ТОЧНІСТЬ НАБЛИЖЕННЯ В ЦЕНТРАЛЬНІЙ ГРАНИЧНІЙ ТЕОРЕМІ В ТЕРМІНАХ ЗРІЗАНИХ ПСЕВДОМОМЕНТІВ

Ключові слова: центральна гранична теорема, швидкість зближення, псевдомомент.

1. Вступ. Застосування псевдомоментів до дослідження швидкості зближення у граничних теоремах дозволяє вивчати поведінку законів розподілу випадкових величин різної природи: як однаково, так і різно розподілених. У даній роботі розглядається послідовність серій випадкових величин, що є різно розподіленими і в кожній серії незалежними. Для оцінювання швидкості розподілу їх сум до нормального використано псевдомоменти так званого урізаного виходу, перевага яких у тому, що вони краще враховують близькість розподілів до граничного в околоді окуля.

2. Основний результат. Розглянемо послідовність серій $\xi_{n1}, \ldots, \xi_{nn}$ незалежних в кожній серії випадкових величин з математичними сподіваннями $M\xi_{ni} = 0$, дисперсіями $D\xi_{ni} = \sigma_{ni}^2$, $\sigma_{ni} > 0$, $\sum_{i=1}^{n} \sigma_{ni}^2 = 1$, $\bar{\sigma}_n = \max\{\sigma_{n1}, \ldots, \sigma_{nn}\}$. Розглянемо послідовність серій $\xi_{n1}, \ldots, \xi_{nm}$ незалежних в кожній серії випадкових величин з математичними сподіваннями $M\xi_{ni} = 0$, дисперсіями $D\xi_{ni} = \sigma_{ni}^2$, $\sigma_{ni} > 0$, $\sum_{i=1}^{n} \sigma_{ni}^2 = 1$, $\bar{\sigma}_n = \max\{\sigma_{n1}, \ldots, \sigma_{nn}\}$. Позначимо: $F_n(x)$ — функція розподілу ξ_n, $f_n(t)$ — характерна функція ξ_n, $S_n = \xi_{n1} + \ldots + \xi_{nn}$, $\Phi_n(x)$ — функція розподілу S_n, $\Phi(x)$ — функція розподілу стандартного нормального.
Закону, \(\rho_n = \sup_x |\Phi_n(x) - \Phi(x)| \), для довільного \(y > 0 \) визначимо певдомоменти вигляду

\[
\nu^{(1)}_{nk}(y) = \int_{|x| \leq y} \max(1, |x|^3) |d(F_{nk}(x\sigma_{nk} - \Phi(x))|, \\
\nu^{(2)}_{nk}(y) = \int_{|x| > y} \max(1, x^2) |d(F_{nk}(x\sigma_{nk} - \Phi(x))|,
\]

\[
\nu^{(1)}_n(y) = \sigma_n^2 \sum_{k=1}^n \nu^{(1)}_{nk}(y), \quad \nu^{(2)}_n(y) = \sigma_n^2 \sum_{k=1}^n \nu^{(2)}_{nk}(y).
\]

Теорема 1. Нехай \(\sigma_n^2 \leq \frac{3}{4} \) при \(n \geq 2 \). Тоді існує стала \(C \), що для всіх \(n \geq 1 \)

\[
\rho_n \leq C \inf_{y>0} (\sigma_n \nu^{(1)}_n(y) + \nu^{(2)}_n(y)).
\]

Доведення. При доведенні будемо використовувати наступні нерівності, що справедливі для всіх \(t \in R \). Враховуючи, що \(M\xi_{nk} = 0, D\xi_{nk} = \sigma_{nk}^2 \),

\[
\omega_{nk}(t) = |f_{nk}(t) - e^{-\frac{t^2\sigma_{nk}^2}{2}}| = \left| \int_{-\infty}^{+\infty} e^{itx} d\left(F_{nk}(x) - \Phi\left(\frac{x}{\sigma_{nk}}\right)\right) \right| = \\
= \left| \int_{-\infty}^{+\infty} e^{itx}\sigma_{nk} d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) \right| = \\
= \left| \int_{-\infty}^{+\infty} \left(e^{itx}\sigma_{nk} - itx\sigma_{nk} - \frac{(itx\sigma_{nk})^2}{2} \right) d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) \right| \leq \\
\leq \int_{|x| \leq y} \left| e^{itx}\sigma_{nk} - itx\sigma_{nk} - \frac{(itx\sigma_{nk})^2}{2} \right| d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) + \\
+ \int_{|x| > y} \left| e^{itx}\sigma_{nk} - itx\sigma_{nk} - \frac{(itx\sigma_{nk})^2}{2} \right| d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) \leq \\
\leq \int_{|x| \leq y} \frac{|tx\sigma_{nk}|^3}{6} d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) + \int_{|x| > y} (tx\sigma_{nk})^2 d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) = \\
= \frac{1}{6} |t|^3 \sigma_{nk}^3 \int_{|x| \leq y} |x|^3 d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) + t^2\sigma_{nk}^2 \int_{|x| > y} |x|^2 d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) \leq \\
\leq \nu^{(1)}_{nk}(y) \left(\frac{1}{6} |t|^3 \sigma_{nk}^3 + \nu^{(2)}_{nk}(y) t^2\sigma_{nk}^2 \right) \tag{1}
\]

Аналогічно,

\[
\omega_{nk}(t) = \left| \int_{-\infty}^{+\infty} e^{itx}\sigma_{nk} d\left(F_{nk}(x\sigma_{nk}) - \Phi(x)\right) \right| \leq \\
= \nu^{(1)}_{nk}(y) \left(\frac{1}{6} |t|^3 \sigma_{nk}^3 + \nu^{(2)}_{nk}(y) t^2\sigma_{nk}^2 \right)
\]

Розділ 1: Математика і статистика
\[
\omega_{nk}(t) = \left| \int_{-\infty}^{+\infty} e^{itx_{nk}} d(F_{nk}(x\sigma_{nk}) - \Phi(x)) \right| \leq \int_{-\infty}^{+\infty} |d(F_{nk}(x\sigma_{nk}) - \Phi(x))| \leq \nu_{nk}^{(1)}(y) + \nu_{nk}^{(2)}(y).
\]

У нерівності ([6], ст. 299)

\[
|F(x) - G(x)| \leq \frac{2}{\pi} \int_{0}^{T} |f(t) - g(t)| \frac{dt}{t} + \frac{24}{\pi} \sup |G'(x)|,
\]

покладемо \(F(x) = \Phi_n(x), \ G(x) = \Phi(x), \ f(t) = \prod_{k=1}^{n} f_{nk}(t), \ g(t) = e^{-\frac{1}{2}t^2} \). Тоді

\[
\rho_n \leq \frac{2}{\pi} \int_{0}^{T} \left| \prod_{k=1}^{n} f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| \frac{dt}{t} + \frac{24}{\pi\sqrt{2\pi}T}.
\]

Із нерівності

\[
\left| \prod_{i=1}^{n} a_i - \prod_{i=1}^{n} b_i \right| \leq \sum_{i=1}^{n} |a_i - b_i| \left(\prod_{k=1}^{i-1} |b_k| \right) \left(\prod_{k=i+1}^{n} |a_k| \right),
\]

і з умови (1) теореми

\[
\left| \prod_{k=1}^{n} f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| = \left| \prod_{i=1}^{n} f_{ni}(t) - \prod_{i=1}^{n} e^{-\frac{i^2\sigma^2}{2}} \right| \leq \sum_{i=1}^{n} \omega_{ni}(t) \prod_{k=1}^{i-1} e^{-\frac{i^2\sigma^2}{2}} \prod_{k=i+1}^{n} |f_{nk}(t)| \leq \sum_{i=1}^{n} \omega_{ni}(t) \psi_{ni}(t),
\]

де

\[
\psi_{ni}(t) = \prod_{k=1}^{i-1} e^{-\frac{i^2\sigma^2}{2}} \prod_{k=i+1}^{n} |f_{nk}(t)|.
\]

Позначимо \(\tilde{\nu}_n(y) = \max \{ \tilde{\nu}_n^{(1)}(y), \tilde{\nu}_n^{(2)}(y) \} \). Нехай \(n \geq 2, \ c \in \left(0; e^{-\frac{9\sigma^2}{2n}} \right] \) — довільна стала. Будемо припускати, що \(\tilde{\nu}_n^{(2)}(y) \leq c, \) бо у протилежному випадку теорема є справедливою.

Покладемо \(T_n = \frac{1}{\sigma_n} \sqrt{-2\ln \tilde{\nu}_n(y)} \), якщо \(\tilde{\nu}_n^{(1)}(y) \leq c, \) і \(T_n = \frac{1}{\sigma_n} \frac{c}{\tilde{\nu}_n^{(1)}(y)} \), якщо \(\tilde{\nu}_n^{(1)}(y) > c. \)

Нехай \(n \geq 2, \tilde{\nu}_n^{(1)}(y) > c. \) Із нерівності

\[
|f_{nk}(t)| = \left| f_{nk}(t) - e^{-\frac{i^2\sigma^2}{2}} + e^{-\frac{i^2\sigma^2}{2}} \right| \leq e^{-\frac{i^2\sigma^2}{2}} + \omega_{nk}(t),
\]

Наук. вісник Ужгород. ун-ту, 2023, том 42, № 1 ISSN 2616-7700 (print), 2708-9568 (online)
i (1) при \(|t| \leq T_n^{(2)}\)

\[
|f_{nk}(t)| \leq e^{-\frac{t^2\sigma_{nk}^2}{2}} \left(1 + e^{-\frac{t^2\sigma_{nk}^2}{2}} \left(\frac{|t|^3}{6} \sigma_{nk}^3 \nu_{nk}^{(1)}(y) + t^2 \sigma_{nk}^2 \nu_{nk}^{(2)}(y) \right) \right) \leq \\
\leq e^{-\frac{t^2\sigma_{nk}^2}{2}} \left(1 + e^{\left(\frac{t^2_{nk}^{(2)}}{2}\right)^2 \sigma_{nk}^2} \left(T_n^{(2)} \frac{t^2 \sigma_{nk}^3}{6} \nu_{nk}^{(1)}(y) + t^2 \sigma_{nk}^2 \nu_{nk}^{(2)}(y) \right) \right) \leq \\
\leq e^{-\frac{t^2\sigma_{nk}^2}{2}} \left(1 + t^2 \sigma_{nk}^2 \sqrt{e} \left(\frac{c}{\nu_{nk}^{(1)}(y)} \frac{1}{6} \nu_{nk}^{(1)}(y) + c \right) \right).
\]

Тоді

\[
\psi_{nk}(t) = \prod_{k=1}^{i-1} e^{-\frac{t^2\sigma_{nk}^2}{2}} \prod_{k=i+1}^{n} |f_{nk}(t)| \leq \\
\leq \prod_{k=1}^{i-1} e^{-\frac{t^2\sigma_{nk}^2}{2}} \prod_{k=i+1}^{n} e^{-\frac{t^2\sigma_{nk}^2}{2}} \left(1 + t^2 \sigma_{nk}^2 \sqrt{e} \left(\frac{c}{\nu_{nk}^{(1)}(y)} \frac{1}{6} \nu_{nk}^{(1)}(y) + c \right) \right) \leq \\
\leq \exp \left\{ -\frac{t^2}{2} (1 - \sigma_{nk}^2) + t^2 \sqrt{e} \frac{7c}{6} \right\} \leq e^{-c_2 t^2}, \tag{7}
\]

де \(c_2 = \frac{1}{8} - \frac{7}{6} \sqrt{ec} > 0\).

Із (5) і (7) при \(\nu_{nk}^{(1)} > c\), \(|t| \leq T_n^{(2)}\) і \(n \geq 2\)

\[
\left| \prod_{k=1}^{n} f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| \leq \sum_{i=1}^{n} \left(\frac{|t|^3}{6} \sigma_{nk}^3 \nu_{nk}^{(1)}(y) + t^2 \sigma_{nk}^2 \nu_{nk}^{(2)}(y) \right) e^{-c_2 t^2} \leq \\
\leq \left(\frac{|t|^3}{6} \sigma_{nk}^3 \nu_{nk}^{(1)}(y) + t^2 \nu_{nk}^{(2)}(y) \right) e^{-c_2 t^2}. \tag{8}
\]

Нехай \(\nu_{nk}^{(1)}(y) > c\) і \(n \geq 2\). Покладемо у (4) \(T = T_n^{(2)}\). Із (4) і (8)

\[
\rho_{nk} \leq \frac{2}{\pi} \int_{0}^{T_n^{(2)}} \left| \prod_{k=1}^{n} f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| \frac{dt}{t} + \frac{24}{\pi \sqrt{2} \pi T_n^{(2)}} \leq \\
\leq \frac{2}{\pi} \int_{0}^{T_n^{(2)}} \left(\frac{t^2}{6} \sigma_{nk} \nu_{nk}^{(1)}(y) + t \nu_{nk}^{(2)}(y) \right) e^{-c_2 t^2} dt + \\
+ \frac{24}{\pi \sqrt{2} \pi} \frac{\sigma_{nk} \nu_{nk}^{(1)}(y)}{c} \leq C_3 \left(\sigma_{nk} \nu_{nk}^{(1)}(y) + \nu_{nk}^{(2)}(y) \right),
\]

де надалі \(C_k\) — сталі, що залежать тільки від \(c\).

У випадку \(\nu_{nk}^{(1)}(y) > c\) і \(n \geq 2\) теорема доведена.

Нехай \(\nu_{nk}^{(1)}(y) \leq c\), \(n \geq 2\). Із (2) і (6) при \(|t| \leq T_n^{(1)}\)

\[
|f_{nk}(t)| \leq e^{-\frac{t^2\sigma_{nk}^2}{4}} \left(1 + e^{-\frac{t^2\sigma_{nk}^2}{4}} \frac{1}{2} t^2 \sigma_{nk}^2 \left(\nu_{nk}^{(1)}(y) + \nu_{nk}^{(2)}(y) \right) \right) \leq
\]

Розділ 1: Математика і статистика
де \(c_1 = \frac{1}{16} - \sqrt{c} > 0 \).

Iз (5) i (9) при \(\nu_n(y) \leq c, |t| \leq T_n^{(1)} \) i \(n \geq 2 \) маємо

\[
\left| \prod_{k=1}^n f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| \leq \sum_{i=1}^n \left(\left| \frac{|t|^3}{6} \sigma_{nk}^3 \nu_n^{(1)}(y) + t^2 \sigma_{nk}^2 \nu_n^{(2)}(y) \right| e^{-c_1 t^2} \leq \left(\frac{|t|^3}{6} \sigma_n \nu_n^{(1)}(y) + t^2 \nu_n^{(2)}(y) \right) e^{-c_1 t^2}. \]

(10)

Покладемо у (4) \(T = \frac{\nu}{\sigma_n} (\bar{\nu}_n(y))^{-1} \), \(T' = \min \{ T; T_n^{(1)} \} \). Тоді із (4)

\[
\rho_n \leq \frac{2}{\pi} \int_0^T \left| \prod_{k=1}^n f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| \frac{dt}{t} + \frac{24}{\pi \sqrt{2\pi T}} \leq \left(\frac{|t|^3}{6} \sigma_n \nu_n^{(1)}(y) + t^2 \nu_n^{(2)}(y) \right) e^{-c_1 t^2} + \frac{24}{\pi \sqrt{2\pi c}} \sigma_n \nu_n(y) = I_1 + I_2 + I_3 + \frac{24}{\pi \sqrt{2\pi c}} \sigma_n \nu_n(y). \]

(11)

Оскільки \(T' \leq T_n^{(1)} \), то із (10)

\[
I_1 = \frac{2}{\pi} \int_0^{T'} \left| \prod_{k=1}^n f_{nk}(t) - e^{-\frac{1}{2}t^2} \right| \frac{dt}{t} \leq \left(\frac{|t|^3}{6} \sigma_n \nu_n^{(1)}(y) + t^2 \nu_n^{(2)}(y) \right) e^{-c_1 t^2} dt \leq C_4 \left(\sigma_n \nu_n^{(1)}(y) + \nu_n^{(2)}(y) \right). \]

(12)
Iз (1) і (6) при \(\bar{\nu}_n(y) \leq c \) і \(|t| > T_n^{(1)} \), \(\frac{1}{\sigma_n} \sqrt{-2\ln \bar{\nu}_n(y)} \)

\[
\left| \prod_{k=1}^{n} f_{nk}(t) \right| \leq \prod_{k=1}^{n} \left(e^{-\frac{2n\sigma_n^2}{\bar{\nu}_n(y)}} + \omega_{nk}(t) \right) \leq \prod_{k=1}^{n} \left(\bar{\nu}_n(y)\mu \prod_{k=1}^{n} \left(1 + (\bar{\nu}_n(y))^{-\frac{2n\sigma_n^2}{\bar{\nu}_n(y)}} (\nu_n^{(1)}(y) + \nu_n^{(2)}(y)) \right) \right),
\]

i, використавши нерівність \(x_i \geq 0, i = 1, \ldots, n, \prod_{i=1}^{n} x_i \leq \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^n \), одержимо \[
\left| \prod_{k=1}^{n} f_{nk}(t) \right| \leq (\bar{\nu}_n(y))^{\frac{1}{\pi n}} \left(1 + \frac{1}{n} \sum_{k=1}^{n} (\bar{\nu}_n(y))^{-\frac{2n\sigma_n^2}{\bar{\nu}_n(y)}} (\nu_n^{(1)}(y) + \nu_n^{(2)}(y)) \right)^n \leq (\bar{\nu}_n(y))^{\frac{1}{\pi n}} 3^n. \tag{13}
\]

Оскільки \(\bar{\nu}_n(y) \leq c \leq e^{-9n\sigma_n^2} \leq e^{-9} \) і \(|t| > T_n^{(1)} \), то

\[
|t|\sigma_n > \bar{\sigma}_n T_n^{(1)} = \sqrt{-2\ln \bar{\nu}_n(y)} \leq \sqrt{-2\ln c} \geq \sqrt{18}.
\]

Будемо вважати, що \(T' = T_n^{(1)} \), бо інакше \(I_2 = 0, I_3 = 0 \), і справедливість теореми випливає із (11), (12). Iз (13) (враховуючи, що \(\bar{\sigma}_n T_n^{(1)} > \sqrt{18} \))

\[
I_2 = \frac{2}{\pi} \int_{T_n^{(1)}}^{T} \prod_{k=1}^{n} f_{nk}(t) \frac{dt}{t} \leq \frac{3n^2}{\pi} (\bar{\nu}_n(y))^{\frac{1}{\pi n}} \int_{T_n^{(1)}}^{T} t^{-\frac{1}{2}} dt = \frac{3n^2}{\pi} (\bar{\nu}_n(y))^{\frac{1}{\pi n}} T_n^{(1)}^{\frac{1}{2}} \leq \frac{3n^2}{\pi} 18^{-\frac{1}{12}} \bar{\nu}_n(y)^{\frac{1}{12}} \leq \bar{\sigma}_n \bar{\nu}_n(y) \frac{18}{\pi} 18^{-\frac{1}{12}} c^{-\frac{1}{12}} \leq \bar{\sigma}_n \bar{\nu}_n(y) \frac{18}{\pi} 18^{-\frac{1}{12}} c^{-\frac{1}{12}} \leq \bar{\sigma}_n \bar{\nu}_n(y) \frac{18}{\pi} 18^{-\frac{1}{12}} c^{-\frac{1}{12}} \sqrt{n} (3c^{-9})^n \leq \bar{\sigma}_n \bar{\nu}_n(y) \frac{18}{\pi} 18^{-\frac{1}{12}} c^{-\frac{1}{12}} \sqrt{2}(3c^{-9})^2. \tag{14}
\]

Враховуючи, що \(\bar{\nu}_n^{(1)}(y) \leq c, \bar{\sigma}_n T_n^{(1)} > \sqrt{18} \) і \(\sigma_n^2 \leq \frac{3}{4} \) при \(n \leq 2 \), одержимо

\[
I_3 = \frac{2}{\pi} \int_{T_n^{(1)}}^{T} t e^{-\frac{2}{\pi} t^2} \frac{dt}{t} \leq \frac{2}{\pi} (T_n^{(1)})^{-\frac{1}{2}} e^{-\frac{1}{2}(T_n^{(1)})^2} = \frac{2}{\pi} (T_n^{(1)})^{-\frac{1}{2}} (\bar{\nu}_n(y))^{\frac{1}{2}} \leq \frac{1}{9\pi} \bar{\sigma}_n^2 (\bar{\nu}_n(y))^{\frac{1}{2}} \leq \frac{1}{9\pi} \bar{\sigma}_n^2 (\bar{\nu}_n(y))^{\frac{1}{2}} \leq \bar{\sigma}_n \bar{\nu}_n(y) \frac{1}{9\pi} c^\frac{1}{3}. \tag{15}
\]
У випадку \(n \geq 2 \), \(\tilde{\nu}^{(1)}_n(y) \leq c \) теорема випливає із (11), (12), (14), (15).

Нехай \(n = 1 \). Тоді \(\sigma^2 \) і

\[
\rho_1 = \sup_x |\Phi_1(x) - \Phi(x)| = \sup_x |F_{11}(x) - \Phi(x)| = \sup_x \left| \int_x^\infty d(F_{11}(u) - \Phi(u)) \right| \leq \int_{-\infty}^{+\infty} |d(F_{11}(x) - \Phi(x))| \leq \nu^{(1)}_1(y) + \nu^{(2)}_1(y).
\]

Теорема доведена.

Введемо позначення

\[
\tilde{\nu}^{(1)}_n(y) = \sum_{k=1}^n \sigma^3_n \nu^{(1)}_{nk}(y), \quad \tilde{\nu}^{(2)}_n(y) = \sum_{k=1}^n \sigma^2_n \nu^{(2)}_{nk}(y).
\]

3. Деякі наслідки. У теоремі покладемо \(y = \tilde{\sigma}^{-1}_n \).

Наслідок 1. Нехай \(\tilde{\sigma}_n^2 \leq \frac{3}{4} \), при \(n \geq 2 \). Тоді для всіх \(n \geq 1 \)

\[
\rho_n \leq C \left(\tilde{\sigma}_n \nu^{(1)}_n(\tilde{\sigma}^{-1}_n) + \tilde{\nu}^{(2)}_n(\tilde{\sigma}^{-1}_n) \right).
\]

Введемо псевдомоменти вигляду

\[
\nu^{(0)}_{nk}(r) = \int_{-\infty}^{+\infty} \max(1, |x|^r) |d(F_{nk}(x\sigma_{nk}) - \Phi(x))|, \quad \tilde{\nu}^{(0)}_n(r) = \sigma^2_n \sum_{k=1}^n \nu^{(0)}_{nk}(r).
\]

Наслідок 2. Нехай \(\tilde{\sigma}_n^2 \leq \frac{3}{4} \) для \(n \geq 2 \), \(2 < r \leq 3 \). Тоді для всіх \(n \geq 1 \)

\[
\rho_n \leq C \tilde{\sigma}_n^{-2} \tilde{\nu}^{(0)}_n(r).
\]

Нехай \(\xi_1, \xi_2, \ldots, \xi_n, \ldots \) — послідовність незалежних випадкових величин з математичним сподіванням \(M \xi = 0 \), дисперсією \(D \xi = \sigma^2 \), \(B^2 = \sigma^2 + \ldots + \sigma^2_n \).

Позначимо через \(F_k(x) \) функцію розподілу випадкової величини \(\xi_k \) і покладемо \(\tilde{\xi}_k = \xi_{nk} \). Тоді

\[
S_n = \frac{\xi_1 + \xi_2 + \cdots + \xi_n}{B_n}, \quad F_{nk}(x) = F_k(xB_n),
\]

\[
\sigma^2_{nk} = \frac{\sigma^2_k}{B^2_n}, \quad \tilde{\sigma}^2 = \frac{\sigma^2}{B^2_n}, \quad \sigma = \max_{1 \leq k \leq n} \sigma_k.
\]

\[
\nu^{(0)}_k = \int_{-\infty}^{+\infty} \max(1, |x|^r) |d(F_k(x\sigma_k) - \Phi(x))|, \quad \tilde{\nu}^{(0)}_n(r) = \frac{\sigma^2}{B^2_n} \sum_{k=1}^n \nu^{(0)}_k(r).
\]

Наслідок 3. Нехай \(\sigma^2_n \) \(\leq \frac{3}{4} \) для \(n \geq 2 \). Тоді

\[
\rho_n \leq C \left(\frac{\sigma}{B_n} \right)^{r-2} \tilde{\nu}^{(0)}_n(r).
\]
4. Висновки. У роботі отримано оцінки швидкості збіжності розподілів послідовностей сум випадкових величин в схемі серій. Результати сформульовано в термінах псевдомоментів урізаного типу. Одержані оцінки можуть бути використані при дослідженні збіжності послідовностей випадкових величин з іншими властивостями.

Список використаної літератури
4. Капустей М. М., Слюсарчук П. В. Оцінка швидкості збіжності в центральній граничній теоремі для послідовності серій в термінах середніх псевдомоментів. Теорія ймовірностей і математична статистика. 2018. Вип. 2, № 69. С. 91–100.
7. Боярішчева Т. В., Слюсарчук П. В. Оцінка швидкості збіжності в центральній граничній теоремі для різнорозподілених величин. Науковий вісник Ужгородського університету. Серія «Математика і інформатика». 1999. Вип. 4. С. 12–16.

Kapustey M. M., Slyusarchuk P. V., Boiaryshcheva T. V. Exactness of an approximation in the central limit theorem in the term of axe middle pseudomoments.

Estimates of Zolotarev in the central limit theorem generalized for sequences series random variables in the term of middle pseudomoments. In the paper [1] a generalization of the Barry-Esseen inequality was obtained using a different kind of pseudomonitors. Due to the work [1], pseudomoments have become widely used in the limit theorems; a detailed bibliography is contained in [1]. In [2] we consider the conditions in which the convergence rate will be higher than in the Barry-Esseen inequality. Pseudomoments have been used to estimate the convergence rate of options prices [3]. In papers [4] and [5] different approaches to generalizing the results from [1] for variously distributed random variables are considered. In this paper we summarize the results of work [1] on a sequence of independent series in each series of randomly distributed random variables, while the results of works [4] and [5] are substantially generalized.

Keywords: central limit theorem, rate of convergence, pseudomoment.

References

Одержано 04.05.2023