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THE DIFFRACTION OF ELASTIC WAVES BY SPHERICAL
DEFECTS

Based on the method of discontinuous solutions [2–4] in the case of stationary elastic
waves, a method is proposed for reducing a number of diffraction problems to a system
of integro-differential equations. The defect can be either a spherical crack or a thin rigid
spherical inclusion. Detailing of the method is considered for the second case.

Work goals. Generalization of the method of discontinuous solutions [2–4] to the case
of spherical defects (cracks or thin rigid spherical inclusions). A method for constructing a
discontinuous solution of the wave equation for a spherical coordinate system is proposed.

Keywords: wave equation, elasticity theory, defect, inclusion, crack, discontinuous solu-
tion, jump, spherical coordinates, stress, displacement.

1. Introduction. The study of the interaction of undeformed shells with the
surrounding elastic medium is of practical importance, due to the need to increase
the strength of ships from underwater and air explosions, improve the methods of
underwater acoustics, and ensure the seismic resistance of hydraulic structures and
their elements. Thus, the development of mathematical methods for solving prob-
lems on the interaction of non-stationary (stationary) waves with various objects,
including shell type, is relevant.

Among the analytical methods, the following can be distinguished: the method
of integral equations (the potential method), the method of separation of variables
and its various modi�cations (the Fourier method and its generalizations in vector
and scalar forms, as well as reduction to in�nite systems of algebraic equations), the
method of the theory of functions of a complex variable. These methods have proven
themselves well in relation to canonical domains (the equations of their boundary
surfaces are reduced to standard canonical forms). The following authors were
closely involved in this topic: Guz' A. N., Nemish Yu. N., Kubenko Yu. N., Podstri-
gach Ya. S., Grilitsky D. V., Poddubnyak A. P. and etc.

At present, various numerical methods of �nite di�erences, �nite elements, etc.
are widely used to solve spatial problems. The proposed work is devoted to solving
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THE DIFFRACTION OF ELASTIC WAVES BY SPHERICAL DEFECTS 65

a spatial problem of elasticity theory for a spherical segment by the method of
discontinuous solutions [2�4].

2. Main results.

Part 1. Construction of a discontinuous solution of the wave equation for a
spherical defect

Under the defect (from the point of view of mechanics) we mean [4] a part of the
surface, at the intersection of which the stresses and displacements of the �rst kind
su�er discontinuities. As a classical defect, we can consider some mathematical cut
along the speci�ed part of the surface (crack). A certain rigid inclusion in the form
of a shell (cavity), the middle surface of which coincides with the same part of the
surface, can also be attributed to such defects. Consider, as one of the special cases,
when a part of a spherical surface serves as a defect.

Let's set its geometric parameters in the form: 𝑟 = 𝑅, 0 ≤ 𝜃 ≤ 𝜔, −𝜋 ≤ 𝜙 ≤ 𝜋,
where 𝑟, 𝜃, 𝜙 are the parameters of the spherical coordinate system. It is widely
known that the solution of the equations of motion of an elastic isotropic medium
can be expressed in terms of wave functions [1]. Therefore, before proceeding with
the construction of a discontinuous solution for the equations of motion, one should
construct a solution for the wave equation

△ 𝜓 − 1

𝑐2
𝜕2

𝜕𝑡2
𝜓 = 0, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, |𝜙| < 𝜋, 𝑡 ≥ 0, (1)

where △ is the Laplace operator expressed in spherical coordinates.
Under the discontinuous solution of equation (1), which is given in the entire

space for a spherical defect

𝑟 = 𝑅, 0 ≤ 𝜃 ≤ 𝜔, −𝜋 ≤ 𝜙 ≤ 𝜋 (2)

one should understand such a solution to equation (1), which must satisfy it every-
where, excluding only the points of the defect itself (2) (𝑅 is the radius of a spherical
defect). At these points, the function and its normal (to the surface of the considered
defect) derivative su�er discontinuities of the �rst kind and their jumps are given,
for which we introduce special notation

𝜓(𝑅− 0, 𝜃, 𝜙, 𝑡)− 𝜓(𝑅 + 0, 𝜃, 𝜙, 𝑡) = ⟨𝜓⟩,

𝜓′(𝑅− 0, 𝜃, 𝜙, 𝑡)− 𝜓′(𝑅 + 0, 𝜃, 𝜙, 𝑡) = ⟨𝜓′⟩.

In addition, here and everywhere below in the text we will denote the derivative
with respect to the variable 𝑟 by a prime, with respect to 𝜃 by a dot, and with
respect to the variable 𝜙 by a comma. To construct such a solution, we use the
same scheme as in the materials [4].

By successively applying to equation (1) the integral transformations of Laplace
(with respect to the variable 𝑡), Fourier (with respect to the variable 𝜙)

𝜓𝑝 =

∞∫︁
0

𝜓(𝑟, 𝜃, 𝜙, 𝑡)

𝑒𝑝𝑡
𝑑𝑡, 𝜓𝑝𝑛 =

𝜋∫︁
−𝜋

𝜓𝑝(𝑟, 𝜃, 𝜙)

𝑒𝑖𝑛𝜙
𝑑𝜙, (3)
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and Legendre (with respect to the variable 𝜃),

𝜓𝑝𝑛𝑘(𝑟) =

𝜋∫︁
0

sin 𝜃𝑃
|𝑛|
𝑘 (cos 𝜃)𝑑𝜃, (4)

(𝑃 𝑛
𝑘 (cos 𝜃) is the adjointed Legendre polynomial), we reduce equation (1) to the

following one-dimensional form

1

𝑟2

[︁(︀
𝑟2𝜓′

𝑝𝑛𝑘(𝑟)
)︀′ − 𝑘(𝑘 + 1)𝜓𝑝𝑛𝑘(𝑟)

]︁
− 𝑝2

𝑐2
𝜓𝑝𝑛𝑘(𝑟) = 0, (5)

where 0 < 𝑟 <∞.
At this stage, it is necessary to construct a discontinuous solution of this equation

with predetermined jumps

⟨𝜓𝑝𝑛𝑘⟩ = 𝜓𝑝𝑛𝑘(𝑅− 0)− 𝜓𝑝𝑛𝑘(𝑅 + 0),

⟨𝜓′
𝑝𝑛𝑘⟩ = 𝜓′

𝑝𝑛𝑘(𝑅− 0)− 𝜓′
𝑝𝑛𝑘(𝑅 + 0).

(6)

The values of these jumps will be determined based on the boundary conditions
of the problem.

If in (5) we make a change of variables of the form 𝜒𝑝𝑛𝑘(𝑟) =
√
𝑟 𝜓𝑝𝑛𝑘(𝑟), then

this equation is transformed into the Bessel equation. Let us apply the Hankel
transformation to the resulting equation

𝜒𝑝𝑛𝑘(𝑟) =

∞∫︁
0

𝑟𝐽𝑘+ 1
2
(𝛼𝑟)𝜒𝑝𝑛𝑘(𝑟)𝑑𝑟,

to get rid of the variable 𝑟 according to the generalized scheme [2,3] (in this formula,
𝐽𝑘+ 1

2
(𝛼𝑟) is the cylindrical Bessel function).

Using the obtained results, we �nd the dimensionless Hankel transform from
the equation (5), expressing them in terms of jumps (6). Further, applying to this
expression the inversion formula for the Hankel transform, we �nd the necessary
discontinuous solution of equation (5) with jumps (6)

𝜓𝑝𝑛𝑘(𝑟) = 𝑅2

[︂
⟨𝜓′

𝑝𝑛𝑘⟩𝐷𝑘,𝑝(𝑟, 𝑅)− ⟨𝜓𝑝𝑛𝑘⟩
𝜕

𝜕𝑅
𝐷𝑘,𝑝(𝑟, 𝑅)

]︂
,

𝐷𝑘,𝑝(𝑟, 𝑅) =
1√
𝑟𝑅

⎧⎪⎨⎪⎩
𝐼𝜈
(︀
𝑅𝑝
𝑐

)︀
𝐾𝜈

(︀
𝑟𝑝
𝑐

)︀
, 𝑟 > 𝑅,

𝐼𝜈
(︀
𝑟𝑝
𝑐

)︀
𝐾𝜈

(︀
𝑅𝑝
𝑐

)︀
, 𝑟 < 𝑅, 𝜈 = 𝑘 + 1

2
, 𝑘 = 0, 1, 2, . . .

(7)

(𝐼𝜈 (𝑧), 𝐾𝜈(𝑧) are respectively modi�ed Bessel and Macdonald functions). Further,
to obtain a discontinuous solution of the original wave equation, one should use the
inversion formulas for the Legendre transforms [2, 3]

𝜓𝑝𝑛(𝑟, 𝜃) =
∞∑︁

𝑘=|𝑛|

𝜓𝑝𝑛𝑘(𝑟)𝜎𝑘𝑛𝑃
|𝑛|
𝑘 (cos 𝜃), 𝜎𝑘𝑛 =

(𝑘 − |𝑛|)!(2𝑘 + 1)

2(𝑘 + |𝑛|)!
, (8)
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as well as for the Fourier and Laplace transforms.
Thus, applying transformation (8) to formula (7), we obtain the following equa-

tion

𝜓𝑝𝑛(𝑟, 𝜃) = 𝑅2

⎡⎣ 𝜔∫︁
0

𝑇𝑛,𝑝(𝜃, 𝜏) sin 𝜏𝑑𝜏 −
𝜔∫︁

0

̃︀𝑇𝑛,𝑝(𝜃, 𝜏) sin 𝜏𝑑𝜏
⎤⎦ ,

𝑇𝑛,𝑝(𝜃, 𝜏) = ⟨𝜓′
𝑝𝑛⟩𝑀𝑛,𝑝(𝜃, 𝜏, 𝑟, 𝑅), ̃︀𝑇𝑛,𝑝(𝜃, 𝜏) = ⟨𝜓𝑝𝑛⟩

𝜕

𝜕𝑅
𝑀𝑛,𝑝(𝜃, 𝜏, 𝑟, 𝑅),

𝑀𝑛,𝑝(𝜃, 𝜏, 𝑟, 𝑅) = 𝜎𝑘𝑛𝑃
|𝑛|
𝑘 (cos 𝜃)𝑃

|𝑛|
𝑘 (cos 𝜏)𝐷𝑘,𝑝(𝑟, 𝑅).

(9)

In the event that a steady process of medium oscillations is considered (occurring
according to a harmonic law), then the potential from the wave equation (1) can be
written in the following form

𝜓 (𝑟, 𝜃, 𝜙, 𝑡) = 𝑒−𝑖𝜔0𝑡 ̃︀𝜓 (𝑟, 𝜃, 𝜙) . (10)

This makes it possible to exclude the use of the direct and inverse Laplace transforms
with respect to the variable 𝑡, which greatly simpli�es the calculations. Then, if in
equation (5), instead of the parameter 𝑝, we substitute the value 𝑝 = −𝑖𝜔0, then we

obtain a new equation, which is the solution for the function ̃︀𝜓 (𝑟, 𝜃, 𝜙) .
In contrast to equation (7), the discontinuous solution in this case will take a

slightly di�erent form

̃︀𝜓𝑝𝑛𝑘(𝑟) = 𝑅2

[︂
⟨𝜓′

𝑝𝑛𝑘⟩𝐷𝑘,𝜇(𝑟, 𝑅)− ⟨𝜓𝑝𝑛𝑘⟩
𝜕

𝜕𝑅
𝐷𝑘,𝜇(𝑟, 𝑅)

]︂
, (11)

𝐷𝑘,𝜇(𝑟, 𝑅) =
𝜋𝑖

2
√
𝑟𝑅

⎧⎨⎩𝐽𝜈(𝑅𝜇)𝐻
(1)
𝜈 (𝑟𝜇), 𝑟 > 𝑅, 𝜇 = 𝜔0

𝑐
,

𝐽𝜈(𝑟𝜇)𝐻
(1)
𝜈 (𝑅𝜇), 𝑟 < 𝑅, 𝜈 = 𝑘 + 1

2
, 𝑘 = 0, 1, 2, . . .

If in (11) we invert the Legendre transforms, then we obtain an equation of the
following form

̃︀𝜓𝑛(𝑟, 𝜃) = 𝑅2

⎡⎣ 𝜔∫︁
0

𝑃𝑛,𝜇(𝜃, 𝜏) sin 𝜏𝑑𝜏 −
𝜔∫︁

0

̃︀𝑃𝑛,𝜇(𝜃, 𝜏) sin 𝜏𝑑𝜏

⎤⎦ ,
𝑃𝑛,𝜇(𝜃, 𝜏) = ⟨ ̃︀𝜓′

𝑝𝑛⟩𝑀𝑛,𝜇 (𝜃, 𝜏 ; 𝑟, 𝑅) , ̃︀𝑃𝑛,𝜇(𝜃, 𝜏) = ⟨ ̃︀𝜓𝑝𝑛⟩
𝜕

𝜕𝑅
𝑀𝑛,𝜇 (𝜃, 𝜏 ; 𝑟, 𝑅) ,

𝑀𝑛,𝜇 (𝜃, 𝜏 ; 𝑟, 𝑅) = 𝜎𝑘𝑛𝑃
|𝑛|
𝑘 (cos 𝜃)𝑃

|𝑛|
𝑘 (cos 𝜏)𝐷𝑘,𝜇(𝑟, 𝑅).

(12)

When substituting the value 𝑝 = −𝑖𝜔0 in (7), it is necessary to choose the

�rst Hankel function 𝐻
(1)
𝜈 (𝑧) in the kernel 𝐷𝑘,𝜇 (𝑟, 𝑅) . It is she who provides the

condition of radiation at in�nity. The second function 𝐽𝜈 (𝑧) in this kernel is the
cylindrical Bessel function. When using discontinuous solutions of the form (9) and
(12) in speci�c problems of the theory of elasticity, it is necessary to use the integral
representation for the following function

𝑊𝑘(𝑧)|𝑧=−𝑖𝜉 = 𝐼𝜈(𝑧)𝐾𝜈(𝑧)|𝑧=−𝑖𝜉 =
𝜋𝑖

2
𝐻(1)

𝜈 (𝜉)𝐽𝜈(𝜉) = 𝐴𝑘(𝜉), 𝜈 = 𝑘 +
1

2
. (13)
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To obtain relation (13), it su�ces to use formula, which allows us to expand the
functions Ω0 (𝜃) = 𝐼0 (𝜃) − 𝐿0 (𝜃) (𝐿0 (𝜃) � the second Struve function [2]) into a
series in the orthogonal system of functions cos

[︀(︀
𝑘 + 1

2

)︀
𝜃
]︀
and therefore

𝑊𝑘(𝑧) =
(−1)𝑘

2

𝜋∫︁
0

Ω0

(︂
2𝑧 cos

𝜃

2

)︂
cos

[︂(︂
𝑘 +

1

2

)︂
𝜃

]︂
𝑑𝜃.

Integrating by parts based on (13), we establish an important relationship:

𝐴𝑘(𝜉) =
1−∆𝑘(𝜉)

2𝑘 + 1
, ∆𝑘(𝜉) =

𝜋∫︁
0

sin[(𝑘 + 1
2
)𝜏 ]

(−1)𝑘
𝜕

𝜕𝜏
Υ0

(︁
2𝜉 cos

𝜏

2

)︁
𝑑𝜏, (14)

where Υ0(𝑧) = 𝐽𝜈(𝑧)− 𝑖𝐻0(𝑧) is the �rst Struve function.

Part 2. Construction of a discontinuous solution of the equations of motion of an
elastic medium for a spherical defects

In order to construct a discontinuous solution to the equations of motion of
an elastic medium, we use the well-known solution to the equations of motion of an
isotropic medium, which, following the notation of the authors, is expressed in terms
of three wave functions Φ (𝑟, 𝜃, 𝜙, 𝑡) ,Ψ𝑗 (𝑟, 𝜃, 𝜙, 𝑡) (𝑗 = 1, 2) . It should be noted that
the function Φ (𝑟, 𝜃, 𝜙, 𝑡) determines the expansion wave and must satisfy formula
(1), in which one should put 𝑐 = 𝑐1, where 𝑐1 is the speed of the expansion wave [1].
In turn, the functions Ψ𝑗 (𝑟, 𝜃, 𝜙, 𝑡) (𝑗 = 1, 2) describe shear waves and in the same
equation one should put 𝑐 = 𝑐2, where 𝑐2 is the speed of shear wave propagation. If
we omit the time parameter 𝑡, that is, we restrict ourselves to a simpler case when
a steady process of oscillations according to a harmonic law with a certain natural
oscillation frequency 𝜔0 is considered, then, according to [1], the wave potentials can

be represented as {Φ,Ψ𝑗 } = 𝑒−𝑖𝜔0𝑡
{︁̃︀Φ, ̃︀Ψ𝑗

}︁
, respectively.

Using the materials from [2�4], we pass everywhere to the Fourier transforms

{Φ𝑛,Ψ𝑗,𝑛, 𝑢𝑟,𝑛, 𝑢𝜃,𝑛, 𝑢𝜙,𝑛 } =
1

2𝜋

𝜋∫︁
−𝜋

𝑒−𝑖𝜔0𝑡 {Φ,Ψ, 𝑢𝑟, 𝑢𝜃, 𝑢𝜙} 𝑑𝜙, (15)

(𝑗 = 1, 2, 𝑛 = 0,±1,±2, . . .) .
If in formula (15) we formally omit the factor depending on the variable 𝑡 (𝑒−𝑖𝜔0𝑡) ,

as well as the designation of the wave above the symbols, the solutions of the above
equations can be represented in the following form

𝑢𝑛 ≡ 𝑢𝑟,𝑛 = Φ′
𝑛 −

[sin 𝜃Ψ2,𝑛]
∙

𝑟 sin 𝜃
− 𝑛2Ψ2,𝑛

𝑟 sin2 𝜃
,

𝑣𝑛 ≡ 𝑢𝜃,𝑛 =
Ψ∙

𝑛

𝑟
+

(𝑟Ψ2,𝑛)
′

𝑟
+
𝑖𝑛Ψ1,𝑛

sin 𝜃
,

𝑤𝑛 ≡ 𝑢𝜙,𝑛 =
𝑖𝑛Φ𝑛

𝑟 sin 𝜃
+
𝑖𝑛 (𝑟Ψ2,𝑛)

′

𝑟 sin 𝜃
−Ψ∙

1,𝑛,

(16)

here and everywhere below, as in [2], we denote the derivative with respect to the
variable 𝑟 by a prime, with respect to 𝜃 by a dot, and with respect to the variable
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𝜙 by a comma. It should be noted that the functions Φ𝑛 and Ψ𝑗,𝑛 (𝑗 = 1, 2) , must
satisfy the Helmholtz equation. For clarity, combining them into a single equation,
we write

1

𝑟2

{︁(︀
𝑟2
[︀
Φ′

𝑛,Ψ
′
𝑗,𝑛

]︀)︀′ −∇𝑛 [Φ𝑛,Ψ𝑗,𝑛]
}︁
+
[︀
𝑎2Φ𝑛, 𝑏

2Ψ𝑗,𝑛

]︀
= 0, (𝑗 = 1, 2) , (17)

∇𝑛𝑓 (𝑟, 𝜃) ≡
𝑛2𝑓 (𝑟, 𝜃)

sin2𝜃
− [sin 𝜃𝑓 ∙(𝑟, 𝜃)]∙

sin 𝜃
, (18)

where 𝑎 = 𝜔0

𝑐1
, 𝑏 = 𝜔0

𝑐2
.

Applying Hooke's law and the Cauchy relations to the displacement transfor-
mants (16), we �nd the stress transformants necessary for further calculations

𝜎𝑟,𝑛
2𝜇

= Φ′′
𝑛 − 𝜆

𝑎2Φ𝑛

2𝜇
+ 𝑏2

(︀
Ψ2,𝑛 + 𝑟Ψ′

2,𝑛

)︀
+ 3Ψ′′

2,𝑛 + 𝑟Ψ′′′
2,𝑛,

𝜏𝜃,𝑛
2𝜇

=
Φ′

𝑛

𝑟
− Φ∙

𝑛

𝑟2
− 𝑖𝑛𝑟

2 sin 𝜃

(︂
Ψ1,𝑛

𝑟

)︂′

+Ψ′′
2,𝑛 +

Ψ′
2,𝑛

𝑟
−

Ψ∙
2,𝑛

𝑟2
+
𝑏2Ψ∙

2,𝑛

2
,

−𝜏𝜙,𝑛
2𝜇

=
𝑖𝑛
(︀
Φ′

𝑛 − Φ𝑛

𝑟

)︀
𝑟 sin 𝜃

+
𝑟

2

(︂
Ψ∙

1,𝑛

𝑟

)︂′

+
𝑖𝑛
(︁
Ψ′′

2,𝑛 +
Ψ′

2,𝑛

𝑟
−
(︁

1
𝑟2

− 𝑏2

2

)︁
Ψ2,𝑛

)︁
sin 𝜃

,

(19)

where 𝜇, 𝜆 are Lame parameters, 𝜏𝜃,𝑛, 𝜏𝜙,𝑛 are Fourier transforms for tangential
stresses 𝜏𝑟,𝜃 and 𝜏𝑟,𝜙 respectively.

A discontinuous solution of the equations of motion of an elastic medium for
spherical defects (formula (2)) should be understood as such a solution of the above
equations, which must satisfy them everywhere, except for the points of the defect.
At these points, all components of the displacement and stress �eld su�er disconti-
nuities of the �rst kind with given jumps. The values of these jumps are determined
from the boundary conditions. Let us introduce the following notation for these
jumps in terms of the Fourier transforms

⟨𝑢𝑛⟩ = 𝑢𝑟𝑛 (𝑅− 0, 𝜃)− 𝑢𝑟𝑛 (𝑅 + 0, 𝜃) , ⟨𝑣𝑛⟩, ⟨𝑤𝑛⟩, ⟨𝜎𝑟,𝑛⟩, ⟨𝜏𝜃,𝑛⟩, ⟨𝜏𝜙,𝑛⟩, (20)

where 𝑅 is the radius of the spherical defect.
Further construction of a discontinuous solution will continue according to the

scheme of works [4]. At the �rst stage of calculations, instead of the values 𝑣𝑛, 𝑤𝑛,
𝜏𝜃,𝑛, 𝜏𝜙,𝑛, for convenience, we should introduce their combinations

sin 𝜃𝜁𝑛 (𝑟, 𝜃) = [sin 𝜃𝑣𝑛(𝑟, 𝜃)]
∙ − 𝑖𝑛𝑤𝑛 (𝑟, 𝜃) ,

sin 𝜃𝜁𝑛 (𝑟, 𝜃) = [sin 𝜃𝑤𝑛(𝑟, 𝜃)]
∙ + 𝑖𝑛𝑣𝑛 (𝑟, 𝜃) ,

sin 𝜃𝜗𝑛 (𝑟, 𝜃) = [sin 𝜃𝜏𝜃,𝑛(𝑟, 𝜃)]
∙ + 𝑖𝑛𝜏𝜙,𝑛 (𝑟, 𝜃) ,

𝑠𝑖𝑛𝜃𝜚𝑛 (𝑟, 𝜃) = [sin 𝜃𝜏𝜙,𝑛 (𝑟, 𝜃)]
∙ + 𝑖𝑛𝜏𝜃,𝑛 (𝑟, 𝜃) .

(21)

Based on the notation introduced in (21), from relations (16), taking into account
(18), we obtain fairly compact expressions for the following elements

𝑢𝑛 (𝑟, 𝜃) = Φ′
𝑛 (𝑟, 𝜃) +

∇𝑛Ψ2,𝑛 (𝑟,𝜃)

𝑟
,

𝜉𝑛 (𝑟, 𝜃) = ∇𝑛Ψ1,𝑛 (𝑟, 𝜃) ,

𝑟𝜁𝑛 (𝑟, 𝜃) = −∇𝑛

[︀
Φ𝑛 (𝑟, 𝜃) + (𝑟Ψ2,𝑛 (𝑟, 𝜃))′

]︀
.

(22)
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At this stage, according to [4], it is necessary to express all unknown jumps of
the functions ⟨Φ𝑛⟩, ⟨Φ′

𝑛⟩, ⟨Ψ𝑗,𝑛⟩, ⟨Ψ′
𝑗,𝑛⟩ (𝑗 = 1, 2) through the given (based on the

boundary conditions of the problem posed) (6) or jumps of the introduced combi-
nations of functions (21). Passing in formulas (16) to jumps and carrying out the
necessary transformations in order to obtain jumps of functions (21), we obtain the
following, very simple expressions for them

⟨𝑢𝑛⟩ = ⟨Φ′
𝑛⟩+

∇𝑛⟨Ψ2,𝑛⟩
𝑅

, ⟨𝜉𝑛⟩ = ∇𝑛⟨Ψ1,𝑛⟩,

𝑅⟨𝜁𝑛⟩ = −∇𝑛

[︀
⟨Φ𝑛⟩+ ⟨Ψ2,𝑛⟩+𝑅⟨Ψ′

2,𝑛⟩
]︀
.

(23)

In order to obtain the same ratios for stresses, it is necessary in formulas (5) to
exclude the terms that contain derivatives with respect to the variable 𝑟 above the
�rst order. To do this, use the group of equations (3), which will allow us to write
the following relations

Φ′′
𝑛 =

∇𝑛Φ𝑛

𝑟2
− 2Φ′

𝑛

𝑟
− 𝑎2Φ𝑛,

Ψ′′
𝑗,𝑛 =

∇𝑛Ψ𝑗,𝑛

𝑟2
−

2Ψ′
𝑗,𝑛

𝑟
− 𝑏2Ψ𝑗,𝑛 (𝑗 = 1, 2) .

Eliminating the indicated derivatives from (19) with the help of these formulas
and passing in them to stress jumps (6), including jumps 𝜗𝑛 and 𝜚𝑛, we obtain the
following relations

⟨𝜎𝑟,𝑛⟩
2𝜇

𝑅2 = ∇𝑛 [⟨Φ𝑛⟩ − ⟨Ψ2,𝑛⟩]− (𝑏𝑅)2

2
⟨Φ𝑛⟩ − 2𝑅⟨Φ′

𝑛⟩+ 2𝑅∇𝑛⟨Ψ′
2,𝑛⟩,

𝑅⟨𝜚𝑛⟩
𝜇

= ∇𝑛

[︀
𝑅⟨Ψ′

1,𝑛⟩ − ⟨Ψ1,𝑛⟩
]︀
,

2𝑅2⟨𝜗𝑛⟩
𝜇

= −∇𝑛

{︁
𝑅⟨Φ′

𝑛⟩ − ⟨Φ𝑛⟩+∇𝑛⟨Ψ2,𝑛⟩ − ⟨Ψ2,𝑛⟩
[︁
𝑏2

2
+ 1
]︁
−𝑅⟨Ψ′

2,𝑛⟩
}︁
.

(24)

At this stage, it is necessary to express all unknown jumps of wave functions and
their normal derivatives through jumps of displacements and stresses, which can
be determined from the boundary conditions and, in fact, are known. To do this,
apply to all formulas (23) and (24) the Legendre integral transformation, according
to formula (4). After that, as a result of fairly obvious transformations, we obtain
the following expressions

𝑘(𝑘 + 1)⟨Ψ1,𝑛,𝑘⟩ = ⟨𝜉𝑛,𝑘⟩,

𝑘(𝑘 + 1)⟨Ψ′
1,𝑛,𝑘⟩ =

⟨𝜉𝑛,𝑘⟩
𝑅

+
⟨𝜚𝑛,𝑘⟩

𝜇
,

𝑘 (𝑘 + 1) 𝑏2𝑅⟨Ψ2,𝑛,𝑘⟩ = 𝑅⟨𝜗𝑛,𝑘⟩
𝜇

+ 2𝑘 (𝑘 + 1) ⟨𝑢𝑛,𝑘⟩+ 2⟨𝜁𝑛,𝑘⟩,

−𝑅𝑏2⟨Φ𝑛,𝑘⟩ = 4⟨𝑢𝑛,𝑘⟩+ 2⟨𝜁𝑛,𝑘⟩+ 𝑅⟨𝜎𝑟,𝑛,𝑘⟩
𝜇

,

(𝑅𝑏)2 ⟨Φ′
𝑛,𝑘⟩ =

[︀
(𝑅𝑏)2 − 2𝑘(𝑘 + 1)

]︀
⟨𝑢𝑛,𝑘⟩ − 𝑅⟨𝜗𝑛,𝑘⟩

𝜇
− 2⟨𝜁𝑛,𝑘⟩,

𝑘 (𝑘 + 1) (𝑅𝑏)2 ⟨Ψ′
2,𝑛,𝑘⟩ = 2⟨𝑢𝑛,𝑘⟩𝑘(𝑘 + 1)− 𝑅⟨𝜗𝑛,𝑘⟩

𝜇
+

+⟨𝜁𝑛,𝑘⟩
[︀
2𝑘 (𝑘 + 1)− 2− (𝑅𝑏)2

]︀
+

𝑘(𝑘+1)𝑅⟨𝜎𝑟,𝑛,𝑘⟩
𝜇

.

(25)
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According to formula (11), the Fourier-Legendre transforms of the wave functions
will be expressed by the formulas

Φ𝑛,𝑘 (𝑟) = 𝑅2
[︀
⟨Φ′

𝑛,𝑘⟩𝐷𝑘,𝜇(𝑟, 𝑅)− ⟨Φ𝑛,𝑘⟩ 𝜕
𝜕𝑅
𝐷𝑘,𝜇(𝑟, 𝑅)

]︀
,

Ψ𝑗,𝑛,𝑘 (𝑟) = 𝑅2
[︀
⟨Ψ′

𝑗,𝑛,𝑘⟩𝐷𝑘,𝜇(𝑟, 𝑅)− ⟨Ψ𝑗,𝑛,𝑘⟩ 𝜕
𝜕𝑅
𝐷𝑘,𝜇(𝑟, 𝑅)

]︀
(𝑗 = 1, 2).

(26)

Substituting the jump values (11) into these formulas and then inverting the
Legendre transformation, according to formula (8), we obtain the functions Φ𝑛 and
Ψ𝑗,𝑛 (𝑗 = 1, 2) . Further, using the groups of formulas (16), (19) and the obtained
wave potentials, we construct a discontinuous solution of the equations of motion
for a spherical defect (2). Having a discontinuous solution, it is not di�cult to
reduce the problem of di�raction by such a defect to one-dimensional integral or
integro-di�erential equations.

3. Conclusions. In the proposed work, a discontinuous solution of the
wave equation is constructed in a spherical coordinate system. Based on the same
method, a discontinuous solution of the equations of motion of an elastic medium
for a spherical defect is constructed.

At the next stage, the problem of di�raction of an elastic torsion wave by a thin
spherical inclusion should be reduced to a system of integro-di�erential equations.

Develop and prove the validity of using an approximate method for solving
the corresponding integro-di�erential equations in the class of functions with non-
integrable singularities.

Numerically implement the method, build graphs of the dependence of the re-
active torque (the inclusion is �xedly �xed) on the frequency of oscillations and the
dimensions of the inclusion. Also, build graphs for the amplitude of oscillations of
the inclusion when it is mobile (not �xed).
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