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COMPARATIVE EFFECTIVENESS OF METAHEURISTIC
METHODS

The essence of metaheuristic methods and conditions of their application are considered,
in particular, limited amount of knowledge and availability of some candidate for optimality.
The formal statement of the traveling salesman problem and its solution are presented with
4 algorithms: genetic, annealing, Lin-Kernigan and the method of jumping frogs.

The advantages and disadvantages of the annealing algorithm are analyzed. A parallel
is drawn between the annealing algorithm and the gradient methods. The set tasks of the
salesman in the parameters of the genetic algorithm. The principles of operation of the
jumping frog method and the Lin-Kernigan algorithm are given.

To perform the experiment, a database of random data was generated that formed a
1000 x 1000 dimension problem with a known exact solution. For the conclusions on the
effectiveness of the methods, the rate of convergence of the task was estimated with the
maximum approximation to the global extremum and the standard deviation from the exact
solution. The genetic algorithm was found to perform best under the given conditions. The
further application of the jumping frog algorithm for optimization problems, implemented
with a large number of iterations, is promising. One of the ways of using the jumping frog
algorithm is the task of placing production.

Keywords: discrete optimization, metaheuristics, genetic algorithm, jumping frog algo-
rithm, leap frog method, annealing method, Lin-Kernighan algorithm.

1. Introduction. The essence of metaheuristic methods is often difficult to
understand precisely because of the specifics of the term itself. Metaheurism is not
a heuristic for heuristics as it might seem due to the meta part, it is in some way
a black box optimization. Black box optimization is also close to the term “stochastic
optimization”. Algorithms use some degree of randomness when searching for the
most optimal solutions to complex problems.

In order for the metaheuristics method to be suitable for solving the problem,
several conditions must be met:

— knowledge about the task itself is very limited — it is not known in advance
what the optimal solution will look like, there is no specific solution method, there
is too little information to use heuristics;

— there is a certain “candidate for optimality” — a suitable option for solving
the problem.

In this case, the simple enumeration method does not work due to obvious short-
comings: cumbersomeness, significant time and resources. Gradient methods are not
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suitable due to similar reasons, in addition, they do not have the right to be applied
if it is a discrete problem.

2. The results of the study. There are many different types of metaheuris-
tics: combinatorial optimization algorithms (ant colony), parallel (island model),
multi-criteria and some others. However, all of them have the above-described prop-
erties, according to which they are referred to as metaheuristics.

Let us compare the effectiveness of 4 methods: the classical genetic algorithm
[1], the jumping (leap) frog method [1], the annealing method [1] and Lin-Kernighan
algorithm [2].

One of the one-state metaheuristic methods is also simulated annealing, which
also belongs to the group of Monte Carlo methods. The algorithm is based on a
simulation of a physical process that occurs during crystallization of a substance,
including during annealing of metals. The transition of an atom from one cell to
another occurs with some probability, and the probability decreases with decreasing
temperature.

The current state of the optimized system is modified according to the normal
law. The algorithm may remain at the current point, or may go into a new state.
The probability of a transition to a new state depends on the temperature and
the energy difference, that is, the value of the optimized function, in the current
and possible new state, and is calculated in accordance with some distribution, for
example, with the Gibbs distribution.

The Gibbs distribution is used classically, while the application of the Boltzmann
distribution gives the method a new name — “Boltzmann annealing”.

The simulated annealing algorithm is similar to gradient descent, but due to the
randomness of the choice of an intermediate point, it will have to fall into local
minima less often than gradient descent. Using the logarithmic law of lowering the
temperature, a global minimum can be guaranteed, with a probability tending to
unity, but in practice this requires too many iterations, so this approach is not used
directly.

Imagine a formal statement of the problem and its solution.

1. Choose the initial solution i¢ I I and put f* : = f(i0), k== 0.

2. Until the stopping criterion is met, do the following:

2.1. Randomly select j < N ().

2.2. Iff(]) *f(Zk) < U then ik+1 L= j

2.3. If f*> f(i), then f* : = f(i).

24. Put k : = k+1.

The following quantity is also introduced #,, k = 0, 1, 2,... — random variable
with mathematical expectation E(#;) = ¢,>0 — local search option when arbitrary
deterioration in the objective function is allowed, but the probability such a transi-
tion is inversely proportional to the magnitude of the deterioration, more precisely,
for any 7 €N (7)

The sequence {c;} plays an important role in the analysis. Sometimes the pa-
rameter ¢ is called the temperature.
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There are many heuristic ways to select the final sequence {¢;} in order to
increase the probability of detecting a global optimum.

1. The initial value: co= D f,4, — the maximum difference between two adjacent
solutions.

2. Lowering the threshold: ¢y 1=a ¢k, k =0, 1,..., K — 1, where a is a positive
constant, quite close to 1, for example, a € [0.8; 0.99].

3. Final value: cx > 0 is determined either by the number of changes made, or
as the maximum ¢, at which the algorithm does not change the current solution
within a given number of steps. For each value of ¢, the algorithm performs the
order N (i) steps without changing the threshold value.

For example, the statement of the traveling salesman problem for a simulation
algorithm looks like as follows.

Each city is represented as a pair of coordinates with a corresponding index
(35 vi) -

By condition, the solution is the route between all cities, which means that the
set of states S is all possible routes passing through each city. In other words, the
set of all ordered sequences of elements of €, in which every city occurs exactly once.
Obviously, the length of each such sequence |C|.

As we recall, in order to use the simulated annealing method, we must define two
functions that depend on each specific task. This is the energy function £ (or the
“objective function” in conventional terminology) and the function F, generating a
new state.

Since we strive to minimize the distance, it will be “energy”. Therefore, our
objective function will look like this:

IC|-1

E(s;))= Ei = Z \/(karl - l'k)Q + (Y1 — yk)2 + \/(CU\C\ - 9‘71)2 + (y\C\ - yl)2

Consider a genetic algorithm — this is a heuristic search algorithm used to
solve optimization and modeling problems by sequentially selecting, combining and
varying the desired parameters using mechanisms reminiscent of biological evolu-
tion. It is a type of evolutionary computation. A distinctive feature of the genetic
algorithm is the emphasis on the use of the “crossing” operator, which performs the
operation of recombination of candidate solutions, whose role is similar to the role
of crossing in wildlife.

A simple and pure genetic algorithm can be defined in the following steps.

Step 1. Create an initial population of P chromosomes.

Step 2. Evaluate the fitness of each chromosome.

Step 3. Choose P/2 parents from the current population via proportional selec-
tion.

Step 4. Randomly select two parents to create offspring using crossover operator.

Step 5. Apply mutation operators for minor changes in the results.

Step 6. Repeat Steps 4 and 5 until all parents are selected and mated.

Step 7. Replace old population of chromosomes with new one.

Step 8. Evaluate the fitness of each chromosome in the new population.

Step 9. Terminate if the number of generations meets some upper bound; oth-
erwise go to Step 3.
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Let’s condifer also the Lin-Kernighan algorithm.

The Lin-Kernigan as 2-opt algorithm is a special case of the A-opt algorithm,
where in each step A links of the current tour are replaced by A links in such a
way that a shorter tour is achieved. In other words, in each step a shorter tour is
obtained by deleting A links and putting the resulting paths together in a new way,
possibly reversing one or more of them.

The X-opt algorithm is based on the concept M-optimality. A tour is said to be
A-optimal (or simply A-opt) if it is impossible to obtain a shorter tour by replacing
any A of its links by any other set of A links.

From this definition it is obvious that any A-optimal tour is also A-optimal for 1 <
AT < \. Ttis also easy to see that a tour containing n cities is optimal if and only if it is
n-optimal. In general, the larger the value of A\, the more likely it is that the final tour
is optimal. For fairly large \ it appears, at least intuitively, that a A-optimal tour
should be optimal. Unfortunately, the number of operations to test all 1-exchanges
increases rapidly as the number of cities increases. In a naive implementation the
testing of a A-exchange has a time complexity of O(n*). Furthermore, there is no
nontrivial upper bound of the number of A-exchanges. As a result, the values A\ =
2 and A = 3 are the most commonly used. In one study the values A = 4 and A =
5 were used. However, it is a drawback that A must be specified in advance. It is
difficult to know what A to use to achieve the best compromise between running time
and quality of solution. Lin and Kernighan removed this drawback by introducing a
powerful variable A-opt algorithm. The algorithm changes the value of A\ during its
execution, deciding at each iteration what the value of A should be. At each iteration
step the algorithm examines, for ascending values of A\, whether an interchange of
A links may result in a shorter tour. Given that the exchange of r links is being
considered, a series of tests is performed to determine whether r+1 link exchanges
should be considered. This continues until some stopping conditions are satisfied.
At each step the algorithm considers a growing set of potential exchanges (starting
with r = 2). These exchanges are chosen in such a way that a feasible tour may
be formed at any stage of the process. If the exploration succeeds in finding a new
shorter tour, then the actual tour is replaced with the new tour.

Consider the jumping (leap) frog method.

Its name is due to the social behavior of a group of frogs. In this process, unlike
evolutionary algorithms, genetic operators are not used, and the interaction of the
solutions found is considered taking into account the success of their neighbors in
the search space. The statement of the traveling salesman problem for solving it
by the jumping frog method, as well as a comparison of the effectiveness of this
algorithm with other methods, is described in [1] ( Skobtsov, 2008).

The detailed steps of jumping frog method are as follows.

Step 1 (swarm generation): Let x; denotes i-th frog’s position and f; is its fitness.
A frogs population X = {x;, f;,i =1,..., F'} is initialized with position within the
searching space and sorted in descending order of fitness values.

Step 2 (memeplexes partition): Partition the population into m memeplexes
{Y1,Ys,...,Y,,}, each contains n frogs and

Y = [(zj, [)|®) = TivmG-1), [; = firm-1),J = 1,...,n].
Step 3 (submemeplexs generation): The selection strategy of a submemeplex
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(including q frogs) in each memeplex is that the larger coefficients are distributed
to the frogs with better positions. A selection method is that the frogs with better
positions have bigger weights to be assigned to the submemeplex. The weights are
assigned with a triangular probability distribution as follows

pi=2(n+1—-1d)/(n+1), i=1,...,n.

Step 4 (submemeplexs evolution): Let xp denotes the best position and xy, denotes
the worst position in submemeplex. Then, local search is started from the worst
frog to leap to the best frog in any memeplex. The worst frog in submemeplex leaps
towards to the best frog in the memeplex, and thus the new position is obtained by
a leaping step. A random position is generated to replace it, that is

it = a+ Int[r* (b — a)).

where [a,b] is the boundary of frogs’ feasible location. Afterwards, the frogs are
sorted in a descending order according to their fitness. Repeat above steps and
evolve the submemeplexes with G; generations.

Step 5 (memeplexs shuffle): After the local search of each memeplex is finished,
all memeplexs are shuffled in which the frogs are reorganized in descending order of
fitness. Repeatedly divide the population into memeplexs and carry out local search
process, until memetic evolution generation G, is reached.

The following subsections show the general information about different meta-
heuristic methods, and their steps. For numerical experiments we used a single
randomly generated task with well-known exact solution and the dimension of the
1000 x 1000 problem. For each of the 4 algorithms 50 trials were performed with
different initial solutions. Several tests of the algorithm were carried out with 10,
15, 30 iterations. The result table (Table 1) included averages. Let’s compare their
effectiveness.

Table 1. The effectiveness of metaheuristic methods for travel salesman problem

Metaheuristic | The number of | The number of | Average algo- | Standard
Method tests in which | iterations when | rithm running | deviation
the algorithm | the global ex- | time (%)
found a global | tremum  was
extremum found
Annealing al- | 93% 15, 30 5 minutes 2,5
gorithm
Genetic algo- | 95% 10, 15, 30 4,5 minutes 1,3
rithm
Lin- 90% 15,30 6,3 minutes 1,7
Kernighan
algorithm
Jumping 80% 15, 30 6,2 minutes 1,8
(leap)  frog
method

Also compare several tests of the jumping frog algorithm that were carried out
with different numbers of iterations: 10, 15, 30 (Fig. 1).
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Leaping frog algorythm convergence. trial #1

9000 1 — local_itterations_number 2
= local_itterations_number 5
80001 = local_itterations_number 10
= local_itterations_number 15
~ local_itterations_number 30
2 7000 1
6000 1
\ \
5000 \ \
0 10 20 30 40 50
itterations

Fig. 1. Comparison of the efficiency of the jumping frog algorithm with a different
number of iterations according to the convergence criterion

The best algorithm is considered, implemented with 15 iterations of local search.
With an increase in the number of iterations, in most cases the algorithm wins with
their maximum number (Fig. 2).

-1

o

0 15 » F3 » = P 3

Fig. 2. Comparison of the efficiency of the jumping frog algorithm with a different
number of iterations according to the search criterion for the global maximum

Analysis Fig. 2 makes it possible to conclude that its principle of operation of the
jumping frog method is outwardly similar to the random search algorithm, which
emphasizes its belonging to the category of metaheuristics methods.

3. Conclusions. Promising is the further application of a simple hybrid
algorithm based on a combination of the jumping frog method and a fragmented
algorithm. It is also necessary to investigate methods for evaluating the effectiveness
of various metaheuristic algorithms.
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Ceunrorin, €., Kozin, I. [lopiBasibHa eeKTUBHICTH BUKOPUCTaAHHST METAEBPUCTHU-
YHUX METO/IIB.

PosrisiayTo cyTh MeTaeBPpUCTUIHUX METO/IIB Ta YMOBH IX 3aCTOCYBaHHS, 30KpeMa, 0bMe-
JK€Ha KUIBKICTD 3HAHD 1 HASBHICTD JIEsKOT0 KaHINIATa HA ONTHMAaJbHICTh. HaBemgena dop-
MaJibHa TOCTAHOBKA 33/1a49i KOMiBosizKepa 1 i1 pimenns 4 aaropuTMaMu: TeHETUIHUM, BifI-
nasty, Jlin-Kepnirana i meTogom crpubarodnx xKab.

IIpoananizoBano nepesaru Ta HeIOJIKH ajaropuTMy Bimmasy. [Iposeena mapasieas mMizk
AJICOPUTMOM BiIIIAIY 1 TpajlieHTHUMA MeTOoJaMu. 3ajaHi 3MiHHI 3aBIaHHS KOMIBOsizKepa B
mapaMerpax reHeTudHoro asropurmy. HaBemeno mpuuiunu mil metomy crpubarodmx xkab
ta anropurmy Jlin-Kepnirana.

s mpoBeJieHHs eKcliepuMeHTy Oysia 3reHepoBaHa 0a3a BUIIAKOBUX JAHUX, sIKi YTBO-
pwn 3amaqy po3miprocti 1000 x 1000 3 Hamepes BiloMUM TOYHUM PO3B’si3koM. [l Bu-
CHOBKIB TI0 pe3yJIbTATUBHOCTI METOJIB Oy/M OIliHEeHI IBUIKICTH 301KHOCTI 3aBIaHHS 33
YMOBU MAaKCHMAJbHOIO HaOJIMKEHHS 10 TJI0DAJBHOrO €KCTPEMYyMY 1 CepeaHbOKBAIPATU-
9He BIIXUJIEHHS BiJ TOYHOrO PO3B’sI3Ky. BUsB/IEHO, IO T€HETUIHUIN aJrOPUTM 32 33/IaHIX
YMOB JIEMOHCTPY€E HaflKpalri pe3yabTaT. IlepcreKTuBHIM € 110/1aJIbIle 3aCTOCy BAHHS aJIro-
pUTMYy cTpUOAIOUINX Kab I 3aJ71a49 ONTUMI3allil, peai3oBaHe 3 BEJTUKUM YUCJIOM iTeparrii.
OHUM 3 HAIIPSIMKIB BUKOPUCTAHHSI aJIlOPUTMY CTPpUOAIOUINX Kab € 3aBIaHHsI PO3MIIeHHS
BUPOOHUIITBA.

Kuaro4doBi ciioBa: juckperHa onTUMi3allis, MEeTAeBPUCTUKA, TeHETUIHUHN aJrOPUTM, AJII0-
putM crpubardux kab, MeTo Bianasy, ajropurM JIin-KepHirana.
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