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ON A CRITERION OF THE FINITENESS OF THE
REPRESENTATION TYPE FOR FAMILIES OF THE CATEGORIES
OF INJECTIVE REPRESENTATIONS

The representations of posets (partially ordered sets), introduced by L. A. Nazarova and
A. V. Roiter in 1972, play an important role in the modern representation theory and its
applications. M. M. Kleiner obtained a description of posets of finite representation type in
terms of critical posets (the minimal ones of infinite representation type) and Yu. A. Drozd
proved that a poset S (not containing an element designated as 0) is of finite representation
type if and only if its Tits quadratic form

2 2
gs(z) =: z5 + E z; + E 2iZj — %o E 2;
icS i<ji,jes €S

is weakly positive, i.e. positive on the set of non-negative vectors (in 1972 and 1974,
respectively). In this paper we consider a situation (which deals with infinite posets), when
the main role is played not by weakly positivity but by positivity of the Tits quadratic
form. The situation relates to the study of the categories of representations of a special
form, and in this case we use established by the first author a connection between the Tits
quadratic forms for partially ordered sets and commutative quivers.

Keywords: injective representation, critical poset, Tits quadratic form for posets, Tits
quadratic form for commutative quivers, finite representation type, positivity and weak
positivity.

1. Introduction. The representations of partially ordered sets (abbreviated as
posets), introduced by L. A. Nazarova and A. V. Roiter (in matrix form) in 1972 [1],
play an important role in the modern representation theory. In his first paper on this
topic M. M. Kleiner [2| proved that a posets S is of finite representation type (i.e.
has, up to equivalence, a finite number of indecomposable representations) if and
only if it does not contain subposets of the form K; = (1,1,1,1), Ky = (2,2,2), K5 =
(1,3,3),K4 = (1,2,5) and K5 = (N, 4). Specified posets are called the critical posets
relative to the finiteness of the type (i.e. they exhaust all the minimal posets with
an infinite number of indecomposable representations, up to equivalence). On the
other hand, in 1974 Yu. A. Drozd [3] proved that a poset has finite representation
type if and only if the Tits quadratic form

qs(z) =: 28 —|—sz+ Z 2i%j —ZOZzi

icS i<ji,jeS i€s

Pozain 1: MaremaTnka i cTaTuCTAKA



ON A CRITERION OF THE FINITENESS OF THE REPRESENTATION TYPE ... 17

is weakly positive (i.e., positive on the set of non-negative vectors). From these two
statements it follows that the critical posets are also critical relatively to the weak
positivity of the above quadratic form.

We single out the main further works of Kyiv mathematicians on this topic [4] —
[14], which is related to the above indicated papers (limited to the period of 30 years
and without claiming the completeness of this list).

In 2005 the authors [15] proved that a poset is critical relatively to the positivity
of the Tits quadratic form if and only if it is minimax isomorphic (in the sence of [16])
to a Kleiner’s poset; in [15] all such posets and also posets with their quadratic forms
to be positive were fully described.

In this paper, which is naturally considered as a continuation of the papers [17]
and [18], we study a situation (dealing with infinite posets), when the main role is
played not by weakly positivity but by positivity of the Tits quadratic form. The
situation relates to the study of the categories of representations of a special form,
and in this case we use established by the first author a connection between the Tits
quadratic forms for posets and commutative quivers.

2. Representations of posets. Throughout the paper, k denotes a field
and all k-vector spaces are finite-dimensional. The category of k-vector spaces is
denoted by mod k. Linear mappings and morphisms of categories multiply from left
to right. For formal reasons, we always assume that a poset does not contain an
element designated as 0 or +o0.

Recall the well-known definitions about representations of posets in terms of
vector spaces graded by posets (see [13]).

Let A be a finite poset. An A-graded vector space over k is by definition the
direct sum U = @, 4 U, of k-vector spaces U,. A linear map ¢ : U — U’ between
A-graded vector spaces U and U’ is called an A-map if @, = 0 for each b,c € A
not satisfying b < ¢, where ¢,, denotes the linear map of U, into U, induced by the
map .

A representation of a poset A over k is a triple W = (V,U,~) formed by a k-
vector space V, an A-graded space U and a linear map v : V — U; a morphism of
representations W — W' is a pair (u, ), formed by a linear map p: V' — V’ and
an A-map v : U — U’, such that yv = puvy'. The category of representations of A
will be denoted by Rep,A.

Injective and projective representations of posets are defined in a standard way.
In this paper, we are interested in injective representations.

For representations X and Y of a poset A, we write 0 = X = Y if all maps
Ver, T € A, are injective. A representation X of a poset A is said to be injective if
any diagram

0 = R —- R

1l
X

can be embedded in a commutative diagram

0 = R — R

b
X
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18 V. M. BONDARENKO, M. V. STYOPOCHKINA

The full subcategory of Repy A consisting of all injective objects will be denoted
by InjrA. The poset A is said to be of inj-finite representation type over k if the
category Funct(InjpA, mod k) of functors from the category InjiA to the category
mod k, which is called (according to the general definition for categories) the category
of representations of Inji A, is of finite type, i.e. has, up to isomorphism, a finite
number of indecomposable objects.

3. Main result. Let S be an infinite poset and Z denotes the integer numbers.
Denote by Z3“0 the subset of the cartesian product Z°° = {z = (z;)]i € SUO0}
consisting of all vectors z = (z;) with finite number of nonzero coordinates. We call
the quadratic Tits form of S (by analogy with the case of a finite poset) the form
qs : Z3Y° — 7 defined by the equality

QS'(Z) = ZS‘FZZ?—F Z ZiZj —Z()ZZZ'.

i€s i<j,ijeS i€S

This form is called positive if it take positive values for all nonzero z € Z3°.
We formulate now the main result of this paper.

Theorem 1. Let S be an unlimited poset, i.e. it has no both the minimal and
mazimal elements, and k be a field. Then the following conditions are equivalent:

(I) every finite subposet of S is of inj-finite representation type over k;

(IT) the Tits quadratic form of S is positive.

4. Representations of commutative quivers and their connections with
injective representations of posets. Let () = (Qo, Q1) be a finite quiver with
the set. of vertices )y and the set of arrows Q.

A representation U of the quiver Q = (Qo, Q1) over a field k consists of vector
spaces U; € modk,i € @, and linear mappings v, : U, — Uy, where o : © — y
runs through @;. Morphism ¢ from U to U’ consists of linear mappings ¢, : U, —
— UL,z € Qo, such that for each arrow « : x — y the diagram

U, —— U,

o | [

Yo
U, —— U;

is commutative. The category representations over k of the quiver () is denoted by
Repr@. The quiver () is said to be of finite representation type over k if the category
Repy@Q is of finite type.

A quiver @ = (Qo, Q1) is called commutative if it has no multiple arrows and
oriented cycles, and any two path with the same starting and terminating vertices
are equal (it is assumed that there are no other relations on the paths).

The Tits quadratic form brg(2) of a commutative quiver Q = (Qo, @1), the study
of which was initiated by S. Brenner [19], differs from the Tits quadratic form gg(z)
of @ = (Qo, Q1) as an usual quiver [20] by the presence of an additional term, which

depends on the number of independent relations (in both cases z = (z1,...,2,),
where n = |Qp]). Consider this situation more precisely; we shall look at it based
on [19]-22].

Denote by k@) the k-algebra of paths, whose basis is all paths on the quiver @,
by J the ideal in it generated by all arrows of @), and by [ the ideal generated

Pozain 1: MaremaTnka i cCTaTuCTAKA
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by all elements f — g € k@), where f and g are paths with the same starting and
terminating vertices. Then by definition the quadratic Tits form brg : Z9° — Z of
the commutative quiver ) is defined by the equality

bro(z) =: qo(z) + Z Tij%iZj = Zz — Z 2i%j, + Z Tij%i%;

1,jJES 1€Qo (i—j)EQ1 (i,7€8

with r;; = dimye;(1/1J + JI)e;, where e, denotes the primitive idempotent of k()
corresponding to the trivial path s — s.

Theorem 2. Let Q) be a (finite) commutative quiver and k be an arbitrary field.
Then the following condition are equivalent:

(a) Q is of finite representation type;

(b) the Tits quadratic form brg(z) is weakly positive.

Note that a similar theorem holds for an usual quiver and the Tits quadratic form
qo(z) (Gabriel’s theorem [20]) but in this case the weak positivity is equivalent to
the positivity. As indicated in [17], Theorem 2 follows from the resulfs of [23|. This
is also mentioned in [21], but the corresponding calculations are not glven in [23].

Let now S be a finite poset. We associate to S the quiver ? 0, S1) with

the set of vertices ?0 consisting of the elements of S and the set of arrows
?1 ={i—j|i<yj, 1 and j are adjacent}

(elements ¢ and j > i is called adjacent if there is not an element s with j > s > ).
We always shall consider the quiver ? go, ?1) as a commutative one.

Theorem 3 ([17]). Let S be a finite poset and k be a field. Denote by ST the
poset S U 400 with x < +oo for any v € S. Then the following conditions are
equivalent:

(1) the poset S is of inj-finite representation type;

(2) the commutative quiver ST is of finite representation type.

5. Proof of Theorem 1. Theorem 1 follows from the above theorems and
the following one:

Theorem 4 ([24]). Let S be an unlimited poset. Then the following conditions
are equivalent:

(A) the Tits quadratic form qs(z) is positive for any finite subposet P C S;

(B) the Tits quadratic form br(z) is positive for any finite subposet P C S;

(C) the Tits quadratic form brg(z) is weakly positive for any finite subposet
PcCS.

Namely, the implication (I) = (II) follows from the implications (1) = (2)
(Theorem 3), (a) = (b) (Theorem 2) and (B) = (A) (Theorem 4); the implication
(II) = (I) follows from the implications (A) = (C) (Theorem 4), (b) = (a)
(Theorem 2) and (2) = (1) (Theorem 3).

6. Conclusions. In this paper we study representations of posets and consider
a dealing with infinite posets situation, when the main role is played not by weakly
positivity (as in the cases of finite posets) but by positivity of the Tits quadratic
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form. The situation relates to the investigation of subcategories of injective objects
in the categories of representations of posets.

We prove that every finite subposet of an unlimited poset is of inj-finite rep-

resentation type over a field k (i.e. the category of injective representations has,
up to isomorphism, a finite number of indecomposable objects) if and only if the
Tits quadratic form of S is positive. In this proof, an impotent role is played by
commutative quivers and their Tits quadratic form.
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The obtained results can be used in the study of similar problems.
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Boumapenko B. M., Crpomoukina M. B. I[Ipo kpurepiii ckinuexnocti 300pa-

JKYBAJILHOTO THUITY JJIsi CiIMEHCTB KaTeropiit in’€KTUBHUX 300parKeHb.

3o6pakeHHs 4. B. MHOXKUH (4aCTKOBO BIIODsJIKOBAaHUX MHOXKuH), Beezeni JI. A. Ha-
zaporoio i A. B. Poiitepom y 1972 p., BimirpaioTs BaXXJIMBY pOJbh y CydacHiit Teopii 30-
Opazkenb Ta i1 3acrocyBanusx. M. M. Keiinep orpumas omuc 9. B. MHOXKUH CKiHYEHHOTO
300pazkyBaJIbHOrO THIY B TEPMIHAX KPUTHYHWUX Y. B . MHOXKHUH (MiHIMAJbHUX 9. B. MHO-
JKWH HECKIHYEHHOro 306paxKyBasbHoro ruiy), a FO. A. JIpo3x noBiB, 1o 4. B. MHOXKUHA, S
(sika HEe MICTUTH eJileMeHTa, HO3HAYeHOro siK ) Mae CKiHYeHHUl 300paKyBaabHUN THII TO]
i Timpkm TOxi, Kom 11 KBasparudna ¢opma TiTca

gs(z) =: zg —|—sz + Z 2% — Zozzi

i€s i<j,i,j€S ies

€ CJ1a0KO JI0ZaTHO, TOOTO JOAATHOI HAa MHOXKWHI HeBix'eMHUX BeKTOpiB (y 1972 Ta 1974
POKax BiANOBiAHO). Y miif crarTi MU PO3IJISAAEMO CUTYAINO (10 CTOCYEThCSA HECKIHIEHHUX
9. B. MHOXKWH), KOJIU [OJIOBHY POJIb Bigirpae He ciabka J0JATHICTb, a JOJATHICTb KBapa-
ruanol ¢popmu Tirca. Curyaliis cTocyeTbes TOCTIKEHHS KATEropiit 300pakeHb Creniaib-
HOI'O BUIJIS/LY, 1 B I[bOMY BHUIIAJIKy MU BUKOPUCTOBYEMO BCTAHOBJIEHUN ILEPIIUM ABTOPOM
3B’s130K MixK KBamparuaauMmu dopmamu TiTca st YACTKOBO BIOPSIKOBAHUX MHOXKUH i
KOMYTaQTUBHUX Caraii1aKis.

Kurro4osi cioBa: in’ekTuBHE 300parkeHHs, KDUTUYIHA 4. B. MHOXKWHA, KBAApaTuIHa, HOp-
ma Tirca mias 9. B. MHOXKWH, KBagparudaa ¢gopma Tirca mist KOMyTaTUBHUX caraiilakis,
CKiHYeHHHuiT 300paKKBaJIbHUN THII, JOJATHICTD i CIa0Ka M0JIaTHICTD.
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