V. M. Bondarenko, M. V. Styopochkina

1 Institute of Mathematics of NAS of Ukraine,
Leading researcher of the department of algebra and topology,
Doctor of physical and mathematical sciences
vitalij.bond@gmail.com
ORCID: https://orcid.org/0000-0002-5064-9452

2 Polissia National University,
Associate professor of the department of higher and applied mathematics,
Candidate of physical and mathematical sciences
stmar@ukr.net
ORCID: https://orcid.org/0000-0002-7270-9874

CLASSIFICATION OF THE POSETS OF $ΜΜ$-TYPE BEING THE
SYMMETRIC OVERSUPERCRITICAL POSET OF ORDER 9

Representations of posets were introduced by L. A. Nazarova and A. V. Roiter in 1972, and the first author was one of those who took an active part in the development of the relevant theory. The first criterion in it was the criterion on finiteness of the representation types obtained by M. M. Kleiner. In 1992 he proved that a posets S is of finite representation type if and only if it does not contain full subposets of the form $K_1 = (1, 1, 1, 1), K_2 = (2, 2, 2), K_3 = (1, 3, 3), K_4 = (1, 2, 5)$ and $K_5 = (N, 4)$. These posets are called critical posets (relative to the finiteness of type) in the sense that they are minimal posets with an infinite number, up to equivalence, of indecomposable representations. Now they are called the Kleiner's posets. In 1974, Yu. A. Drozd proved that a poset S has finite representation type if and only if its Tits quadratic form

$$qs(z) := z_0^2 + \sum_{i \in S} z_i^2 + \sum_{i < j, i, j \in S} z_iz_j - z_0 \sum_{i \in S} z_i$$

is weakly positive (i.e., positive on the set of non-negative vectors). Consequently, the Kleiner's posets are also critical relative to weak positivity of the Tits quadratic form.

In 2005, the authors proved that a poset is critical relative to the positivity of the Tits quadratic form if and only if it is minimax isomorphic to a Kleiner's poset.

A similar situation takes place for posets of tame representation type. In 1975, L. A. Nazarova proved that a poset S is tame if and only if it does not contain full subsets of the form $N_1 = (1, 1, 1, 1, 1), N_2 = (1, 1, 1, 2), N_3 = (2, 2, 3), N_4 = (1, 3, 4), N_5 = (1, 2, 6)$ and $(N, 5)$. So these posets are critical relative to the tameness and she called them supercritical. They are also critical relative to weak non-negativity of the Tits quadratic form. In 2009, the authors proved that a poset is critical relative to non-negativity of the Tits quadratic form if and only if it is minimax isomorphic to a supercritical poset.

The first author suggested to introduce posets (called oversupercritical) which differ from the supercritical posets to the same extent as the supercritical posets differ from the critical ones.

In previous papers, the authors described all posets that are minimax isomorphic to any oversupercritical poset except $(1, 4, 4)$ and studied some of their combinatorial properties. The case of the poset $(1, 4, 4)$ is considered in this paper.

Keywords: representation, critical and supercritical poset, oversupercritical poset, Tits quadratic form, finite and tame representation type, positivity and weak positivity, non-negativity and weak non-negativity.

1. **Introduction.** Representations of posets were introduced by L. A. Nazarova and A. V. Roiter [1], and Kyiv algebraists actively participated in development of
the relevant theory (see, e.g., [2] – [11]). The first criterion in it was the criterion on finiteness of the representation types obtained by M. M. Kleiner [2]. He proved that a posets S is of finite representation type if and only if it does not contain full subposets of the form $K_1 = (1,1,1,1), K_2 = (2,2,2), K_3 = (1,3,3), K_4 = (1,2,5)$ and $K_5 = (N,4)$ (see below Remark 1). These posets are called critical posets (relative to the finiteness of type) in the sense that they are minimal posets with an infinite number, up to equivalence, of indecomposable representations. Now they are called the Kleiner’s posets. On the other hand, Yu. A. Drozd [3] proved that a poset S has finite representation type if and only if its Tits quadratic form

$$q_S(z) := z_0^2 + \sum_{i \in S} z_i^2 + \sum_{i,j \in S} z_i z_j - z_0 \sum_{i \in S} z_i$$

is weakly positive (i.e., positive on the set of nonnegative vectors). Consequently, the critical posets are also critical relatively to the weak positivity of the Tits quadratic form. In [12] the authors proved that a poset is critical relative to the positivity of the Tits quadratic form if and only if it is minimax isomorphic to a Kleiner’s poset (such isomorphism was introduced by the first author in [13]); in this paper all such posets are fully described (they are named by the authors as P-critical).

A similar situation takes place for posets of tame representation type. L. A. Nazarova [4] proved that a poset S is tame if and only if it does not contain full subsets of the form $N_1 = (1,1,1,1), N_2 = (1,1,1,2), N_3 = (2,2,3), N_4 = (1,3,4), N_5 = (1,2,6)$ and $(N,5)$ (see below Remark 1). So these posets are critical relative to the tameness and she called them supercritical. They are also critical relative to weak non-negativity of the Tits quadratic form. In [14] the authors proved that a poset is critical relative to non-negativity of the Tits quadratic form if and only if it is minimax isomorphic to a supercritical poset. In [15] all such posets are fully described (they are named by the authors as NP-critical).

The importance of studying minimax isomorphic posets is determined by the fact that their Tits quadratic forms are \mathbb{Z}-equivalent, and minimax isomorphism itself is a fairly general constructively defined \mathbb{Z}-equivalence for posets.

In [16] were introduced l-oversupercritical posets which differ from supercritical sets to the same extent as the letter differ from critical ones; often, including in this paper, they are simply called oversupercritical. Such posets are exhausted (up to isomorphism) by the following:

1) $(1,1,1,1,1), 2) (1,1,1,1,2), 3) (1,2,2,2), 4) (1,1,1,3), 5) (2,3,3), 6) (2,2,4), 7) (1,4,4), 8) (1,3,5), 9) (1,2,7), 10) (N,6)$.

Remark 1. For posets X, Y, $Z = (X,Y)$ is denoted their direct sum, i.e., $Z = X \cup Y$ and any elements $x \in X$ and $y \in Y$ are incomparable; (m) denotes the linearly ordered set $1 \prec 2 \prec \cdots \prec m$ and N the poset $1 \prec 2, 3 \prec 4, 1 \prec 4$. These notations are used as a rule when the posets are specified by their Hasse diagrams.

In previous papers [16] – [19], the authors described all posets that are minimax isomorphic to a oversupercritical poset, except the single asymmetric one of order greater than 8 (i.e., $(1,4,4)$) and studied some of their combinatorial properties. The case of the poset $(1,4,4)$ is considered in this paper.

2. The main result. We consider only finite posets and identify them with their Hasse diagrams.
For a poset \(S \) and its minimal (respectively maximal) element \(a \), we denote by \(T = S_a^\uparrow \) (respectively \(T = S_a^\downarrow \)) the following poset: \(T = S \) as usual sets, \(T \setminus a = S \setminus a \) as posets, the element \(a \) is maximal (respectively minimal) in \(T \), and \(a \) is comparable with \(x \) in \(T \) if and only if they are incomparable in \(S \). Two posets \(S \) and \(T \) are called (\(\min \), \(\max \))-equivalent if there are posets \(S_1, \ldots, S_p \) \((p \geq 0)\) such that, if we put \(S = S_0 \) and \(T = S_{p+1} \), then, for every \(i = 0, 1, \ldots, p \), either \(S_{i+1} = (S_i)_x^\uparrow \) or \(S_{i+1} = (S_i)_y^\downarrow \) [13]. Obviously, any poset is (\(\min \), \(\max \))-equivalent to itself (if one put \(p = 0 \)). Since some time we also use the term minimax equivalence.

The notion of minimax equivalence can be naturally continued to the notion of minimax isomorphism: posets \(S \) and \(S' \) are minimax isomorphic if there exists a poset \(T \) which is minimax equivalent to \(S \) and isomorphic to \(S' \).

Let \(P \) be a fix poset. A poset \(S \) is called of \(MM \)-type \(P \) if \(S \) is minimax isomorphic to \(P \) [20]. In the case when the poset \(P \) is an oversupercritical one we say that \(S \) is of oversupercritical \(MM \)-type.

The main result of this paper describes all posets of oversupercritical \(MM \)-type \(P \) with \(P \) to be the oversupercritical poset of order 9, i.e., \(P \) is equal to \(G_0 = (1, 4, 4) \):

Recall that a poset \(T \) is called dual to a poset \(S \) and is denoted by \(S^{\text{op}} \) if \(T = S \) as usual sets and \(x < y \) in \(T \) if and only if \(x > y \) in \(S \).

Theorem 1. Up to isomorphism and duality, the complete set of posets minimax isomorphic to \(G_0 \) consists of, in addition to \(G_0 \) itself, the posets indicated in the following table:

```plaintext
G0

<table>
<thead>
<tr>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7</td>
<td>G8</td>
<td>G9</td>
<td>G10</td>
<td>G11</td>
<td>G12</td>
</tr>
</tbody>
</table>
```

Наук. вісник Ужгород. ун-ту, 2024, том 44, № 1 ISSN 2616-7700 (print), 2708-9568 (online)
3. Proof of Theorem 1. The definition of posets of the form $T = S^\uparrow_A$ can be extended to posets of the form $T = S^\uparrow_A$, where A is a lower subposet of S, i.e., $x \in A$ whenever $x < y$ and $y \in A$. Namely, $T = S^\uparrow_A$ is defined as follows: $T = S$ as usual sets, partial orders on A and $S \setminus A$ are the same as before, but comparability and incomparability between elements of $x \in A$ and $y \in S \setminus A$ are interchanged and the new comparability can only be of the form $x > y$. In the special case, when $A = \{a\}$ is a one-element subposet, we identify A with a. Instead of $(S^\uparrow_A)^\uparrow_B$ write write S^\uparrow_{AB}.

For subposets X, Y of S of a poset S, $X < Y$ means that $x < y$ for any $x \in X, y \in Y$. Subposets X and X' of S are called strongly isomorphic if there exists an automorphism $\varphi : S \to S$ such that $\varphi(X) = X'$ (as equality of subposets). Similarly, pairs (Y, X) and (Y', X') of subposets of S are called strongly isomorphic if there exists an automorphism $\varphi : S \to S$ such that $\varphi(Y) = Y'$ and $\varphi(X) = X'$.

In [12], the authors propose the following algorithm for finding (up to isomorphism) all posets that are minimax isomorphic to a given one.

I. Describe. up to strongly isomorphic, all lower subposets of $P \not= S$ in S, and, for every of them, build the poset S^\uparrow_P ($P = \varnothing$ is not excluded).

II. Describe. up to strongly isomorphic, all pairs (Q, P) consisting of a proper lower subposet Q in S and a nonempty lower subposet P in S such that $P < S \setminus Q$; for every such pair, build the poset S^\uparrow_{QP}.

III. Among the posets obtained in I and II, choose one from each class of isomorphic posets.

For the poset G_0, we denote the partial order by $<$ and number the points with numbers $1, 2, 3, \ldots$ in such a way that $i < j$ whenever $i < j$ or i is (in the picture) to the left of j. Then the poset G_0 consists of the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9$ and we have $2 < 3 < 4 < 5, 6 < 7 < 8 < 9$.

Now we apply our algorithm to the proof of the theorem.

Step I. Describe (up to strongly isomorphic) all lower subposets. They are:

For G_0 we denote the partial order by $<$ and number the points with numbers $1, 2, 3, \ldots$ in such a way that $i < j$ whenever $i < j$ or i is (in the picture) to the left of j. Then the poset G_0 consists of the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9$.

Now we apply our algorithm to the proof of the theorem.

Step I. Describe (up to strongly isomorphic) all lower subposets. They are:

For G_0 we denote the partial order by $<$ and number the points with numbers $1, 2, 3, \ldots$ in such a way that $i < j$ whenever $i < j$ or i is (in the picture) to the left of j. Then the poset G_0 consists of the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9$.

Now we apply our algorithm to the proof of the theorem.

Step I. Describe (up to strongly isomorphic) all lower subposets. They are:

Denote by K_0 the poset G_0^\uparrow. Then it is easy to see that

$K_0 \cong G_0, K_1 \cong G_7, K_2 \cong G_{12}, K_3 \cong G_{6^\text{op}}, K_4 \cong G_{10}, K_5 \cong G_{18}, K_6 \cong G_{5^\text{op}}, K_7 \cong G_{15^\text{op}}, K_8 \cong G_{8}, K_9 \cong G_{16}, K_{10} \cong G_{4^\text{op}}, K_{11} \cong G_{14^\text{op}}, K_{12} \cong G_{1}, K_{13} \cong$
G13, \(K_{14} \cong G17, K_{15} \cong G1^{op}, K_{16} \cong G13^{op}, K_{17} \cong G17^{op}, K_{18} \cong G4, K_{19} \cong G14, K_{20} \cong G8^{op}, K_{21} \cong G16^{op}, K_{22} \cong G5, K_{23} \cong G15, K_{24} \cong G10^{op}, K_{25} \cong G18^{op}, K_{26} \cong G6, K_{27} \cong G12^{op}, K_{28} \cong G7^{op}. \)

Step II. Describe (up to strongly isomorphic) all pairs of lower subposets (see the algorithm). They are:

for \(G0 - X_1 = (X_{20}, \{6\}), X_2 = (X_{24}, \{6\}), X_3 = (X_{24}, \{6, 7\}), X_4 = (X_{27}, \{6\}), X_5 = (X_{27}, \{6, 7, 8\}) \).

Denote by \(K'_1 \) the poset \((G0_{1})')_{V_W} \) and \((V, W) = X'_1 \). Then it is easy to see that \(K'_1 \cong G2^{op}, K'_2 \cong G9^{op}, K'_3 \cong G3, K'_4 \cong G11, K'_5 \cong G9, K'_6 \cong F2. \)

Step III. It is easy to verify that in I and II each of the posets \(G_i \), indicated in the condition of the theorem, and dual to them (in the non-dual cases) occurs only once. And hence the theorem is proved.

4. **Coefficients of transitivity.** Let \(S \) be a (finite) poset and \(S^2 := \{(x, y) \mid x, y \in S, x < y\} \). If \((x, y) \in S^2 \) and there is no \(z \) satisfying \(x < z < y \), then we say that \(x \) and \(y \) are neighboring. We put \(n_w = n_w(S) := |S^2| \) and denote by \(n_e = n_e(S) \) the number of pairs of neighboring elements. The ratio \(k_t = k_t(S) \) of the numbers \(n_w - n_e \) and \(n_w \) are called the coefficient of transitivity of \(S \); if \(n_w = 0 \) (then \(n_e = 0 \)), we assume \(k_t = 0 \) (see [20]).

In this part of the paper we calculate \(k_t \) for the posets of \(MM \)-type to be \(G0 \).

Theorem 2. The following holds for posets \(G_i \):

\[
\begin{array}{cccc}
N & n_e & n_w & k_t \\
G0 & 6 & 12 & 0,5 \\
\end{array}
\]

\[
\begin{array}{cccccc}
N & n_e & n_w & k_t & N & n_e & n_w & k_t & N & n_e & n_w & k_t \\
G1 & 8 & 32 & 0,75 & G7 & 8 & 20 & 0,6 & G13 & 8 & 20 & 0,6 \\
G2 & 9 & 32 & 0,71875 & G8 & 7 & 24 & 0,70833 & G14 & 8 & 18 & 0,55556 \\
G3 & 9 & 32 & 0,71875 & G9 & 8 & 24 & 0,66667 & G15 & 8 & 18 & 0,55556 \\
G4 & 8 & 26 & 0,69231 & G10 & 7 & 18 & 0,61111 & G16 & 8 & 16 & 0,5 \\
G5 & 8 & 22 & 0,63636 & G11 & 8 & 18 & 0,55556 & G17 & 8 & 16 & 0,5 \\
G6 & 8 & 20 & 0,6 & G12 & 7 & 14 & 0,5 & G18 & 8 & 14 & 0,42857 \\
\end{array}
\]

The transitivity coefficients are written out with an accuracy of five decimal places. The value is exact if and only if the number of decimal places is less than five, and two values equal to exactly five digits are equal at all.

The proof is carried out by direct calculations using [21, Lemmas 1 -5].

Recall that the greatest length among the lengths of all linear ordered subsets of a poset \(S \) is called its height. An element of a poset is called nodal, if it is comparable with all the others elements. A subposet \(X \) of \(T \) is said to be dense if there is not \(x_1, x_2 \in X, y \in T \setminus X \) such that \(x_1 < y < x_2 \).

Note that a poset of \(MM \)-type \(G0 \) can have at most four nodal elements.

Corollary 1. The coefficient \(k_t(S) \) of a poset \(S \) is the largest among all the posets of \(MM \)-type \(G0 \) if and only if \(S \) contains a dense subposet with four nodal elements.
5. Conclusions. In this paper we describe the finite posets that are minimax isomorphic to the oversupercritical poset $(1, 4, 4)$ which is a single symmetric one of the order 9. We also study combinatorial properties of these posets, namely calculate their transitivity coefficients.

Analogous results for the rest of the oversupercritical posets were obtained by the authors earlier.

The importance of studying minimax isomorphic posets is determined by the fact that their Tits quadratic forms are \mathbb{Z}-equivalent.

The obtained results (together with the corresponding research methods) can be used in the study of other classes of posets.

References

Бондаренко В. М., Стьопочкіна М. В. Класифікація частково впорядкованих множин, 𝑀𝑀-тип яких дорівнює симетричній надсуперкритичній множині порядку 9.

Зображення ч. в. множини (частково впорядкованих множин) над полем ввели Л. А. Назарова і А. В. Ройгер в 1972 р., і перший автор був одним із тих, хто брав активну участь у розвитку відповідної теорії. Першим критерієм у ній був отриманий М. М. Клейнером критерій скінченності зображувального типу. У 1992 р. він довів, що ч. в. множина 𝑆 має скінченний зображувальний тип тоді і лише тоді, коли вона не містить повних ч. в. підмножин виду 𝐾₁ = (1, 1, 1, 1), 𝐾₂ = (2, 2, 2), 𝐾₃ = (1, 3, 3), 𝐾₄ = (1, 2, 5) і 𝐾₅ = (N, 4). Ці ч. в. множини називаються критичними ч. в. множинами (щодо скінченності типу) в тому сенсі, що це мінімальні ч. в. множини з нескінченною кількістю нерозкладних зображень, з точністю до еквівалентності). Також їх називають ч. в. множинами Клейнера. У 1974 р. Ю. А. Дрозд довів, що ч. в. множина 𝑆 має скінченний зображувальний тип тоді і лише тоді, коли її квадратична форма Тітса

\[q_S(z) := z_0^2 + \sum_{i \in S} z_i^2 + \sum_{i < j, i, j \in S} z_i z_j - z_0 \sum_{i \in S} z_i \]

є слабко додатною (тобто додатною на множині невід’ємних векторів). Отже, ч. в. множини Клейнера є також критичними щодо слабкої додатності квадратичної форми Тітса. У 2005 р. автори довели, що ч. в. множина є критичною щодо додатності квадратичної форми Тітса тоді і лише тоді, коли вона є мінімальною ізоморфна деякій ч. в. множині Клейнера.

Першим автором запропонував ввести ч. в. множини (названі надсуперкритичними), які відрізняються від суперкритичних ч. в. множини в тій же мірі, що суперкритичні відрізняються від критичних.

У попередніх статтях автори описали (з точністю до ізоморфізму) всі ч. в. множини, мінімально ізоморфні довільні надсуперкритичні множини, окрім (1,4,4), і вивчили деякі їхні комбінаторні властивості. У цій статті розглядається випадок ч. в. множини (1,4,4).

Ключові слова: зображення, критична та суперкритична ч. в. множина, надсуперкритична ч. в. множина, квадратична форма Тітса, скінченний і ручний зображувальний тип, додатність і слабка додатність, негативність і слабка негативність.
Список використаної літератури
3. Дрозд Ю. А. Преобразования Кокстера и представления частично упорядоченных множеств. Функц. анализ и его прил. 1974. Т. 8. Вып. 3. С. 34–42.
5. Бондаренко В. М., Назарова Л. А., Завадский А. Г. Представления ручных частично упорядоченных множеств. Киев: Ин-т математики АН УССР. 1986. 86.80. 24 с.