bound
¥* of the objective function maximum in the form (4). With any prescribed accuracy,
the bound ¢(G, w) can be found in polynomial time. It was shown (see [1]|) that it
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coincides with the weighted Lovasz number J(G,w). For an arbitrary graph G, it
holds
a(G,w) < V(G w) = I(G,w).

If graph G is perfect or bipartite, then
o(G,w) = UG, w) = 9(G, w),

and the bound (G, w) is exact for a(G,w). Such a way of justification of the
accuracy of the bound ¢ (G, w) for these families of graphs is related to the weighted
Lovasz numbers’ features.

Justification that the simplest Shor’s bound coincides with «(G, w) for bipartite
and perfect graphs can be made more clear. It is because the quadratic constraints
(9)-(10) result in a family of linear inequalities

(vertiz constraints) 0<uxz; <1 Vie V(G), (11)

(edge constraints) x;+x; <1 V(i,j) € E(G), (12)

(clique constraints) Z ;<1 VYQe€aqG, (13)
i€V (Q)

which are satisfied for the polytope STAB(G). Here, @ is a clique (full subgraph) in
graph G. The first set (11) of inequalities are obtained by relaxing (weakening) the
constraints (10). The validity of clique inequalities (13) was shown by N. Z. Shor
(see [1], p. 252), and the validity of edge inequalities (12) is a consequence of the
clique inequalities, if a clique in graph G consists of two vertices, i.e., it coincides
with an edge of G.

As aresult of the relaxation of the quadratic problem (8)-(10), it is easy to obtain
the bound a.(G,w) for the fractional stable set polytope:

FSTAB(G) = {z € RV!: z satisfies (11) and (12)},
as well as the bound o, (G, w) for the click polytope

QSTAB(G) = {z € RV!:  satisfies (11) and (13)}.
Since FSTAB(G) O QSTAB(G), we have a relation:

ap(Gw) = ap(G w) 2 (G, w) 2 oG, w),

wherefrom it follows that the bound ¢ (G, w) is exact for both bipartite and perfect
graphs. To verify this, let us use that, for bipartite graphs, of(G,w) =
= (G, w) (for them, STAB(G) = FSTAB(G) and there are no isolated verti-
ces); for perfect graphs, af) (G, w) = a(G,w) (for them, STAB(G) = QSTAB(G)).

Note that, for t-perfect and W-perfect graphs, the bound (G, w) will not be
exact anymore, but it can be improved by utilizing functionally redundant const-
raints.

5. The bound ¢, (G,w) for t-perfect graphs. An improved upper Shor’s
bound for a(G, w) (further referred to it as 11 (G, w)) is related to such a non-convex
quadratic problem:

a(G,w) = max Z wW;x; (14)
1€V (Q)
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Fig. 1. Odd cycle C5 and wheel Wy for k = 2

subject to
v} -1, =0 VieV(Q), (16)

The problem (14)-(17) was obtained from (8)-(10) by adding a family of functi-
onally redundant quadratic constraints in the form of inequalities (17), i.e., those
that make a set of optimal solutions to the quadratic problem (8)-(10) unchangeable.
The functionally redundant constraints are obtained by multiplying edge inequalities
(12) by a variable xy for k # i, j. A sign of these inequalities remains the same since
x, = 3 > 0. It is the presence of constraints (17) that gives the bound (G, w)
various remarkable properties for some families of graphs.

The bound 1 (G, w) is the optimal upper bound 7 of the form (5) for the objecti-
ve function maximum in the quadratic problem (14)-(17). The bound ¢, (G, w) can
be found with any prescribed accuracy in polynomial time. It is harder to find it
than to find (G, w), since the number of Lagrange multipliers is increased because
of the presence of functionally redundant constraints (17). What are the advantages
of these functionally redundant constraints? First, for an arbitrary graph G, the
bound ¢, (G, w) satisfies a relation

a(G’ w) < %(G,w) < ¢(Gv w)v

and is always not worse upper bound of «(G,w) than the bound ¥(G, w). Secondly,
the bound (G, w) is exact for the weighted independence number of ¢-perfect
graphs. This property of the bound (G, w) follows from the fact that the next
linear inequalities follow from the quadratic constraints (15)-(17):

(odd — cycle constraints) Z r; <k VYCyui1 € G, (18)
1€V (Cagy1)
valid for the polytope STAB(G) (see [1], p. 252|). Here, Coyq, k = 1,2,... is an
odd cycle in graph G (i.e., it contains an odd number of vertices). An example of
an odd cycle Cj is shown in Fig. 1.a.
By relaxing the quadratic problem (15)-(17), it is easy to obtain the bound
af(G,w) for the odd cycles’ polytope

CSTAB(G) = {x € RV : 1 satisfies (11), (12) and (18)}.
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78 P. I. STETSYUK, O. S. PICHUGINA

For an arbitrary graph G, the bound satisfies an inequality
a*C(Gv U}) > ¢1<Ga w) > O[(G,U)).

From the latter, it follows that the bound (G, w) coincides with a(G,w)
for t-perfect graphs, since they all satisfy relations STAB(G) = CSTAB(G) and
an(Gw) = a(G,w).

6. The bound ¢ (G, w) for W-perfect graphs. The question is, will ¢; (G, w)
be an exact bound of a(G,w) for W-perfect graphs? For graphs of the family, the
following constraints:

(wheel constraints) Z t; + ki, , <k, VWi e (19)
1€V (Cagy1)
are valid for the polytope STAB(G). Here, Wy 5 is a wheel in graph G (it consists
of an odd cycle Cy41 and a vertex associated with each of the cycle vertices). An
example of wheel Wg, built based on the odd cycle Cf, is shown in Fig. 1.b. The
"wheel"polytope has a form

WSTAB(G) = {z € RV : & satisfies (11), (12), (18), and (19)}.

It is associated with the bound «f, (G, w), which can be found in polynomial
time for an arbitrary graph G [2].

It turns out that the bound ¥4 (G,w) coincides with «a(G,w) for W-perfect
graphs. Moreover, this holds even for a more complex family of graphs than W-
perfect ones. This is due to the fact that the constraints (15)-(17) result in linear
inequalities

(p — wheel constraints) Z x; + k Z r; <k, Y Woyiis €G, (20)
i€V (Copq1) JEV(Qp)

valid for the polytope STAB(G). Here, the subgraph Wayi14, is a p-wheel [5].
Vertices of p-wheel Wo,i14, are ones of disjoint odd cycle Cyqq and clique @,
(a complete subgraph on p-vertices). The edge set of W14, includes all edges of
odd cycle Cy1, all edges of clique @), as well as edges connecting each vertex Cop1
with all vertices of clique @),. Examples of 1-wheel and 2-wheel built based on the
odd cycle C5 are shown in Fig. 2.

Inequalities (20) imply that, for each p-wheel from graph G, either one of the
vertices of clique @), or k vertices from odd cycle Cs,41 can be included. In case,
if clique @), degenerates into a vertex, from linear inequalities (20) for p-wheel, the
linear inequalities (19) for regular wheel Wy follow.

By combining the constraints (11)-(13) and (18) with the constraints (20), it is
easy to build a generalization of W-perfect graphs for which the Shor’s improved
bound for oG, w) is exact. Let a p-wheel polytope be given as

W,STAB(G) = {z € RV . x satisfies (11), (12), (18), and (20)},
and it corresponds to an upper bound
ajy, (G, w) = max Z wiz;, x€ W,STAB(G).
1€V(G)
The following theorem holds.
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Fig. 2. Examples of 1-wheel and 2-wheel based on odd cycle Cj

Teopema 1. [3,6] For an arbitrary graph G, the following two-sided inequality
18 true:

ayy (G, w) > Y1 (Gw) > oG, w). (21)

A family of graphs for which STAB(G) = W,STAB(G) is called W,-perfect.
For them, ajy (G,w) = (G, w), and the inequality (21) turns into equality

ayy (G, w) = 1 (G, w) = (G, w), (22)

from which the following theorem follows.

Teopema 2. [3,6] If graph G is W,-perfect, then the bound 11 (G, w) is equal to
a(G,w).

Since, with any prescribed accuracy, the bound (G, w) can be found in polyno-
mial time, from Theorem 2, it follows that, for any graph G in the family of W,-
perfect graphs, the problem of finding a(G, w) is polynomially solvable.

7. Conclusion. The polynomial solvability of the problem of finding a(G,w)
for perfect, t- and W-perfect graphs can be justified by relaxing (weakening) the
polytope W,STAB(G) through removing some of the polytope constraints. For
instance, an H-presentation of the polytope CSTAB(G) follows from the one of
the polytope W,ST AB(G) by removing of p-wheel constraints. An H-presentation of
the click polytope QST AB(G) is derived from the one of the polytope W,STAB(G)
for £ =1 (i.e., the only odd cycles coinciding with 3-clique are considered) and p:
1 < p < |V|—3. Here, the inequalities for 2-cliques follow from the edge inequalities
(12), the inequalities for 3-cliques — from the inequalities (18) for odd cycles and
k = 1, and the inequalities for high order cliques — from the inequalities (20) for
p-wheels, k = 1, and an arbitrary p. The polytope’s W ST AB(G) H-presentation is
obtained from W,STAB(G) for p = 1. As a result, an inequality

O[T/V<G’ w) Z wl(G7 w) 2 Oz(G, w)7

holds and results in coincidence the bound 4 (G, w) with o(G,w), if graph G is
W-perfect (here, ofy, (G, w) = a(G,w)).

In conclusion, we indicate that, by the Shor’s bound ¢j(G,w), it can be justi-
fied a polynomial solvability of the problem of finding the weighted independence
number for a more complex families of graphs than W,-perfect ones. Also, polynomi-
al solvability of combinatorial optimization problems has been proven for 2-level

Hayk. Bicuuk Y:kropog. yu-ty. Cepia «Mar. i indopm.», 2019, Bun. Ne 2(35). ISSN 2616-7700



80 P. I. STETSYUK, O. S. PICHUGINA

polytopes [8] formed a wide class of polytopes related to graphs problems and
other ones. It is highly promising extending the results of the paper and combi-
ning them with approaches presented in [9] onto the whole class of 2-level and
multilevel polytopes [8]. Moreover, one can construct many new families of linear
inequalities that are valid for the polytope ST AB(G) and characterize more complex
substructures in graph obtained by a certain combination of cliques (), odd cycles
Cart1, and their complements Cypy1. By the bound ¢ (G, w), this makes it possi-
ble to single out new families of graphs for which the problem (6) is polynomially
solvable. Moreover, based on applying non-differentiable optimization methods, it
allows finding upper bounds of the complexity of these classes of problems. As a
result, this can be a great contribution to the available results (see [2,7]) and, li-
kely, for many new families of graphs, it will make possible finding a general form
of describing the external approximation polytope LSTAB(G) for the polytope
STAB(G).
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Cremok I1. 1., ITiuyrina O. C. Oniaku [lopa 115 3BazkeHOro 4nc/ia CTiiKOCTI
rpada.

Omnmcano 3acTOCYBaHHS TEXHIKM JIBOICTAX JIATPAHXKEBUX KBAJPATUIHUX OIIHOK
H. 3. lopa g0 mociimkerns: 3aa4i PO MAKCUMAJIbHY 3Ba’KEHY HE3AJIEKHY MHOXKUHY
BepmuH rpada. HaBeneno orpumani 3a 11 gonomororo asi BepxHi omiaku H. 3. Ilopa s
a(G,w) — MAKCMMAJILHOTO 3BasKEHOIO uucia CTifikocTi rpada, ski MoxkHA 3HANTH 3a Ho-
miunomianpauit gac. Ilepma oninka ¢ (G, w) noB’a3ana 3 KBaJPATUIHOIO MOJAEJLIIO 3384
PO MAaKCUMAJIbHY 3BayKeHy HE3aJIeXKHY MHOXKWHY BEPIIUH rpada Ta CIIBIAIAE 3 BiJIOMUM
quciaom Jlosaca ¥(G,w). Hpyra oujuka 1 (G, w) Bianosinae niil ke KBajgparuduiii Moje-
Ji, sIKa JOIIOBHEHA CiMeHCTBOM (DYHKIIOHAJBHO HAJJIMINKOBUX KBAaJIPATHIHUX OOMEXKEHbD,
Ta CIIPOMOYKHA TOKPAIIUTH TOYHICTH BepXHBOI OIiHKY (G, w) y clermjagpHux ciMeiicTBax
rpadis. ITokazano, mo (G, w) = a(G,w), saxmo rpad € ABOJOIBHAM a0 JOCKOHAJUM, a

Poznin 1: Maremaruka i craTucTuka
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1(G,w) = a(G,w), akmo rpad € t- abo Wy-gockonanum. Ha ocHOBI 1ux BUAiIEHUX Kia-
ciB rpadiB MPOJIEMOHCTPOBAHO TEXHOJIOTI0 (DOPMYBaHHSI HOBUX KJIACiB rpadis, JJis SKUX
30epira€ThCs MOJIHOMIAJIbHA PO3B’A3HICTD 3a/1a9i 3HAXOYKEHHS MAKCUMAJIbHOTO 3BaYKEHO-
ro gmcia criiikocri rpada. Takum YnHOM, HA IPUKIIAI] 3318491 ITPO MAKCUMAJIbHY 3BAYKEHY
He3aJIe’KHY MHOYXKUHY BEPIINH rpada I0Ka3aHo, SIKUM YNHOM TEXHIKa JIAIPAHKEBUX OITIHOK
MO2Ke OyTH 3aCTOCOBaHA JI0 BUPIilIeHHs TPOOJIeMH BUIIJIEHHS KJIACIB ITOJIiIHOMiaJIbHO PO3B’s-
3HUX 33J1a4 KOMOiHATOpHOI onTuMizartii. /lana KoHIenItist Mozke OyTH BUKOPUCTAHA SIK JIJIsT
YTOYHEHHS ICHYIOUMX OIIHOK ILJIbOBOI (DYHKINI B 33/ 1a9aX KOMOIHATOPHOT ONTUMI3aIll, Tak
i my1g OOr'pyHTYBaHHS X IOJIIHOMIAJBbHOI PO3B’sI3HOCTI.

Kurouosi cioBa: 3a/iata 1po MakCUMaJIbHY 3BayKeHy He3aJIeXKHY MHOXKHUHY rpada, 3Ba-
JKeHe YUCJI0 CTIRKOCTI rpada, KBaJpaTudHa ONTUMI3allisl, JBOICTI JIarpaHKeBi OIiHKH, 110~
JlieIpaJibHA PEJIaKCallisi, JOCKOHAJM rpad, MBOIOJIBHUI rpad.
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