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ON THE CONVERGENCE OF BAUM-KATZ SERIES FOR SUMS
OF LINEAR 2-ND ORDER AUTOREGRESSIVE SEQUENCES

We consider complete convergence and closely related Hsu-Robbins-Erdős-Spitzer-
Baum-Katz series for sums whose terms are elements of a linear 2-nd order autoregres-
sive sequences of random variables and prove sufficient conditions for the convergence of
this series.
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1. Introduction. On a common probability space (Ω,F,P) consider a linear 2-nd
order autoregressive sequence of random variables (r.v.'s) (𝜉𝑘, 𝑘 ≥ 1), which obeys
the system of stochastic recurrence equations

𝜉−1 = 0, 𝜉0 = 0, 𝜉𝑘 = 𝑎𝜉𝑘−1 + 𝑏𝜉𝑘−2 + 𝜃𝑘, 𝑘 ≥ 1, (1)

where 𝑎 and 𝑏 are some real constants, (𝜃𝑘) is a sequence of independent copies of
a r.v. 𝜃. Note that linear regression models of di�erent types have been studied
for a long time. A multitude of publications contain various problems for regres-
sion sequences of r.v.'s and their extensions. See, for instance [1, 2], and numerous
references therein.

For elements of the sequence (1) set

𝑆𝑛 =
𝑛∑︁
𝑘=1

𝜉𝑘, 𝑛 ≥ 1,

and for any 𝜀 > 0 consider the following series

∞∑︁
𝑛=1

𝑛
𝑟
𝑝
−2P
{︁ |𝑆𝑛|
𝑛1/𝑝

> 𝜀
}︁
, (2)

where 0 < 𝑝 < 2 and 𝑟 ≥ 𝑝. In this paper we are interested in conditions for the
convergence of this series. Hereinafter we will refer to the series (2) as to Baum-Katz
series, although some other no less prominent authors were involved in introducing
it.

Historically, for the sequence (𝑋𝑛, 𝑛 ≥ 1) of independent copies of a r.v. 𝑋,
and 𝑆𝑛 =

∑︀𝑛
𝑘=1𝑋𝑘, 𝑛 ≥ 1, the reduced version (the case 𝑟 = 2𝑝 = 2) of the

Наук. вiсник Ужгород. ун-ту, 2022, том 41, № 2 ISSN 2616-7700 (print), 2708-9568 (online)
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series (2) initially arose in the paper by Hsu and Robbins along with the notion of
complete convergence, see [3]. In their paper, authors proved that if E𝑋2 <∞, then∑︀∞

𝑛=1 P
{︁⃒⃒⃒
𝑆𝑛/𝑛−E𝑋

⃒⃒⃒
> 𝜀
}︁
<∞, while the converse was provided by Erd®s, see [4].

Note that in view of the Borel-Cantelli Lemma complete convergence implies almost
sure convergence, and so is tightly connected with the Strong Law of Large Numbers.

Further, Spitzer, see [5], showed that
∑︀∞

𝑛=1 𝑛
−1P
{︁⃒⃒⃒
𝑆𝑛/𝑛 − E𝑋

⃒⃒⃒
> 𝜀

}︁
< ∞ if and

only if E|𝑋| < ∞. Note that series (2) covers the Spitzer's case with 𝑟 = 𝑝 = 1.
Finally, for the sequence of independent copies of a r.v. 𝑋, Baum and Katz, see [6],
introduced the series (2) and proved that it is convergent if and only if E|𝑋|𝑟 <∞,
with E𝑋 = 0, when 𝑟 ≥ 1. Since then these classical results have been generalized
in several directions, including Banach space setting (see, e.g., [7]). We refer to [8]
where more detailed history on the topic is provided. Among all extensions we
distinguish results concerning complete convergence and convergence of Baum-Katz
series for weighted sums of independent r.v.'s, also known as rowwise independent
random arrays, (see, e.g., [1, 8�10,12,13] and references therein).

As to dependent patterns, in the paper [14] necessary and su�cient conditions
for the convergence of the series (2) were obtained for the case of �rst-order autore-
gressive sequence of r.v.'s, i.e. with 𝑏 = 0 in (1).

Speci�cally, in this paper we concentrate on su�cient conditions of the series (2)
for sums of elements of model (1), and under some simple assumptions imposed on
𝑎 and 𝑏 we expect to obtain similar to independent case Baum-Katz result. In our
investigation we intend to reduce the case to the idea provided in [14], which in its
turn was partially borrowed from [10].

2. Preliminaries. Consider the nonrandom recurrence sequence (𝑢𝑛, 𝑛 ≥ 1):

𝑢−1 = 0, 𝑢0 = 1, 𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏𝑢𝑛−2, 𝑛 ≥ 1, (3)

Evaluating (1) one has
𝜉1 = 𝜃1 = 𝑢0𝜃1,

𝜉2 = 𝑎𝜃1 + 𝜃2 = 𝑢1𝜃1 + 𝑢0𝜃2,

𝜉3 = (𝑎2 + 𝑏)𝜃1 + 𝑎𝜃2 + 𝜃3 = 𝑢2𝜃1 + 𝑢1𝜃2 + 𝑢0𝜃3,

. . . ,

i.e.

𝜉𝑘 =
𝑘∑︁
𝑙=1

𝑢𝑘−𝑙𝜃𝑙, 𝑘 ≥ 1.

Now, for 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛 set

𝑢(𝑛− 𝑘) =
𝑛−𝑘∑︁
𝑚=0

𝑢𝑚.

Thus,

𝑆𝑛 =
𝑛∑︁
𝑘=1

𝜉𝑘 =
𝑛∑︁
𝑘=1

(︀ 𝑘∑︁
𝑙=1

𝑢𝑘−𝑙𝜃𝑙

)︁
=

𝑛∑︁
𝑘=1

(︁ 𝑛−𝑘∑︁
𝑚=0

𝑢𝑚

)︁
𝜃𝑘 =

𝑛∑︁
𝑘=1

𝑢(𝑛− 𝑘)𝜃𝑘, 𝑛 ≥ 1.

3. Main result. Let us immediately proceed to the main result of this paper.
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Theorem 1. Let in (1)
−1 < 𝑏 < 1− |𝑎|, (4)

and 0 < 𝑝 < 2, 𝑟 ≥ 𝑝. If E|𝜃|𝑟 < ∞, where E𝜃 = 0 whenever 𝑟 ≥ 1, then for any
𝜀 > 0,

∞∑︁
𝑛=1

𝑛
𝑟
𝑝
−2P
{︁ |𝑆𝑛|
𝑛1/𝑝

> 𝜀
}︁
<∞.

4. Proof. In [14] the analogue of Theorem 1 for linear 1-st order autoregressive
sequence of r.v.'s was proved in all details. We may adopt the proof of su�ciency
to our case if we show that the values 𝑢(𝑛− 𝑘), 𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛, are bounded in a
similar way (compared with 𝑎(𝑛, 𝑘)'s in [14]).

Introduce two real-valued matrices

𝑀 =

(︂
1 0
0 0

)︂
, 𝐶 =

(︂
𝑎 𝑏
1 0

)︂
.

Note, that 𝐶 is a Frobenius matrix. Let 𝜆1 and 𝜆2 be its eigenvalues, i.e. roots
of the characteristic equation 𝜆2 − 𝑎𝜆− 𝑏 = 0. Denote by 𝜈1 and 𝜈2 multiplicities of
𝜆1 and 𝜆2 respectively. Set

𝜌 = max
{︀
|𝜆1|, |𝜆2|

}︀
and 𝜇 = max

1≤𝑘≤2
{𝜈𝑘 : |𝜆𝑘| = 𝜌}.

Obviously, in our case either 𝜇 = 1 or 𝜇 = 2. Moreover, assumption (4) implies
that both roots 𝜆1 and 𝜆2 lie within the unit circle, that is 𝜌 < 1.

Observe that

𝐶𝑀 =

(︂
𝑎 0
1 0

)︂
=

(︂
𝑢1 0
𝑢0 0

)︂
, 𝐶2𝑀 =

(︂
𝑎2 + 𝑏 0
𝑎 0

)︂
=

(︂
𝑢2 0
𝑢1 0

)︂
,

Further,

𝐶3𝑀 =

(︂
𝑎3 + 2𝑎𝑏 0
𝑎2 + 𝑏 0

)︂
=

(︂
𝑢3 0
𝑢2 0

)︂
,

and so on. Using the method of mathematical induction it is easy to show that for
any 𝑠 ≥ 1,

𝐶𝑠𝑀 =

(︂
𝑢𝑠 0
𝑢𝑠−1 0

)︂
.

Let for a square matrix 𝐴 = (𝑎𝑖𝑗)
2
𝑖,𝑗=1 with real entries ‖ · ‖ denote the matrix

norm of the following form: ‖𝐴‖ =
(︁∑︀2

𝑖,𝑗=1 𝑎
2
𝑖,𝑗

)︁1/2
. According to result by Koval',

see [15] (see also Lemma 7.7.3 [1]), if 𝐶 is a Frobenius matrix, there exist some
constants 𝑐2 > 𝑐1 > 0, such that for any 𝑠 ≥ 1,

𝑐1 · 𝜌𝑠 · 𝑠𝜇−1 ≤ ‖𝐶𝑠𝑀‖ ≤ 𝑐2 · 𝜌𝑠 · 𝑠𝜇−1,

where 𝑐1 and 𝑐2 do not depend on 𝑠.
Now since

(𝐶0 + 𝐶1 + 𝐶2 + . . .+ 𝐶𝑛−𝑘)𝑀 =

(︂
𝑢(𝑛− 𝑘) 0

𝑢(𝑛− 𝑘 − 1) 0

)︂
,
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then according to Koval's result,

|𝑢(𝑛− 𝑘)| ≤
√︀

(𝑢(𝑛− 𝑘))2 + (𝑢(𝑛− 𝑘 − 1))2 =
⃦⃦⃦ 𝑛−𝑘∑︁
𝑙=0

𝐶 𝑙𝑀
⃦⃦⃦
≤

𝑛−𝑘∑︁
𝑙=0

⃦⃦⃦
𝐶 𝑙𝑀

⃦⃦⃦
≤

≤ 𝑐2

𝑛−𝑘∑︁
𝑙=0

𝜌𝑙 · 𝑙𝜇−1, (5)

where 𝑐2 is some positive constant.
Now distinguish between two cases:
1) 𝜆1 ̸= 𝜆2 (if 𝑏 ̸= −𝑎2/4). In this case 𝜇 = 1 and according to (5),

|𝑢(𝑛− 𝑘)| ≤ 𝑐2

𝑛−𝑘∑︁
𝑙=0

𝜌𝑙 = 𝑐2
1− 𝜌𝑛−𝑘+1

1− 𝜌
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1.

2) 𝜆1 = 𝜆2 (if 𝑏 = −𝑎2/4). In this case 𝜇 = 2 and according to (5),

|𝑢(𝑛− 𝑘)| ≤ 𝑐2

𝑛−𝑘∑︁
𝑙=1

𝑙𝜌𝑙 ≤ 𝑐2

∞∑︁
𝑙=1

𝑙𝜌𝑙 = 𝑐2
𝜌

(1− 𝜌)2
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1.

Combining both cases,

|𝑢(𝑛− 𝑘)| ≤ 𝐿 = 𝑐𝑜𝑛𝑠𝑡 = max
{︁ 𝑐2
1− 𝜌

,
𝑐2𝜌

(1− 𝜌)2

}︁
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1.

Now, brie�y adopt the proof of the su�ciency of Theorem 1 in [14] to our case.
As in [14] we �rst restrict our proof to the case of symmetrically distributed r.v. 𝜃.
Let us �x any 𝜀 > 0 and apply an iteration of the Ho�mann-Jorgensen inequality
(see [10] or [14]) with 𝑠 = 𝑡 = 𝑛1/𝑝𝜀. Thus, for 𝑗 ≥ 1 there exist some constants 𝐶𝑗
and 𝐷𝑗 such that

P
{︁
|𝑆𝑛| > 𝑛1/𝑝𝜀 · 3𝑗

}︁
≤

≤ 𝐶𝑗

𝑛∑︁
𝑘=1

P
{︁⃒⃒⃒
𝑢(𝑛− 𝑘)𝜃𝑘

⃒⃒⃒
> 𝑛1/𝑝𝜀

}︁
+𝐷𝑗

(︁
P
{︁
|𝑆𝑛| > 𝑛1/𝑝𝜀

}︁)︁2𝑗
. (6)

The �rst terms in (6) can be estimated as follows

𝑛∑︁
𝑘=1

P
{︁⃒⃒⃒
𝑢(𝑛− 𝑘)𝜃𝑘

⃒⃒⃒
> 𝑛1/𝑝𝜀

}︁
=

𝑛∑︁
𝑘=1

P
{︁
|𝜃𝑘| >

𝑛1/𝑝𝜀

|𝑢(𝑛− 𝑘)|

}︁
≤

≤
𝑛∑︁
𝑘=1

P
{︁
|𝜃𝑘| > 𝑛1/𝑝𝜀𝐿−1

}︁
= 𝑛P

{︁
|𝜃| > 𝑛1/𝑝𝜀2

}︁
,

where 𝜀2 = 𝜀𝐿−1. Further, we refer to the corresponding estimations in [14].
Now consider the second term in (6). According to Markov inequality for 𝑟 > 𝑝,

one has

P
{︁
|𝑆𝑛| > 𝑛1/𝑝𝜀

}︁
≤ E|𝑆𝑛|𝑟

(𝑛1/𝑝𝜀)𝑟
.
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Next deal with E|𝑆𝑛|𝑟 distinguishing between the following cases.
1) Let 0 < 𝑟 ≤ 1. Applying the 𝑐𝑟-inequality (see, for example, [16]) with 𝑐𝑟 = 1

to E|𝑆𝑛|𝑟, one obtains

E|𝑆𝑛|𝑟 ≤
𝑛∑︁
𝑘=1

E
⃒⃒⃒
𝑢(𝑛− 𝑘)𝜃𝑘

⃒⃒⃒𝑟
=

𝑛∑︁
𝑘=1

⃒⃒
𝑢(𝑛− 𝑘)

⃒⃒𝑟E|𝜃𝑘|𝑟 ≤ E|𝜃|𝑟𝐿𝑟𝑛.

2) Let 𝑟 > 1. In this case to E|𝑆𝑛|𝑟 we consequently apply the Marcinkiewicz-
Zygmund inequality (see, for example, [16]) and the following well-known inequality:
for positive 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ∈ N and 𝑟 > 0 it is true that

(𝑎21 + 𝑎22 + ...+ 𝑎2𝑛)
𝑟/2 ≤ 𝑛0∨(𝑟/2−1)

𝑛∑︁
𝑖=1

𝑎𝑟𝑖 .

Thus,

E|𝑆𝑛|𝑟 ≤ 𝑏𝑟E
(︁ 𝑛∑︁
𝑘=1

(︁
𝑢(𝑛− 𝑘)𝜃𝑘

)︁2)︁𝑟/2
≤ 𝑏𝑟𝑛

0∨(𝑟/2−1)E
𝑛∑︁
𝑘=1

⃒⃒
𝑢(𝑛− 𝑘)𝜃𝑘

⃒⃒𝑟
=

= 𝑏𝑟𝑛
0∨(𝑟/2−1)E|𝜃|𝑟

𝑛∑︁
𝑘=1

⃒⃒
𝑢(𝑛− 𝑘)

⃒⃒𝑟 ≤ 𝑏𝑟𝑛
0∨(𝑟/2−1)E|𝜃|𝑟𝐿𝑟𝑛 = 𝑏𝑟𝑛

1∨(𝑟/2)E|𝜃|𝑟𝐿𝑟.

Here 𝑏𝑟 is some positive constant from the Marcinkiewicz-Zygmund inequality.
Combining the above two cases, we arrive at the following bounds

E|𝑆𝑛|𝑟 ≤ 𝐶(𝑟)E|𝜃|𝑟𝑛1∨(𝑟/2),

with 𝐶(𝑟) = 𝐿𝑟 or 𝑏𝑟𝐿
𝑟 depending on whether 0 < 𝑟 ≤ 1 or 𝑟 > 1.

Now to �nish the proof one needs to literary follow the steps of it in [14].

Example 1. If 𝜃 is a normally distributed r.v. with E𝜃 = 0, the model (1)
represents the so-called Gaussian 2-Markov sequence of r.v.’s. with constant coef-
ficients. In this case the series (2) converges provided that 0 < 𝑝 < 2, 𝑟 ≥ 𝑝 and
−1 < 𝑏 < 1− |𝑎|.

5. Conclusions. In the paper for sequences of sums whose terms are elements
of 2-nd order linear autoregressive sequences, su�cient conditions for the conver-
gence of Baum�Katz series are considered. Under some anticipated assumptions
imposed on the coe�cients of autoregressive sequence, obtained su�cient condi-
tions are expressed as moment assumption of the generating r.v. The latter, in its
turn, agrees with the classical Baum�Katz independent case.

We intently focused our attention on 2-nd order autoregressive sequences, evading
general 𝑚-th order case, since for 𝑚 = 2 assumptions imposed on the coe�cients
of the sequence are described in the most simple form. But, in prospect, by means
of the same technique set problem may be generalized to 𝑚-th order autoregressive
sequences for any 𝑚 ≥ 2. Moreover, we expect to prove also necessary conditions
for convergence of Baum�Katz series for such sequences.
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