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THE DIFFRACTION OF ELASTIC WAVES BY SPHERICAL
DEFECTS

Based on the method of discontinuous solutions [2—4] in the case of stationary elastic
waves, a method is proposed for reducing a number of diffraction problems to a system
of integro-differential equations. The defect can be either a spherical crack or a thin rigid
spherical inclusion. Detailing of the method is considered for the second case.

Work goals. Generalization of the method of discontinuous solutions [2-4] to the case
of spherical defects (cracks or thin rigid spherical inclusions). A method for constructing a
discontinuous solution of the wave equation for a spherical coordinate system is proposed.

Keywords: wave equation, elasticity theory, defect, inclusion, crack, discontinuous solu-
tion, jump, spherical coordinates, stress, displacement.

1. Introduction. The study of the interaction of undeformed shells with the
surrounding elastic medium is of practical importance, due to the need to increase
the strength of ships from underwater and air explosions, improve the methods of
underwater acoustics, and ensure the seismic resistance of hydraulic structures and
their elements. Thus, the development of mathematical methods for solving prob-
lems on the interaction of non-stationary (stationary) waves with various objects,
including shell type, is relevant.

Among the analytical methods, the following can be distinguished: the method
of integral equations (the potential method), the method of separation of variables
and its various modifications (the Fourier method and its generalizations in vector
and scalar forms, as well as reduction to infinite systems of algebraic equations), the
method of the theory of functions of a complex variable. These methods have proven
themselves well in relation to canonical domains (the equations of their boundary
surfaces are reduced to standard canonical forms). The following authors were
closely involved in this topic: Guz’ A. N., Nemish Yu. N., Kubenko Yu. N., Podstri-
gach Ya. S., Grilitsky D. V., Poddubnyak A. P. and etc.

At present, various numerical methods of finite differences, finite elements, etc.
are widely used to solve spatial problems. The proposed work is devoted to solving
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THE DIFFRACTION OF ELASTIC WAVES BY SPHERICAL DEFECTS 65

a spatial problem of elasticity theory for a spherical segment by the method of
discontinuous solutions [2-4].

2. Main results.

Part 1. Construction of a discontinuous solution of the wave equation for a

spherical defect

Under the defect (from the point of view of mechanics) we mean [4] a part of the
surface, at the intersection of which the stresses and displacements of the first kind
suffer discontinuities. As a classical defect, we can consider some mathematical cut
along the specified part of the surface (crack). A certain rigid inclusion in the form
of a shell (cavity), the middle surface of which coincides with the same part of the
surface, can also be attributed to such defects. Consider, as one of the special cases,
when a part of a spherical surface serves as a defect.

Let’s set its geometric parameters in the form: r =R, 0 <0 <w, -7 < p < T,
where 7,6, ¢ are the parameters of the spherical coordinate system. It is widely
known that the solution of the equations of motion of an elastic isotropic medium
can be expressed in terms of wave functions [1]. Therefore, before proceeding with
the construction of a discontinuous solution for the equations of motion, one should
construct a solution for the wave equation

1 02

Ap——=—1=0 0<r<oo, 0<@<m, <7, t>0, 1
V-5 ol <, 2 (1
where A is the Laplace operator expressed in spherical coordinates.

Under the discontinuous solution of equation (1), which is given in the entire

space for a spherical defect

r=R, 0<0<w, —-7<p<n7 (2)
one should understand such a solution to equation (1), which must satisfy it every-
where, excluding only the points of the defect itself (2) (R is the radius of a spherical
defect). At these points, the function and its normal (to the surface of the considered
defect) derivative suffer discontinuities of the first kind and their jumps are given,
for which we introduce special notation

¢<R - 079,%75) - w(R+ 070?507t) = <77Z}>7

¢/(R - 07 97 2 t) - W(R + 07 97 2 t) = W/)

In addition, here and everywhere below in the text we will denote the derivative
with respect to the variable r by a prime, with respect to 6 by a dot, and with
respect to the variable ¢ by a comma. To construct such a solution, we use the
same scheme as in the materials [4].

By successively applying to equation (1) the integral transformations of Laplace
(with respect to the variable t), Fourier (with respect to the variable )

[ onb.p) [ (r0.9)
v [PESDar, g, = [P0 g
0 -7

etney
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and Legendre (with respect to the variable 6),

™

Ui (1) = / sin P (cos 0)do, (4)

0

(P(cos®) is the adjointed Legendre polynomial), we reduce equation (1) to the
following one-dimensional form

T% [(7”2 (1) = Kk + 1)%%(?“)} - %wpnk(m =0, (5)

where 0 < r < oo.
At this stage, it is necessary to construct a discontinuous solution of this equation
with predetermined jumps

<¢pnk> - ¢pnk(R - 0) - ¢pnk(R + 0)7
(Vo) = V(R —0) — 21 (R +0).

The values of these jumps will be determined based on the boundary conditions
of the problem.

If in (5) we make a change of variables of the form () = /7 Ypnr(r), then
this equation is transformed into the Bessel equation. Let us apply the Hankel
transformation to the resulting equation

(6)

o0

Xpnk(7) = /TJkJr;(O”)Xpnk(T)dra
0

to get rid of the variable r according to the generalized scheme [2,3] (in this formula,
Jpyl (ar) is the cylindrical Bessel function).

Using the obtained results, we find the dimensionless Hankel transform from
the equation (5), expressing them in terms of jumps (6). Further, applying to this
expression the inversion formula for the Hankel transform, we find the necessary
discontinuous solution of equation (5) with jumps (6)

Upnir) = B | i) Dy, R) — () s Diglr B

I (") K, (), r>R, (7)

1
Dk’p(T, R) =

VTR L (YK, (%), r<R v=k+3% k=0,1,2,...

(I, (2), K,(z) are respectively modified Bessel and Macdonald functions). Further,
to obtain a discontinuous solution of the original wave equation, one should use the
inversion formulas for the Legendre transforms |2, 3]

(k — [n)(2k + 1)
2(k +n|)! 7

Y (1, 0) Z Y (7 aknP| |(Cos 0), o=

k=|n|

(8)
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as well as for the Fourier and Laplace transforms.
Thus, applying transformation (8) to formula (7), we obtain the following equa-
tion

w w

Upn(1,0) = R /Tn,p(G,T) SianT—/j:’n’p<9,T) sintdr |,
0 0
, ~ 8 (9)
TH,P(QJ T) = <¢pn>Mn,p(‘97 T, R)7 Tn,p(ea T) = <¢pn>@Mn,p(97 T, T, R),

M, ,(0,7,r,R) = aknP,Ln‘ (cos Q)P,,Ln| (cos T) Dy (1, R).

In the event that a steady process of medium oscillations is considered (occurring
according to a harmonic law), then the potential from the wave equation (1) can be
written in the following form

w (,r7 67 ()07 t) = eisztTZ/ (7/.7 97 ()0) * (10)

This makes it possible to exclude the use of the direct and inverse Laplace transforms
with respect to the variable ¢, which greatly simplifies the calculations. Then, if in
equation (5), instead of the parameter p, we substitute the value p = —iwy, then we
obtain a new equation, which is the solution for the function 7:5 (r,0,0).

In contrast to equation (7), the discontinuous solution in this case will take a
slightly different form

0

Don(r) = B | (V) D, R) = (Wopni) 55 Diu(r, B) | (11)

i J(RWHD (rpt), r> R, p = wo

2VTR J,,(TM)H,SI)(R/L), r<R v=k+3 k=012,

If in (11) we invert the Legendre transforms, then we obtain an equation of the
following form

Dk#(T, R) =

w w

Un(r,0) = R? /PWL(Q, 7)sinTdr — /ﬁn,u(ﬁ, T)sinTdr | |
0 0
- _ ~ 9 (12)
P’ﬂ,#(67 T) = <77Z}/pn>Mn7/~L (07 T; T: R) ) Pn,u(07 T) - <77Z)pn>ﬁMn,u (07 T; Ta R) )

M, (0,7;r,R) = aknP,‘gn‘ (cos H)P,Ln‘(cos 7)Dy, (1, R).

When substituting the value p = —iwp in (7), it is necessary to choose the
first Hankel function H.” (2) in the kernel Dy, (r, R). It is she who provides the
condition of radiation at infinity. The second function J, (z) in this kernel is the
cylindrical Bessel function. When using discontinuous solutions of the form (9) and
(12) in specific problems of the theory of elasticity, it is necessary to use the integral
representation for the following function

Wil)lemie = LK ()i = 3 HO©OLE) = A6l€), v=k+ 5. (13
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To obtain relation (13), it suffices to use formula, which allows us to expand the
functions Qg (0) = Iy (6) — Lo (#) (Lo (6) — the second Struve function [2]) into a
series in the orthogonal system of functions cos [(k: + %) 9} and therefore

Wi(z) = (_Ql)k ]QO (22 Cosg) cos [(k + %) e] de.

Integrating by parts based on (13), we establish an important relationship:

™

A = 12 = / W%TO (2cos D)ar, ()

where Yo(z) = J,(2) — iHo(2) is the first Struve function.

Part 2. Construction of a discontinuous solution of the equations of motion of an
elastic medium for a spherical defects

In order to construct a discontinuous solution to the equations of motion of
an elastic medium, we use the well-known solution to the equations of motion of an
isotropic medium, which, following the notation of the authors, is expressed in terms
of three wave functions ® (1,60, ¢, t),V; (r,0,¢,t) (j = 1,2) . It should be noted that
the function ® (r,0, p,t) determines the expansion wave and must satisfy formula
(1), in which one should put ¢ = ¢;, where ¢; is the speed of the expansion wave [1].
In turn, the functions ¥; (1,60, ¢,t) (j = 1,2) describe shear waves and in the same
equation one should put ¢ = ¢y, where ¢; is the speed of shear wave propagation. If
we omit the time parameter ¢, that is, we restrict ourselves to a simpler case when
a steady process of oscillations according to a harmonic law with a certain natural
oscillation frequency wy is considered, then, according to [1], the wave potentials can

be represented as {®, ¥, } = e~wot {ng, \Tl]} , respectively.
Using the materials from [2-4], we pass everywhere to the Fourier transforms
/e‘iwot {®, U, u,, ug, uy,} do, (15)

—T

1
{(I)”’ \Ilj»”’ Urny Woms Upn } - %
(J - 1727 nzo,il,iQ,)
If in formula (15) we formally omit the factor depending on the variable ¢ (e=*0°t)
as well as the designation of the wave above the symbols, the solutions of the above
equations can be represented in the following form

[Sin (9\112,”]. n2\1’2’n
rsinf rsin?f’

— /
Uy = Uppy = D)) —

e (r0,,) inUy,
Up = Ugn = -4 ( = ) + — = 5 (16)
T sin 6
in®, in(r¥s,,)
n = n — . — — Ut )
v e, rsinf rsinf Ln

here and everywhere below, as in [2|, we denote the derivative with respect to the
variable 7 by a prime, with respect to 6 by a dot, and with respect to the variable
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¢ by a comma. It should be noted that the functions ®,, and ¥;,, (j =1,2), must
satisfy the Helmholtz equation. For clarity, combining them into a single equation,
we write

1 / / 4 .
{02 [0, 9),]) = V@0, W3]} + [a20,, 1205,] =0, (j=1,2), (17)

r2
_nf(r,0) [sin0f*(r,0)]°
Vil (r,0) = sin2 sin 6 ’ (18)
where a = “:—f, b= ‘*C’—;’
Applying Hooke’s law and the Cauchy relations to the displacement transfor-
mants (16), we find the stress transformants necessary for further calculations

O-Tyn " az@” 2 !/ " n
ETE o) — A—2M + 0 (Wg + 7V ) + 305 + 10y
T@_,n — % — % _ inr \Ijl,n ,+ \Ijl/ + \P/Q,n _ \Ija,n + bQ\DE,n
21 r r2  2sinf \ r 2n r r2 2 7 (19)
. 7
Ton in (q);z B %) r \I[In / i (qjg’n + i’" B (7% B g) qjln)
2u rsinf +§< r ) N sin ’

where p, A are Lame parameters, 79,, 7,, are Fourier transforms for tangential
stresses 7,9 and 7, , respectively.

A discontinuous solution of the equations of motion of an elastic medium for
spherical defects (formula (2)) should be understood as such a solution of the above
equations, which must satisfy them everywhere, except for the points of the defect.
At these points, all components of the displacement and stress field suffer disconti-
nuities of the first kind with given jumps. The values of these jumps are determined
from the boundary conditions. Let us introduce the following notation for these
jumps in terms of the Fourier transforms

(Un) = Upn (R =0, 0) = tp, (R+0, 0), (vn), (Wn), (0rn), <7—97n>v <T<p,n>v (20)

where R is the radius of the spherical defect.

Further construction of a discontinuous solution will continue according to the
scheme of works [4]. At the first stage of calculations, instead of the values v, w,,
Ton, Tom, fOr convenience, we should introduce their combinations

sin ¢, (r,0) = [sin v, (r,0)]* — inw, (r,0),

sin 0¢,, (r,0) = [sin bw,(r,0)]* + inv, (r,0),
sin 09, (r, ) = [sin 079, (7, 0)]° + in7pn (1, 6), 1)
sinfoy, (r,0) = [sin07,,, (r,0)]* + intg, (r,0) .

Based on the notation introduced in (21), from relations (16), taking into account
(18), we obtain fairly compact expressions for the following elements

o (r.6) = @), (r0) + Teb22 00)
én (7‘, 0) - vn\lll,n (T7 8) ) (22)
¢ (r,0) = =V, [<I>n (r,8) + (r¥q, (r, 9))/] )
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At this stage, according to [4], it is necessary to express all unknown jumps of
the functions (®,,), (®),), (¥;.), (V},) (j = 1,2) through the given (based on the
boundary conditions of the problem posed) (6) or jumps of the introduced combi-
nations of functions (21). Passing in formulas (16) to jumps and carrying out the
necessary transformations in order to obtain jumps of functions (21), we obtain the
following, very simple expressions for them

R(Ga) = =V [(®n) + (Pon) + R(¥3,)] .

In order to obtain the same ratios for stresses, it is necessary in formulas (5) to
exclude the terms that contain derivatives with respect to the variable r» above the
first order. To do this, use the group of equations (3), which will allow us to write
the following relations

(23)

Vb, 20,

) = — a*®,,
r r
vn\p I,n 2\11/ n
\P;/:n = 7/.2]7 - TJ’ - b2\I}]7n (j = 17 2) °

Eliminating the indicated derivatives from (19) with the help of these formulas
and passing in them to stress jumps (6), including jumps ¥,, and g,, we obtain the
following relations

Or.n b 2
Gl {2 =, [(,) = (V20)] — LE(D,) — 2R(D,) + 2RV, (W),

2

Blew) — 7, [R(W,,) — (¥1,)], (24)

M

20 — 0, {R(®]) = (@0) + Tl Vo) = (W2) |5 +1) = R(WY,)

I

At this stage, it is necessary to express all unknown jumps of wave functions and
their normal derivatives through jumps of displacements and stresses, which can
be determined from the boundary conditions and, in fact, are known. To do this,
apply to all formulas (23) and (24) the Legendre integral transformation, according
to formula (4). After that, as a result of fairly obvious transformations, we obtain
the following expressions

k(k+ 1) (W1nk) = (Enk),

(e 1)V 00 = S5+ 52,

k(k+ 1) PR(Wy ) = 2928 4 9k (k + 1) (i) + 2(Co),

— RV ) = 4ty ) + 2(Co) + Hzmd, (25)

(Rb)* (@), ) = [(Rb)® — 2k(k + 1)] () — 22— 2(C, 1),

ke (k+ 1) (RD)* (W ) = 2(up )k 4 1) — B0nad y

I

+(Cu) [2 (K + 1) — 2 — (Rb)?] 4 2D nt),
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According to formula (11), the Fourier-Legendre transforms of the wave functions
will be expressed by the formulas

o (1) = B [(®], ) Diopu(r, B) = () 7 D (r, )]

U (r) = R [V ) D (r, R) — (Vi) 25 Die(r, R)] (7 =1, 2).

Substituting the jump values (11) into these formulas and then inverting the
Legendre transformation, according to formula (8), we obtain the functions ®,, and
U, (j =1,2). Further, using the groups of formulas (16), (19) and the obtained
wave potentials, we construct a discontinuous solution of the equations of motion
for a spherical defect (2). Having a discontinuous solution, it is not difficult to
reduce the problem of diffraction by such a defect to one-dimensional integral or
integro-differential equations.

3. Conclusions. In the proposed work, a discontinuous solution of the
wave equation is constructed in a spherical coordinate system. Based on the same
method, a discontinuous solution of the equations of motion of an elastic medium
for a spherical defect is constructed.

At the next stage, the problem of diffraction of an elastic torsion wave by a thin
spherical inclusion should be reduced to a system of integro-differential equations.

Develop and prove the validity of using an approximate method for solving
the corresponding integro-differential equations in the class of functions with non-
integrable singularities.

Numerically implement the method, build graphs of the dependence of the re-
active torque (the inclusion is fixedly fixed) on the frequency of oscillations and the
dimensions of the inclusion. Also, build graphs for the amplitude of oscillations of
the inclusion when it is mobile (not fixed).

(26)
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Hazapenko O. A., Crexyn A. O., dposuit A. T. /ludpakniga npyKaux
XBWJIb Ha chepunaHux gedeKkTax.

Ha ocHOBI MeTO/ Ty pO3pMBHUX DilteHb [2—4] y pa3i crarioHapHUX MPYKHAX XBHJIb 3AIIPO-
ITOHOBAHO METOJ, 3BEIEeHHA PAmy 3a7ad audpakiiii 10 cucreMu iHTerpo-amdepeHniaTbHux
piBusaHb. /ledekTom Moxke OyTm gk cdepudHa TpinumHA, ad0 TOHKE YKOPCTKE ChepudIHe
BKJIIOYEHHS.

Heramizalisg MeToy po3rIIIaeThCs I IPYTOTO BUTTAIKY. Y3araJbHEHHS METOTY PO3-
PUBHUX PO3B’s13KiB [2—4] Ha Bunanok cdepnvnux nedexTis (TpiwH ab0 TOHKUX KOPCTKHUX
chepuyUHUX BKJIIOYEHD). 3alPOIOHOBAHO METO/| MO0YJ0BM PO3PUBHONO PO3B’SI3KY XBHJILO-
BOrO PIBHSAHHSA M1 CPEPUIHOI CHCTEMH KOOPIMHAT.
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