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ON A NUMBER OF EMIGRANTS IN DECOMPOSABLE
AGE-DEPENDENT BRANCHING PROCESSES

Decomposable branching process can be viewed as stohastic model for the population
with N types of individuals, splitted into several groups Gi,Ga2,...,Gy,, n < N, where
each group occupies its own island. Individual of group G; may immidiately after birth
emigrate to island, occupied by group with higher index or stay on the same island. In
given paper we consider case with two groups G; and Go. Each individual has random life
duration and distribution of its progeny depends on its age.

We establish asymptotic behaviour of processes that count number of emigrated indi-
viduals, depending on criticality of branching subprocess, generated by group G;.

Keywords: branching process, stochastic additive functional, critical branching process,
Perron root, moments.

1. Introduction. We will provide short description of decomposable multitype age-
dependent branching process with variable transition probabilities. Review of multi-
type age-dependent processes with variable transition probabilities can be found
in |1], chapter 8, while decomposable branching processes were studied, for example,
in [2], [3] and [4]. Description of probability space could be given analogically to [5],
chapter 6.

Consider a population consisting of n types 11,75,...,T, Each T; — th type
particle has random life duration 7; with distribution function

P(r; <t)=G'(t),G'(0+) =0

We will assume that G*(t) are absolutely continuous.

Types of particles can be divided into two groups: C; which includes parti-
cles of types T1,T5,...,T, and Cy which includes particles (individuals) of types
Toi1, Thyo, ..., Ty, 1 < r < n. Particles from C5 at the end of their lives transorm
into any number of particles from their own group, while particles from C transform
into any number of particles of any type. Direct (5 types descendants of particles
from C group types we will call ’emigrants’. Establishing asymtotic behaviour of
processes, which describe number of emigrants is the goal of this paper.

Conditional probability (if transformation took place when the age attained by
the original particle was u) p’,(u) of transformation into a set consisting of a; T} —

th type particles, i = 1,n, where @ = («y,as,...,q®,) is n - dimensional vector
where the components are non-negative integers. Evolution of particle is defined by
joint distribution of random variable 7; and random vector v; = (v}, ... v!), which

characterise progeny of this particle.
P(r € B =a) = [ pl()dG(u)
B
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62 T. B. LYSETSKYI

Vector ju1;(t) = (i (t), ..., u*(t)) denotes number of particles of types Ty, T, .. .,
T, at the moment ¢, under the condition that at initial moment there existed one
T; — th type particle. And let’s also assume, that vectors p’(t) are right continuous.

Let’s denote by P'(x) and E’(x) denote conditional probability and conditional
expectaion respectively, under condition that at initial moment of time there existed
one particle of type T;.

Let’s also introduce generating functions

=> pi(b)s

and ‘
=3 Pty = )t i =T,

a aq Qn,

$=1(81,...,8,),8" =87 s
F(t,s) = (F'(t,s),...,F"(t,s)),h(t,s) = (h'(t,s),..., h"(t,s)).

Generating functions F'(t, s) satisfy with s < 1 (componentwise) and ¢ > 0 next
system of integral equations [1]

¢
Fi(t,s) = s;(1 — G'(t)) + / h(u, F(t —u,s))dG"(u),i = 1,n. (1)
0
2. Preliminaries. Define
i Oh'(u, s i = i
Mm:—%f%ﬂ@:/‘qwmw%
j 0

i Oh'(u, 5) i < i
jk(u) = W\s 1, Djp = /0 jk(u)dG (u).

We will call described above branching process (b.p.) £&. We assume that matrix

A A . ;
A= ||AZ i j=Th of moments has a form 01 Alj , where matrices A; = HA}”Z,J.:W
and Ay, = HA;H”:m are irreducable, Ay = “A§||i:ﬁ,j:m’ 0=(n-r)*r zero
matrix.
Since our goal is to describe number of emigrants, we will mainly focus on matrix
A
Let
! —2puyl
Apk,:/o ue "ay(u)dG* (u), B p]k /0 e ”“bjk(u)dGl(u),
o0 o0
zwz/imwwmw:/‘mAm@U
0 0
Y Blldbun M, = 3 MBib b, = Z / u)dG
Lkm=1 Lk=1
where p denotes such number, that perron root of matrix ||f0 e Pual (u)dG' (u Hij:ﬁ
equals to one, u, = (up,up, oyup) and v, = (Umvp, ..., vp) denote right and left
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eigenvectors of this matrix, (v, u,) = (v,,1) = > v¥ =1 (in critical case p = 0 and
k=1
we denote u, = u,v, = v).

To simplify further investigation we will introduce process &', which consists only
of particles from group C,. By v;(t) = (/7' (¢), ...,/ (t)) we will denote number of
particles of types from group Cs (emigrants), produced by C; type particles by t.
Processes 1;(t),7 = 1,7 can be seen as "product’ of C type particles or multdimensi-
onal additive functional from branching process &' (see [7]).

Consider vector fi;(t) = (u(t), ..., pi (), v/ (t),...,v2(t)),i = 1,n.

By Fi(t, s) we will denote generating functions of this vectors. It is easy to see
that Fi(t,s) = s; for j =7 + 1,n and formula (1) is valid for Fi(t,s),i = I, with
F(t,s) = (F'(t,s),...,F"(t,s)).

According to [1], we have next formulas for moments

OF'(t,s) OF(t, s)

A ( ) 6Sj - aSj ’

O?F(t,s) OPFi(t, s)
0s;0s,  0s;0s;

B;'k(t) =

Al(t) = §i(1 - Gt +Z/Akt—u (w)dG (u),

T

Bi(t)=>_ 0 Bjk u)dG (u Z / ALt — u) AP (t — u)b, (u)dG' (u),
=1 m,l=1

fori,j,k=1,r.
For Aj(t), By (t) and Bj(t), were i,j = 1,7,1 = r + 1,n we will have

<

Al(t) = / 0} (1)dG () + / ANt — u)ad, (u)dGP (u), (2)

k=1

Z/ Bt — w)al, (u)dG (u) +

> / AP~ ) At — )y ()G ), )

m,d=1

By(t) Z /0 By(t a, (u)dG" (u)+

Py / At — u) AN(E — )b, (u)dG (). (4)

m,q=1

Next theorem is crucial for establishing asymtotic behaviour of moments. Proof
of this theorem can be found in [6].
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Theorem 1. Let M(dy) = Hmij(dy sz ir

which are finite non-negative measures on [0 +00) and let vector function g(x) =
g(x)

be r*r square matriz, components of

= (q1(x),...,g9-(x)) be such that for some v > 0 holds ilelﬂlg maz{l, a7} < X
and 42 7% ¢ = (cy,...,¢,). If Perron root of M[0,+00) equals to 1 and

[ umy;(du) < oo, then
0

1 * T 00 P
/og(rv—y)dH(y) — |

ity (1+ 7)a|

ij=1r’

where H(y) is renewal matriz, which corresponds to matriz M (dy), u and v are right

and left eigenvectors of M|0,+00), a = (v, fyM(dy)u)
0

~Applying Theorem1 to (2)-(4), one can show that, in critical case, if M7, M3,
By, are finite, then

u Mlt ulv? M7 M;t? u'(M)?t3

A;(t) Ma BZ ( ) 2(Ma) Bll( ) ~ B 3(Ma)3 : (5)

We will also need next lemma to prove Theorem 2.

Lemma 1. If for random variables X (t) and Y (t) following conditions are sat-
isfied:
t——+o00
a) X(t) —— X in distribution;
b) Jim (X (1) - Y (1))
—00

then Y (t) =225 X in distribution.

Proof. Indeed, from condition b) we get that Y (t) = X(¢) + 6(t), where 6(t)
tends to zero in square mean, therefore in distribution, so

tlg(r}oE (exp{ iBY (1) }) = tlgéloE (exp{ iB(X(t)+6(t) }) =E (exp{ iBX }).
3. Main results.  Analogy of theorem 2 (and corollary 1) |7] takes place,
which also can be proven using slight modification of results obtained in [2]:
Claim 1. If process £ is supercritical, Ai)k(u) and B ik are finite, i, j, k = 1,n,

e Ptui(t) e Ptul(t) e pi” +1(t) Rz 0)
R T R o R

as t — 00 in square mean to the same limit ji*, where
vl [T e (1 — GU(t))dt
p Z vkum [ te=rtai, (t)dG*(t)

k,m=1

than random wvariables (r.v.) converge

Kj_

kfo e [ ai(u)dG? (u)dt
Kl: 7j: 7T7l:T+17n
Z v’;u;" fooo te=rtal (t)dG*(t)

k,m=1
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Furthermore, Laplace transform ¢'(s) of limit r.v. il satisfies equation

l(s) = Oohl u, p(se ")) dG'(u
05 = [ B (e olse ) dG w)
with initial condition ¢(0) =1,¢(0) = —1, where ¢(s) = (¢*(s),...,d"(s)).

Corollary 1. If conditions of theorem 1 are satisfied, than distributions

n

(5w
pi kr-‘rl <75|Z“k ,Z:L_T
ZMk() k=1

converge to the degenerate distribution, localized at the point

i Z kfo e ptfoal dGl )d

l=r+1k=1

Pl J% e (1 — Gi()dr
=1

In order to prove next theorem we will compare processes v} (t) with processes
Ni(t) — total number of particles born by the moment of time ¢, if at the moment
t = 0 there existed one particle of type T;.

Let N;(t) denote number of particles of type T}, born by ¢, then N*(t) = 231 Nj(t).
=

It is known [8], that

E (6(13]9{ Z /BJNZ thQ } |Z,u] ) t—)-‘roo

j=1

1/2 r 1/2
EmanaN (23 > 5ﬂ) /M, | sh (23 > ﬁj) /M,
j=1

Then by letting 87 = v’ 3, and since > v/ =1, we get
j=1

E (emp{ iBN(t)/1* } |Zu§(t)> ——

= (258) 7 M, (sh ((288) M) ©)

Also from [9], pp. 464465, we can establish asymptotic behaviour of moments
E'(N;(t)) and E*(NZ2(t)):
uit uit3

Ma>EZ(Ni2(t)) ~ BW-

E'(Ni(t)) ~

Theorem 2. If the following conditions are satisfied:
i) integrals M7, MJ*, B}, are finite;
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i) [ )7 ap( dGm( Jdt = k" < 400;
iii) limy_yo0 t2 [ ak (w)dG™(u) < +00, im0 t? (1 — G'(t)) < +o0,
m, k,j :W,l =7+ 1,n, then

T. B. LYSETSKYI

B <exp{ i)/ YD ki) > o) e

e (9B MoB)Y? M, (sh ((2BM05>1/2 / M)) '

Proof. As has been mentioned in (5), moments AJ(t) ~ “%lt, Bj(t) ~
~ B 3(Ml 2t l - ]_ T.

Now we Wlll obtain asymptotic behavior of moments E* (N*(¢)vj(t)) .
Let

Fi(t,z, S) 0 <€zNi(t)Sﬁi(t)> 2 <0,i= ﬁ’

F(t,z,5) = (F'(t,z,5),...,F"(t,z2,5)).
Let also

OF(t, 2, s) O*Fi(t, 2, s)

Dl(t) = ’s 1,2= O?Dl( ) —‘5:1,z:0, l = r 4+ 1,n.
0z 020s;

Similarly to [5], we can derive formula

Fi(t,z,s) = ¢ <si (1-G'() + /Ot R (u, F(t —u, 2, 5)) dG’(u)) : (7)

Differentiating both sides of (7) first with respect to z at point 0, than with
respect to so at the point s = (1,...,1) we get
—_——

n

Df():/oal )dGi (u +Z/Akt—u (u)dG (u)+

+Z/Akt—uD’t—u)b;k )dG" (u —i—Z/ Dj(t — w)aj(u)dG" (u).

7,k=1

Using the results we obtained above, we see that
/ 0l ()dGi (u +Z/ ARt — w)al (u)dG (u) = o(t?),

Akt—uDZt—u)bZk )dG" (u Blk’
J J

So again, using Theorem1, we obtain that Df(t) ~ Bg(ﬁgz
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Conditions ii) and iii) allows us to claim ( [10]), that P (Z i (t) > O) ~ M
k=1

P (((Ma)tQNl(t) B (M;L\;ﬂ’;j(t)) I;ué(t) > 0> ~

BM,u' /3t — 2BMyu' /3t + BM,u' /3t 0
2M, /Bt B

and so

From here, (6) and from Lemmal we get the result.

Corollary 2. If conditions of theorem 1 are satisfied, than distributions
. yi(t) r .
P25 <2y ui(t)>0],
(5 <

converge to the degenerate distribution, localized at the point

—r¥in

L

i where, 1 = 1,r, [ =

Analogy of theorem 1, [7] also takes place.

~—

Claim 2. Process & is critical or subcritical if and only if random variables u{(t
converge with probability 1 as t — +oo to finitely valued r. wv. Vlj,j = 1,71
=r—+1,n.

Furthermore, vector characteristic function of limit r.v. vy = (v}, ..., v]) —

E (ewl’l) = (E (eiﬁ”ll) ... FB (eiﬁl’;)> ,

satisfies integral equation:

B = ([0 (wB ) a6 . [ (wB ) der).

where

E (eiﬁl’l) = (E <eiﬁ”ll) R ) (ew”lr) S Spaly .- ,sn> :

Proof. Proof is analogical to theorem 1 in [7]. It is only worth to note that if
process is supercritical, then there exist + = 1, r, such that

0< lim P (;,uk(t)>0> :tg+mooc2(t)=q <1,

t—+o00

t—+o00

and process N*(t) —— 400 (see chapter 6, [5]) with probability ¢*, so the strong
law of large numbers holds for %
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JImcenpkuit T. B. [Ipo KiTbKicTh eMIIrpaHTIB B PO3KJIAIHOMY TLIASCTOMY ITPOIIEC]

3 IEPETBOPEHHIMHU, 3aJIe?KHUMHI BiJ BIKY.

Posknaguuit rissicruit npomec MoKHA PO3ITISAATH sIK CTOXACTUYHY MOZENb IOMYJIsIil
3 N tunavu iHguBizmyMmis, po3alieHux Ha gekinbka miarpyn Gi,Ga,...,Gn, n < N, ne
KOYKHA TPYTa HaceNsie OKpemuil ocTpiB. [nauBiguym 3 rpynu G; MOXKe Opa3y MiCJs HAPO-
JIZKE€HHsI €MIrPDyBaTU HA OCTPIB, HACEIEHUI IPYMOI0 3 BUIIUM iHIEKCOM, ab0 3aJUIIUTHACH
HA CBOEMY OCTpOBi. B mamiit crarTi po3rigmaerbcs BUMaI0K 3 nBoma rpymamu G ta Ga.
Kozkna ocoba Mae BHMIAIKOBY TPHBAJICTH KUTTsI, & PO3MOALT 11 MOTOMCTBA 3aJ€XKUTH Bif
11 BiKy.

Mmn mochiaKyeMo acMMNTOTHYHY TIOBETIHKY TPOIECIB, SKI PaxXylOTh KiJbKICTh 9acCTH-
HOK, III0 eMirpyBaJin, B 3aJI€3KHOCTI BiJT KDUTUIHOCTI T1JISICTOTO TiAITPOIIECY, TOPOIZKEHOTO
rpymoo (.

Kurro4oBi cioBa: rijuiscruil nponec, CroXacTuyHui a i TuBHUN PyHKIIOHAJ, KPUTHIHUIA
TLIIACTU MPOTIEC, TTEPOHIB KOPiHb, MOMEHTH.
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