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STABILITY OF LIMIT REGIMES IN GENERAL
REACTION-DIFFUSION TYPE SYSTEMS

In this paper, we consider the stability of limit regimes for a general class of nonlinear
distributed mathematical models named Reaction-Diffusion models. RD systems naturally
arise in many applications. For instance, in the biological mathematical modeling and in
the signal transmission theory the FitzHugh—Nagumo model, whose distributed variant is a
particular case of general RD system, is widely used. We investigate the problem of stability
of attracting sets for an infinite-dimensional RD system with respect to bounded external
signals (disturbances). The interaction functions as well as nonlinear perturbations do not
assume to be Lipschitz continuous. Therefore, we cannot expect the uniqueness of solution
for the corresponding initial-value problem and we have to use a multi-valued semigroup
approach. An undisturbed system is considered to have a global attractor, i.e., the mini-
mal compact uniformly attracting set. The main purpose is to estimate the deviation of
the trajectory of the disturbed system from the global attractor of the undisturbed one
as a function of the magnitude of external signals. Such an estimate can be obtained in
the framework of the theory of input-to-state stability (ISS). The paper proposes a new
approach to obtaining estimates of robust stability of the attractor in the case of a mul-
tivalued evolutionary operator. In particular, it is proved that the multivalued semigroup
generated by weak solutions of a nonlinear reaction-diffusion system has the property of
local ISS with respect to the attractor of the undisturbed system.

Keywords: reaction-diffusion system, system without uniqueness, input-to-state stability,
robust stability, global attractor.

1. Introduction. Conditions of practical stabilization of differential inclusions
and properties of optimal sets of practical stability of differential inclusions with a
spatial component were studied in [1], [2]. Important results of practical stability,
conditions of practical stability were obtained in works [3], [4].

In the present paper we investigate stability of limit regimes in general reaction-
diffusion type systems. In dissipative evolutionary systems it is a common view to
characterize such regimes in terms of the global attractor theory [5]-[8]. For ill-posed
problems when there are no results about uniqueness or regularity of solutions, and
for the control problems with singular perturbations the corresponding theory was
developed in [9]-[15]. If the considered autonomous system with global attractor
undergoes external signals (disturbances) then the natural problem is to estimate the
deviation of the trajectory of the disturbed system from the global attractor of the
undisturbed one as a function of the magnitude of external signals. Such an estimate

Pozain 1: Maremarnka i CTaTuCTAKA



STABILITY OF LIMIT REGIMES IN GENERAL REACTION-DIFFUSION ... 49

can be obtained in the framework of the theory of input-to-state stability (ISS) [16]-
[19]. Recently this theory has been developed to infinite-dimensional systems with
non-trivial attractors in [13]-[21]. In particular, the local input-to-state stability
and asymptotic gain properties were obtained for well-posed semilinear parabolic and
hyperbolic equations. The ISS property for the attractor of a PDE-ODE type system
(which consisting of a parabolic system of the reaction-diffusion type and a system
of ordinary differential equations) undergoing additive bounded perturbations was
explored in paper [22].

In the present paper we generalize these results for more general classes of PDEs
like reaction-diffusion systems with non-smooth interaction functions which do not
guarantee the uniqueness of solutions of the corresponding initial value problem in
the natural infinite-dimensional phase spaces.

2. Setting of the problem. In bounded domain 2 C R" we consider the
following general reaction-diffusion system

{ut = alu — f(u) + h(z) + g(u)d(t), z € Q, t>0, (1)

ulpo =0,
where v = u(t,r) = (u'(t,x),...,u™N(t,z)) is an unknown vector-function, h =
= (h',..., W), f = (f',..., fV) are given vector-functions, g = ((g))Y,_, is a
given matrix-valued function, a is a real N X N matrix such that 3(a + a*) > ul,
w>0,d=(d",...,dV) is an external signal (disturbances).

Under rather general assumption (see the last section) we can claim that this
problem is globally resolvable in weak sense in the phase space H = (L*(Q))", i.e.,
for any disturbances d € L*(R; H) and for any ug € H there exists (maybe not
unique) solution of the problem (1) u € C([0,4+00); H) with u(0) = uy.

Let us consider undisturbed system (d = 0)

{ut = alAu— f(u)+ h(x), z€Q, t >0, 2)

u|aQ =0.

It is known [7], that the corresponding multi-valued semiflow (m-semiflow for
short)

S(t,ug) = {u(t)] u(-) is a weak
solution (2), u(0) = ug} (3)

has a global attractor © in H, i.e., there exists a compact set © C H such that
(i) ©=5(t,0), t >0,
(ii) for any bounded set B C H
dist(S(t,B),0) — 0 as t — oo,

where for A, B C H we denote

S(t,B) = | S(t,b),

beB

dist(A,©) = sup inf ||z — yllu,
€A YEO
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50 0. V. KAPUSTYAN, T. V. YUSYPIV
IAlle = dist(A, ).

Property (ii) means that all trajectories of the system ultimately belong to a
given neighborhood of the global attractor is stable in Liapunov sense, i.e.,

Ve > 035>0t > 0 S(t,05(0)) C O.(O), (4)

where here and after
Os(A) ={z € H| dist(zx, A) < d}, for AC H.

Thus, the limit behavior of undisturbed system is completely determined by the
global attractor ©. The main question is how external disturbances d affect such
dynamics? Let the initial point ug := u(0) € H and disturbances d are given. Let
us denote by Sy(t,0,ug) the set of all solutions of (1) with u(0) = ug. It is not true
in general that those solutions will converge to © as t — co. But it turns out that
under additional assumptions it possible to show that we can estimate the deviation
of the trajectory of the disturbed system from the global attractor of the undisturbed
one as a function of the magnitude of external signals. For that purpose, we need
the following classes of comparison functions |21]:

K :={v:]0,4+00) — [0,400) | v is continuous, strictly increasing, v(0) = 0},

Koo := {7 € K|~ is unbounded},

L= {v:]0,400) — [0,400) | 7 is continuous,
strictly decreasing, (t) — 0, t — oo},

KL :={5:]0,+00) x [0,+00) — [0, +00) | 5 is continuous,
B(-,t) € X, Vt >0, B(s,-) € L, Vs> 0}.
First, under rather general assumptions, we will show that for the m-semiflow
S, generated by undisturbed system (2), with global attractor © 38 € KL Vu, €
H, Vt>0
15(t, uo)lle < B(lluolle, t)-

This property helps us to prove the main result about robust stability of our
disturbed system (1): Ir > 0, 35 € KL, Iy € K such that

luolle <7, ||djec <7 = VE>0

15a(, 0, u0)lle < B([[uolle, ) +Y(lld]lso), (5)
where ||d||s = esssup |d(t)].
>0

3. Stability of attractors for multi-valued semiflows in abstract spaces.
We consider an abstract evolutionary (autonomous) system, which is character-
ized by a normed phase space (X, || -||) and a family of maps (solutions) K C
C C([0,400); X) such that the following conditions hold:

(K1) Vax € X Jp € K such that ¢(0) = x;

(K2) ¢, () :=p(-+717) € K,¥7T>0,Vp € K.

Than the multi-valued map S : R, x X + 2%

S(t,x) ={e)| v € K, ¢(0) = x},
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is semiflow. Moreover,
o(t+s) € S(t,¢(s)), Vo € K, Vt,s > 0.

Assume, that S is strict, i.e., S(t+s,x) = S(t, 5(s,x)). The last equality allows
us to state existence of invariant global attractor.

Lemma 1. Assume that (K1), (K2) hold, S is strict, and

(G1) exists bounded By C X such that for all bounded B C X 3T =T(B) YVt > T
S(t, B) C By (dissipativity),

(G2) Vt, /oo, for all bounded B C X, V¢, € S(t,, B) the sequence {&,} is
precompact (asymptotic compactness),

(G3) Vt > 0, V&, — xo, Y, € S(t, 1), & — & we have: & € S(t,xg) (closed
graph).

Then m-semiflow S possesses global attractor ©.

Moreover, if

(G4) Vt, — to > 0, VYa, — xg, V& € S(tn,x,) up to sequence &, — & €
S(to, l’o)

then © is stable in the sense of (4).

Lemma 2. Assume that S : R, x X + 2% is a strict m-semiflow, which has a
stable global attractor ©. Also, assume that

for all bounded B C X the set U S(t, B) is bounded. (6)

t>0

Then 35 € KL Ve € X, VLt >0

15t z)lle < Bllle, ). (7)

Now assume that our evolutionary system undergoes disturbances d € U, where
the set U satisfies
(U) U c L>*(Ry), 0 € U, U is translation-invariant, i.e.,

dp() =d(-+h) €U, Vh >0, Vd(-) € U.

Denote by K] C C([r,+00); X) the family of maps satisfying the following
properties:

SH)Vee X, ¥Vr>0,VdeU Jpe K]: o(r) =z,

(52) 90’[3,+00) € Kj,Vpe Kj, Vs>,

(S3) @(- +h) € Ky, Yo € K7, Wh > 0.

Let us put

Sa(t, 7 x) = {p(t)] ¢ € K3, ¢(1) = x}.

Then {Sy}acv generates the family of m-semiprocesses, i.e., Vd € U, Vt > s >

>72>0, Vx e X, Vh > 0.
Sa(t,7,2) = x,

Salt,T,x) C Sy(t,s,Sq(s,T,x)),
Sd(t + h, T+ h, x) C Sd(.+h) (t, T, .CL')
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52 O. V. KAPUSTYAN, T. V. YUSYPIV

It is easy to verify that {S;}4cu satisfies cocycle property:
Sa(t + h,0,2) C Sg(t + h, h, Sa(h,0,2)) C Sqi.4n)(t,0,S54(h,0,2)),
and Vo € K7 ¢(t) € Su(t, s, o(s)).
In particular, Yy € K9, Vt,h >0
et +h) € Sa(t + h,h,o(h)) C Sae4n) (L, 0, 0(h)). (8)
(S4) Moreover, if Vs > 7, Vi € K], Yo € K with ¢(s) = ¢(s) the function

¥(p), pelT s,
o _ [P0 pelnd
e(p), p=s,
belongs to K7, then inclusion Sy(t, 7, z) C Sy(t, s, Sa(s, T,x)) takes place.
(S5) If Vh > 0, Vo € Kj ., we have that ¢(- —h) € K7™ then inclusion
Sa(t+h, T+ h,x) C Syqn)(t, 7, ) takes place.

Lemma 3. Under conditions (U), (S1)-(S5) for the semiprocess family {Sq}acu
we have that {Sq}acy is strict, i.e.

Sa(t,T,x) = Sy(t, s, Sq(s, T, 1)),
Sa(t +h, 7+ h,x) = Sacqn)(t, 7, 2),
Sa(t +h,0,2) = Sa4n)(t,0,54(h,0,2)).
In particular, in the undisturbed case (d =0)
So(t+ h,0,2) = So(t,0,S(h,0,x)),
s0 Sy 18 a strict m-semiflow.

The next theorem is the main abstract result of the paper.

Theorem 1. Assume that m-semiflow Sy is generated by family of maps K
satisfying (K1), (K2), Sy is strict, has compact values, and possesses stable global
attractor ©.

Additionally, exists locally bounded function ¢ : Ry — R, such that

Vr >0, Vt >0,

lzi|| <7, ||| <r = dist(So(t,0,21),S0(t,0,25)) < ec(r)tH:Bl —zoll.  (9)

Assume that {Sy}tacu is the family of m-semiprocesses satisfying (U), (S1)—(S5),
where d € U 1s disturbances of the initial system Sy.
Assume that do € K, exists continuous function D : Ri — R such that Vr >

0 tli_r(i@<oo, and ¥Vt > 0
—

ldllec <7, [Jz]| <7 =
dist(Sq(t,0,x),5(t,0,2)) < D(r,t)o(]|d||s)- (10)
Assume, that

Vr > 0 the set U U U Sa(t,0,z) is bounded. (11)

t20 [|dl|co <r ||z||<r

Then {Satacu s local 1SS w.r.t. O, i.e., inequality (5) holds.
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Proof. First let us prove that Vr >0 3¢, 1, a € K, exists Lipschitz continuous
function V' with Lipschitz constant equals 1, such that

Ulzlle) < V(z) <v(llzlle). Ylzlle <. (12)
Vo(z) := lim Ldist(V(So(t.0.2)). V() < ~a(zlle) Vllalle <. (19)
where here and after for A C X, V(A) = | V(a).
acA

For this purpose, we choose function § from (7), fix 7o > 0 and Ve > 0 let
T =T(ro,€) be such that
B(ro,t) <e vVt >T. (14)

We put
VE(z) = e (0tT sup(e“a: ([1So(t, 0, 2)lle)); llzlle <o,
>
where ¢y = ¢(rg) is taken from (9), ¢ > 0 will be fixed throughout the proof,
n-(r) := max{0,r — e}. Due to (14)

V() = e sup (e ([[So(t, 0, 2) o).
t€[0,T]

Using elementary properties of 7.:

0e(r) < vy ne(r1) = ne(r2)| < fry—ral,
we get the following properties of Ve:

Vi) < e sup n(1So(t0.2)0) < Bl 0). Vilallo < ro.

te[0,7)
and

VE(z) = VE(y)] < et
xsup [e“ne([|So(t,0,2)ll6) — e ne([|S0(t,0,9) o) <

t€[0,T]
< e T sup |[1So(£,0,2)]|l6) — 150(t,0,y)]le)| <
te[0,T]
S e—COT sup dist (So(t, O,ﬂf),SO(ta()?y)) S
te[0,T)

<e ez —yll =

=llz—yl, Vizlle <ro, Vlylle <ro.
Here, we utilized the inequality
dist (A, B) < dist (A, C) + dist (C, B),

with A = So(t, O,.ZC), B= @, C = So(t, O, y)
Due to compactness of © we have that V||z|e < 7o

lzlle = inf |z — & = [z = &ll, & € ©.
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54 0. V. KAPUSTYAN, T. V. YUSYPIV
Then due to (9)

dist (So(t,0, ), S0(t,0,&0)) < e[l — &l
Invariance of © implies the inclusion
So(t,0,&) C ©.
Therefore,
dist (So(t, 0,2), So(t, 0, %)) = [[So(t, 0, 2)]|e-

So, from the strict inequality ||z|le < 79 we derive that for sufficiently small
7T>0
|1So(7,0,2)|| < ro.

Then Vo € K : ¢(0) = z, we get from the strictness of S

VE(p(r)) = =@ sup(en.([1So(t, 0, (7)) lle) <

t>0

I (et (|60 + 7.0, )]) <
t>

< e “TV¥(x) for sufficiently small 7 > 0.

IN

Due to compactness of Sy(t,0,z) we deduce: for every small 7 > 0 Jp €
€ K, ¢(0) = x such that

dist (VE(So(7,0,2)), VE(x)) = VE(p(T)) = VE(x) < (77 — 1)V(x).

Therefore,

VE(z) := lim %dist(VE(SO(t,O,:c)),Vs(a:)) < —cVei(z), ||z|le < ro.

t—0+

Now, for every ||z|le < 19, we put
Vie) =Y 27"V (a).
k=1

Then from the previous arguments, we get

V(z) < B([lxlle,0), llzlle < 7o,
V(e) =Vl <llz—yll, lzlle <ro, llylle <o,

Vo € K, ¢(0) = x for sufficiently small 7 > 0
Vip(r)) < eV (x),

and therefore,
dist (V(So(7,0,2)),V(x)) < (e — 1)V (x).
So, _
Vo(2) < —eV(@), llzllo < ro.
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Moreover, inequality

sup (e 11 ([[So(t, 0 x)lle)) > n1(llzlle),
t>0
implies
EZ e @ T D, (zlle), |lzlle < ro.
Finally, denoting _
(r) =B(r,0) +r,
Blr) =2 e @MWy (1),
k=1
a(r) = cp(r),

we obtain (12),(13).
Then for V||z|le < 1, Vu € U : ||Jul]|oo <1, Vo € KV : ¢(0) = z, let us consider
for t > 0 the upper right-hand Dini derivative [23]

Vi) = Tm ~(V(glt + ) - V(e(t))).

=04+ T

D
According to property (8)

gp(t + T) € Su<t + T,O,.’L") - Su(-th)(TaOa So(t))

From (11), for some 9 > 0, ||@(t)|| < o ¥Vt > 0. We fix such rq in all previous
arguments. So, in view of (10), we can write

Vip(t+71)) = V(p(t)) < dist (V(S +0(7,0,0(1))), V(e(t))) <
< dist (V(Sury(1,0,90(2))), V(So(7,0, V(Sut0 (1,0, 0()))))) +
+d18t( (So(7, 0,V (Su(10)(7,0,(t))))), V(1)) <
< d(ro, 7)o ([|lullsc) + (e77 = DV ((2)).

It means that
DV (p(t)) < —cV(p(t)) +do([ullw), ¥t >0, (15)

where d = Tim 4ren)
=0+ 7

Due to the properties of upper limit, we get from (15):

C

5*04wa»aﬁf;—5+(—@ﬂlﬂkiéﬂ,

C

— d -~
D" (V(gp(t))eCt - Mw) <. (16)
Then inequality (16) implies that (see [23])

V(p(t))e® — wed <Vi(x)-— _—, vt > 0.

C C
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56 0. V. KAPUSTYAN, T. V. YUSYPIV
So,

V(elt) < Ve + Yo(lulle), ¥ >0,

Finally,
ele0lle) < Tllallole™ + Zolulc)
Ie(Ollo < 6™ @llallo)e ™ + Zo(lule)) <
< 0 Calleloe ) + 3 (Zoiw)) . (7
If we denote
5(r,s) = 507" (Z0(lelle)e ™)

1 2d
) =0 (2ot
then inequality (17) implies the required local ISS property.

Theorem is proved.
4. Application to reaction-diffusion systems. We consider the problem

{ut = aAu— f(u) + h(z) + gu)d(t), = € Q,t >0, (18)
u‘ag =0.

Suppose that all components of functions f, g belong to the class C(R), h €
S <L2(Q))N, 3C,Cy,C3 >0, v > 0,p; > 2, © =1, N such that Vv € RN

N . N
ST <O+ 3 i), (19)
=1 i=1

N

> ' > Z% — O, (20)

=1

lg(w)||* = Z 9" (v)[* < Cs. (21)

2,7=1

We will use the following standard functional spaces:
H = (L*(Q)Y and V = (HJ(Q))".
Let us denote
p=(p1,---,on), LP(Q)=LP(Q) x...x LPN(Q).

It is known [24] that under assumptions (19)—(21) for any disturbances d €
€ L°(Ry; H) (even for d € L} (Ry; H)) the problem (18) is globally resolvable in
weak sense in the phase space H, i.e., for every uy € H there exists (maybe not
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unique) a function u = u(t,z) € L} (0, +00; V) L, (0, +00; LP(Q2)) such that for
any T'> 0, v € VN LP(Q)

u(t,:c)v(:c)dx—l—/(aVu(t,a:)Vv(:c)—i—

+f(u(t,z))v(x) — g(z)v(x) — d(t, x)v(x))dm =0.

dt

in the sense of scalar distributions on (0,7"), and u(0, ) = ug(z). Due to inclusion
u € C([0,+00); H) the last equality makes sense. Moreover, every weak solutions
of (18) belongs to the class of absolutely continuous functions from [r, 7] to H for
every T > 7, and for positive constants v, cy,co for a.a. t > 7

d
%IIU(@II2 +ollu®)|* < 1+ eolld]l.
So,
1
lu@)|* < [lu(r)|?e™ 7 + —(a1 + olldllS), vt =7 (22)

Moreover, if ull — ug weakly in H, d, — d weakly in L*(0,T) VT > 0 then up
to subsequence
Vit > 0 u,(t) — u(t) in H, (23)

where u is a solution of (1) with initial data uo and disturbances d.

These statements allow us to claim that for d = 0 all weak solutions K of
undisturbed problem (2) generate strict m-semiflow S according to the formula (8),
and properties (22), (23) imply (G1) — (G4). So, due to Lemma 1, m-semiflow S
has stable global attractor © C H.

Moreover, from estimate (22) we get that property (6) takes place. So, Lemma
2 implies the robust stability estimate (6) for our problem (2).

Theorem 2. Suppose that (19) — (21) takes place and, additionally, components
of f belong to the class C1(R™), and the corresponding Jacobian matriz D f satisfies
the following inequality:

30, > 0 Yo € R* Df(v) > —Cy. (24)
Then the formula
Sa(t, 7, ur) = {u(®)| u(-) is a solution of (2) on [1,+0), u(t) = u,}, (25)

generates the family of semiprocesses {Sq}acy with U = L*(0, +00), which is locally
ISS w.r.t. ©, i.e., property (5) takes place.

Proof. Tt can be proved that the family of mappings {S;}secv defined by (25),
satisfies (S1) — (S5). So, Lemma 3 implies that {S;}sep is the strict family of
semiprocesses. Moreover, inequality (24) allows us to prove that Sy and Sy satisfy
properties (9), (10). Estimate (22) gives property (11). Thus, we can apply Theorem
1 and obtain required result.
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38 O. V. KAPUSTYAN, T. V. YUSYPIV

5. Conclusions. In this work, we considered the stability of the limit modes of
an infinite-dimensional system of the reaction-diffusion type in relation to external
disturbing signals. The main result is the estimation of the deviation of the tra-
jectories of the disturbed system from the uniform attractor set (global attractor)
of the undisturbed system in terms of the amplitude of the external signal. At the
same time, the obtained results can be applied to wide classes of reaction-diffusion
systems under rather general assumptions on coefficients, including systems with
non-smooth interaction functions, multi-dimensional Lotka-Volterra systems with
diffusion, FitzHugh—Nagumo systems and others for which the uniqueness of the
solution of the Cauchy problem is not guaranteed. Therefore, we can conclude that
this robust stability with respect to disturbances is the interior property of evolu-
tionary processes which are modeled by reaction-diffusion systems.
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Kanycrau O. B., FOcunis T. B. CrifikicTs rpaHnvHuX pe:KUMIB /TSI 3araib-

HOT'O BHIIQJIKy CHUCTEM THUIYy Peakmid-audy3isd.

VY mi#t cTarTi MU PO3TISATAEMO CTIWKICTh TDAHUYHUX DPEXKUMIB M1 3arajbHOTO KJAcy
HEJTIHIMHUX PO3MOJIIEHNX MAaTEMATUYHUX MOJIEJeH, AKi HAa3WBAIOTHCS MOJIEIIMH PEaKIlii-
mudysii. Cucremu peakiiii-audy3il TpuposHO BUHUKAIOTH y Oararbox 3acrocyBanusx. Ha-
MPUKJIA, IPH MATEeMATHIHOMY MOIETOBaHHI B Giosorii Ta y Teopil mepemadi curaasin
wupoko BukopucroByerbes mozesb PiruXvio-Harymo (FitzHugh—-Nagumo model), pos-
MOJiJIEHN BaplaHT SKOI € OKPEMHM BHIQJIKOM 3arajbHOI cucremu peakiiii-andysii. do-
CJTIKEHO TPOo0JIeMy CTIfKOCTI TPUTSTYIOYNX MHOKUWH JJI HECKIHI€HHOBUMIDHOI CHCTEMU
peakiii-gudysii BiqHOCHO 0OMeKeHuX 30BHIIIHIX curHaiis (30ypensb). OyHKIGT B3aEMOJIT,
a TakOXK HeJiHifHI 30ypeHHs He BBAXKAIOThCs HemepepBHuME 3a Jlimmmurem. OTxke, Mu He
MOKEMO OYiKYBATH €IWHOCTI PO3B’SI3KY /I BiIIMOBITHOI MOYATKOBOI 3a4ati, i MU TOBUHHI
BUKOPHUCTOBYBATH Oararo3nadnuil HamiBrpynosumii mninxin. Bsaxkaerscs, mo ne3bypena cu-
CcTeMa, MA€ III00AJBHI aATPAKTOD, TOOTO MiHIMAIPHY KOMIIAKTHY PiBHOMIPHO TPUTSATAIOTY
MHOKUHY. OCHOBHOIO METOI0 JOCJIPKEHHS € OIIIHKA BiIXUJIEHHST TPAEKTOPil 30ypeHoi cu-
CTeMH BiJl TI00ATBHOTO aTPAKTOpPa He30ypeHol AK (PYHKITI BETUIHHN 30BHIITHIX CUTHATIB.
Taky OliHKY MOXKHA OTPUMATH B paMKax Teopil crifikocri Bix Bxomy 1o crany (ISS). V crar-
Ti 3aIPONOHOBAHO HOBHUH MiAXiz 0 OTpUMAaHHS OIHOK pobacTHOI crifikocTi arpakrTopa y
BUMAIKY 06AraTO3HAYHOTO €BOJTIOIIHHOTO OMmepaTopa. 30KpeMa, J0BEIEHO, 10 DAraTO3HAYHA
HAMIBrPYTa, TOPOIXKEHA CTA0KMMU PO3B’sI3KaMU HEJIIHITHOI cCuCTeMU TUITY peakIii-audys3ii,
Mag€ BJIACTUBICTH JIOKANIBHOI [SS BigHOCHO aTpakTopa HE30YPEHOI CHCTEMMU.

KurrodoBi cioBa: cucrema peakuisg-audysis, cucrema 0e3 €1uHoCTi po3B’s3Ky, CTifiKicTb
Bij BXOIy /0 CTaHy, pobACTHA CTIHKICTh, rII00AJbHII aTPAKTOP.
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