
238 M. V. ROBOTYSHYN, M. M. MALYAR

UDC 004.8
DOI https://doi.org/10.24144/2616-7700.2024.45(2).238-248

M. V. Robotyshyn1, M. M. Malyar2

1 Uzhhorod National University,
PhD student
mykola.robotyshyn@uzhnu.edu.ua

ORCID: https://orcid.org/0000-0001-6567-6974

2 Uzhhorod National University,
Professor of the Department of Cybernetics and Applied Mathematics,
Doctor of Technical Scienes
mykola.malyar@uzhnu.edu.ua

ORCID: https://orcid.org/0000-0002-2544-1959

THE USE OF MATHEMATIC MODELLING IN FINOPS DOMAIN

The advent of cloud computing has revolutionized the way organizations manage their
IT resources, offering scalable and flexible solutions for various operational needs. However,
with the increased adoption of cloud services, financial operations (FinOps) have become
more complex, presenting challenges in cost management, resource allocation, and financial
forecasting. Traditional methods often fail to address these complexities effectively, leading
to inefficiencies and suboptimal decision-making. This paper explores the application of
mathematical modeling in the FinOps domain as a robust solution to these challenges.
By proposing a classification of FinOps problems into distinct classes and suggesting a
mathematical formulation for each class, the research aims to enhance the efficacy of FinOps
practices. The integration of mathematical models improves accuracy and efficiency while
providing a systematic approach to managing financial operations in the cloud. Through
case studies and real-world examples, this paper demonstrates the transformative potential
of mathematical modelling in driving innovation and operational excellence in FinOps.

Keywords: mathematic modelling, cloud management, data analysis, forecasting, FinOps,
optimization processes.

1. Introduction. The rapid advancement and adoption of cloud computing
have significantly changed how organizations handle their IT infrastructure. By
providing scalable and flexible solutions, cloud technology helps businesses man-
age their costs more effectively. As a result, companies across various industries
have increasingly migrated their operations to the cloud, taking advantage of its
cost-saving benefits. However, this shift has also introduced new complexities in
financial management. The dynamic and often unpredictable nature of cloud costs
has necessitated the development of specialized practices to optimize financial op-
erations in this new environment. This need has given rise to the field of Financial
Operations, or FinOps, which focuses on managing cloud spending and maximizing
the value derived from cloud investments. FinOps combines financial management
principles with the agile, data-driven methodologies inherent to cloud computing,
ensuring that organizations can maintain control over their cloud expenses while
achieving their strategic objectives.

A central focus of FinOps is to ensure that organizations can effectively manage
and optimize their cloud spending. The primary goals of FinOps include cost opti-
mization, financial accountability, and operational efficiency. By fostering a culture
of financial responsibility, FinOps encourages collaboration between finance and en-
gineering teams, ensuring that both sides work together to achieve cost-effective
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cloud usage. This collaborative approach is guided by core principles such as data-
driven decision-making and continuous improvement. FinOps practitioners rely on
real-time data and analytics to monitor cloud expenses and make informed decisions
that align with the organization’s financial objectives. Without a structured FinOps
approach, organizations often struggle with overspending, lack of transparency, and
inefficiencies in their cloud operations.

These challenges underscore the necessity of FinOps in maintaining control over
cloud costs and maximizing the value derived from cloud investments. However, im-
plementing FinOps practices is not without its difficulties, especially when it comes
to data analysis. The large amount of data generated by cloud environments can
be hard to manage and analyze quickly. This can lead to delays in decision-making
and overspending. Another major challenge is predicting and controlling cloud ex-
penses, which can change a lot based on usage patterns and pricing models. This
makes it hard for organizations to forecast costs accurately and stay within their
budget. Additionally, combining financial data with operational metrics adds an-
other layer of complexity. Effective FinOps requires a complete view that includes
both financial information and operational data, like resource usage and perfor-
mance metrics. However, this is often difficult due to data silos and inconsistent
data formats. Mathematical concepts and techniques can help solve these problems.
For example, statistical models can forecast cloud costs by looking at past spend-
ing patterns. Optimization algorithms can help allocate resources more effectively,
ensuring that organizations get the most value from their cloud investments. Ma-
chine learning models can also identify unusual patterns and inefficiencies in cloud
usage, helping to manage costs proactively and improve operations. By using these
mathematical tools, FinOps practitioners can overcome data analysis challenges and
manage financial operations in the cloud more effectively.

The relevance of this problem is best demonstrated by the amount of money
businesses are willing to invest in its research. The global cloud FinOps market was
valued at approximately $832.2 million in 2023 and is expected to grow to $2,750.5
million by 2028, reflecting a compound annual growth rate (CAGR) of 18.8% [1].
This significant growth underscores the increasing importance of FinOps as organi-
zations seek to optimize their cloud spending and enhance financial accountability.
As businesses continue to migrate to cloud environments, the demand for effective
FinOps strategies will only increase. This trend highlights the need for advanced
solutions, such as mathematical modeling, to address the complex challenges asso-
ciated with cloud financial management. Furthermore, there are numerous startups
leveraging data analysis, AI, and ML to enhance FinOps practices. These startups
are driving innovation by providing tools and platforms that improve cost visibil-
ity, optimization, and forecasting. The growing number of these tech-driven startups
indicates a strong market trend towards integrating advanced analytics and automa-
tion in FinOps [2].

Implementing advanced solutions grounded in mathematical modeling can signif-
icantly streamline FinOps processes, allowing companies to shift their focus to other
important strategic problems. However, it’s important to recognize that such au-
tomation isn’t a cure-all. While mathematical models and algorithms can automate
complex tasks like cost forecasting, resource optimization, and anomaly detection,
their effectiveness largely depends on the quality of data and the robustness of the
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models used. Automating these processes can indeed reduce manual effort and
improve efficiency, freeing up valuable time and resources. This enables teams to
address other critical issues, such as innovation, customer experience, and market
expansion. However, the initial setup and ongoing maintenance of these advanced
solutions require significant investment in both time and expertise. Organizations
must ensure they have the right talent and infrastructure to support these technolo-
gies.

For example, advanced mathematical models and algorithms can continuously
monitor and optimize cloud spending, providing real-time insights and proactive rec-
ommendations. This allows FinOps practitioners to move from a reactive approach
to a more strategic and proactive one, focusing on long-term financial health and
operational excellence. Nevertheless, reliance on automated solutions also requires
vigilance; without proper oversight, there’s a risk of over-reliance on these tools,
potentially missing out on nuanced, human insights.

In general, by leveraging these advanced solutions, companies can achieve a
higher level of financial management maturity, ensuring sustainable growth and
competitive advantage in the rapidly evolving cloud landscape. However, it’s crucial
to balance automation with human oversight to maximize the benefits and mitigate
potential risks.

This work focuses on providing a comprehensive understanding of the FinOps
domain, highlighting the main challenges it faces, and exploring how mathematical
modeling can offer solutions. It includes an overview of existing optimization tech-
niques that leverage mathematical modeling and various algorithms to address these
challenges. Additionally, this paper contributes a unique classification of FinOps
problems based on a mathematical perspective, considering the different types of
data used to solve these problems. In the author’s opinion, the application of math-
ematical modeling in FinOps is highly relevant in today’s context and continues to
trend upward. The insights gained from this research can guide organizations in im-
plementing more effective FinOps practices, ensuring better financial management
and operational efficiency in the cloud environment.

2. Different classes of problems in FinOps. The FinOps domain is still
evolving, and there is no definitive way to classify the various problems it addresses.
Different organizations may prioritize different aspects based on their unique needs
and perspectives. For instance, some might focus on operational efficiency and cost
control, while others might emphasize the development of robust solutions using
advanced mathematical models. Additionally, the type and quality of data available
for analysis can also influence how these problems are classified.

The classes defined by the authors in this paper are based on a mathematical
perspective, also taking into account the different types of data used to solve these
problems. This approach aims to provide a structured method for understanding
and addressing FinOps challenges. These classifications are not absolute, and other
approaches can be equally valid and useful. Furthermore, the authors’ perspective
is dynamic and evolves with new innovations and insights in the field. The key is
to apply the most relevant methods to effectively manage and optimize financial
operations in the cloud.

2.1. Resource utilization. Resource utilization is a common problem for
companies that heavily rely on cloud services. The goal is to use exactly as much
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as you need at any given moment and not more, because in the cloud, you typically
pay for what you use. Depending on a company’s maturity, this problem can vary in
scale. Efficient resource utilization is crucial for maintaining cost-effective and high-
performance cloud operations. Underutilization and overprovisioning are common
issues that can lead to unnecessary expenses and reduced operational efficiency.

One major challenge is resources running idle or using significantly less than their
capacity. This often happens when resources such as EC2 instances are provisioned
based on peak demand but remain underutilized during off-peak times, leading to
wasted expenditures. Other common scenarios include forgetting to turn off in-
stances after use, over-provisioning storage volumes, and leaving unused services
running. These situations result from not accurately aligning resource provisioning
with actual workload requirements, causing financial inefficiencies and wasted cloud
spending. To address these issues, data on compute instances such as CPU usage,
RAM utilization, and disk I/O can be collected. This time-series data provides
a continuous stream of performance metrics over time, enabling detailed analysis.
Various methods, from simple statistical techniques to complex machine learning
models, can be applied to this data to optimize resource utilization.

Detecting patterns in utilization data is essential for identifying inefficiencies
and opportunities for optimization. By analyzing these patterns, organizations can
better understand usage trends and predict future demands. This allows for more
accurate provisioning of resources, ensuring they are used efficiently. Predictive
analytics uses historical data and machine learning algorithms to forecast future
resource demands. By predicting usage patterns, organizations can better plan
and allocate resources to match demand, reducing idle time and avoiding over-
provisioning.

To formalize this approach, let’s define an optimization metric and an algorithm.
For a single resource, the optimization metric could be the cost over a given day 𝐶𝑑:

𝐶𝑑 =
24∑︁
𝑖=1

𝐶𝑜𝑠𝑡 (𝑅, 𝑡𝑖),

where 𝐶𝑜𝑠𝑡 (𝑅, 𝑡𝑖) represents the cost of resource 𝑅 at hour 𝑡𝑖.
For multiple resources, or a workload, the cost can be extended to consider all

resources over a 30-day period 𝐶30:

𝐶30 =
30∑︁
𝑑=1

𝐶𝑑.

Then we can define 𝑓 as an algorithm that takes various data sources 𝐷 (such
as CPU usage, RAM utilization, disk I/O, historical data, and forecasted demand)
and outputs optimized resource allocations. The cost function can be expressed as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐶30, 𝐷),

where the objective is to minimize 30-day cost given the data 𝐷. Now, with this
mathematical problem statement, we can use different algorithms as 𝑓 and different
data sources or even different time granularities for 𝐷. The reason cost was selected
as the metric is that we usually focus on reducing cost. Even though other metrics
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could be applied, this one is suitable for quantifying and explaining because cost is
a key concept in FinOps.

2.2. Cloud cost forecasting. In mature companies, planning cloud spending
in advance is a standard practice, which creates a necessity for accurate cost fore-
casting. It is essential to ensure that actual spending aligns with these forecasts.
Accurate forecasting helps companies to manage their budgets, allocate resources
effectively, and avoid unexpected expenses. Forecasting is a well-known problem
in the mathematical world, with many established methods available to tackle it.
These methods include time series analysis, regression models, machine learning
algorithms, and stochastic processes. However, cloud cost forecasting is particu-
larly challenging due to the multiple dimensions involved. These dimensions include
the variability in cloud usage patterns, different pricing models offered by cloud
providers, the impact of reserved instances and spot instances, seasonal trends, and
sudden changes in demand or application performance. The complexity of these
factors makes it difficult to create accurate forecasts, requiring sophisticated models
that can account for the multifaceted nature of cloud cost data.

In paper [3], the authors investigated various methods such as ARIMA time series
models and machine learning algorithms to forecast cloud costs. They found that
machine learning models, particularly those using neural networks, provided better
accuracy in dynamic environments. Another study [4] explored the use of regression
models and ensemble methods for cloud cost forecasting, highlighting that combin-
ing multiple models often leads to more reliable predictions. The main finding was
that hybrid models combining statistical methods with machine learning techniques
can handle the complex patterns in cloud cost data more effectively. Additionally, a
study by Hofmann and Rutschmann [5] emphasized the integration of different data
sources in demand forecasting. They showed that big data analytics could signifi-
cantly enhance forecast accuracy by utilizing diverse data inputs, including historical
data, performance metrics, and market trends. Another relevant work [6] reviewed
various AI-based forecasting methods in financial accounting, finding that hybrid
models combining support vector machines, fuzzy logic, and genetic algorithms pro-
vided reliable forecasts. Access to diverse and comprehensive data is crucial for
accurate forecasting. Several open data sources can be utilized for cloud cost fore-
casting. The FOCUS (FinOps Open Cost and Usage Specification) initiative is an
open-source specification that aims to standardize cost and usage billing data across
different cloud vendors. This initiative helps reduce complexity for FinOps practi-
tioners by providing consistent datasets for analysis [7]. Additionally, platforms like
Kaggle offer various datasets that can be used for machine learning projects, includ-
ing cloud cost forecasting [8]. Amazon Forecast also provides tools and templates
for deploying time-series forecasting models, which can utilize historical usage data
stored in Amazon S3 [9]. Google BigQuery public datasets offer another resource
for accessing diverse datasets that can be integrated into forecasting applications
[10]. These open data sources provide the necessary historical data and contextual
information needed to develop robust forecasting models that can accurately predict
future cloud costs.

From a mathematical standpoint, forecasting is a well-defined problem. It in-
volves predicting future values based on historical data using various statistical and
machine learning methods. The core idea is to build a model that can understand
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and extrapolate the patterns in the historical data to make accurate future predic-
tions. Common methods include time series analysis, regression models, and ma-
chine learning algorithms like neural networks. However, when you apply forecasting
algorithms to different domains, the mathematical formulation can be adjusted to
better suit the specific characteristics and requirements of that domain. Each do-
main may have unique factors that influence the forecasting process, necessitating
modifications to the standard forecasting models.

FinOps is no exception, and because companies plan their budgets, we need to
consider these unique factors in our forecasting models. Cloud cost forecasting must
account for various dimensions such as seasonality (e.g., summer, winter), company
growth plans, cost dynamics, team growth, business domain, and other variables
depending on the company. These factors are often difficult to quantify numerically,
adding complexity to the forecasting models. This makes it necessary to adapt
traditional forecasting techniques to the specific needs of FinOps.

To formalize the problem, we consider the following mathematical formulation.
Let 𝑌𝑡 represent the cloud cost at time 𝑡. The goal is to predict future costs
𝑌𝑡+1, 𝑌𝑡+2, . . . , 𝑌𝑡+ℎ for a forecast horizon ℎ. The feature set 𝑋𝑡 includes variables
such as season, company growth plans, cost dynamics, team growth, business do-
main, and other variables depending on the company. The forecasting model 𝑓

𝑌 ∧
𝑡+ℎ = 𝑓(𝑌𝑡, 𝑌𝑡−1, . . . , 𝑌𝑡−𝑝, 𝑋𝑡, 𝑋𝑡−1, . . . , 𝑋𝑡−𝑝),

where 𝑝 is the number of lag observations considered in the model. The objective is
to minimize the forecast error, which can be measured using metrics such as Mean
Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error
(RMSE):

𝑛∑︁
𝑖=1

𝐿
(︀
𝑌𝑡+𝑖, 𝑌

∧
𝑡+𝑖

)︀
→ min,

where 𝐿 is the loss function, and 𝑛 is the number of forecasted time points. By
defining the problem this way, we can leverage existing forecasting techniques while
incorporating the unique aspects of cloud cost management. This approach ensures
that our models are tailored to the specific needs of FinOps, providing more accurate
and reliable cost forecasts.

This forecasting definition is applicable not only to the overall cost but also to
costs for specific services, cloud accounts, compute types, and other granular levels
of cloud expenditure.

2.3. Anomaly Detection. In mature companies, monitoring cloud spend-
ing in real-time is essential to ensure financial efficiency and prevent unexpected
costs. Despite careful planning and forecasting, actual cloud expenses can some-
times deviate significantly from expectations due to various reasons such as sudden
changes in usage patterns, misconfigurations, or even security breaches. Detecting
these anomalies quickly is crucial to mitigate potential financial losses and opera-
tional disruptions. Anomaly detection mechanisms play a vital role in identifying
unusual spending patterns that deviate from the norm, allowing companies to take
immediate corrective actions.

Anomaly detection is closely tied to cloud cost forecasting. Effective forecasting
provides a baseline of expected costs and usage patterns, which anomaly detec-
tion systems use to identify deviations. While forecasting aims to predict future
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costs based on historical data, anomaly detection focuses on identifying unexpected
variations in real-time. Although they are interrelated, we consider them distinct
classes of problems because forecasting primarily addresses planning and budget-
ing, whereas anomaly detection deals with operational monitoring and immediate
response to deviations.

As discussed in the cloud cost forecasting chapter, the vast amount of data
generated in real-time from cloud services, combined with the variability in usage
patterns, presents a significant challenge for anomaly detection. Additionally, inte-
grating anomaly detection systems with existing monitoring and management tools
is crucial. These systems need to provide real-time alerts and insights while fitting
seamlessly into the organization’s current infrastructure. Ensuring compatibility
and smooth integration can be complex but is essential for effective anomaly detec-
tion and timely responses to potential issues. However, the implementation details
of such integrations are a separate topic of discussion and are beyond the scope of
this paper.

To better explain the anomaly detection problem in the FinOps domain, let’s
focus on the cost of compute instances (EC2) rather than the whole cloud cost. This
does not mean we lose any information or limit our scope. The principles applied
to EC2 can be extended to other services and resources, preserving the original
problem statement’s generality. Anomaly detection in this context revolves around
three key variables: Baseline, Threshold, and Time-Granularity.

The baseline represents the expected cost, which can be defined using statistical
measures (such as average or median) or based on values provided by domain experts.
This helps establish a reference point against which current costs can be compared.
The threshold defines the acceptable deviation from the baseline before an anomaly
is flagged. It can also be determined using statistical measures (such as standard
deviation or the 75th percentile) or based on expert judgment. This value helps to
distinguish between normal fluctuations and actual anomalies.

Anomaly detection can be applied at different time granularities : hourly, daily,
weekly, etc. It’s important to understand the chosen granularity because an anomaly
might be detected on an hourly level but not on a daily level due to the dynamic
nature of workloads. For example, a high cost at a particular hour might be offset
by lower costs in other hours, making it important to consider the context in which
anomalies are detected.

Define the baseline 𝑌 ∧
𝑡 using an appropriate statistical measure or expert input:

𝑌 ∧
𝑡 = 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑌𝑡, 𝑌𝑡−1, . . . , 𝑌𝑡−𝑛).

The anomaly score 𝑆𝑡 can be calculated as the difference between the current
cost 𝑌𝑡 and the baseline 𝑌 ∧

𝑡 :

𝑆𝑡 = |𝑌𝑡 − 𝑌 ∧
𝑡 |.

Set or calculate a threshold 𝜃 to determine when a deviation is considered an
anomaly:

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑓 𝑆𝑡 > 𝜃.

This method is straightforward and computationally efficient. It provides a clear
and immediate indication of anomalies based on recent cost patterns without the
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need for complex forecasting models. The simplicity of this approach makes it well-
suited for real-time monitoring and quick response to deviations in cloud spending.
Even though we defined the anomaly score as an absolute difference, in practice, we
will likely care only about cases where costs are higher and not lower.

A cascade architecture can be used to enhance anomaly detection. In this ap-
proach, anomalies are evaluated at multiple levels of granularity. For example, an
anomaly detected at an hourly level (Anomaly Level 1) may prompt immediate in-
vestigation. However, if this anomaly does not affect the daily cost (Anomaly Level
2), it might be considered a transient fluctuation rather than a true anomaly. This
method ensures that short-term anomalies are validated over longer periods, reduc-
ing false positives and providing a clearer understanding of cost deviations. The
authors believe that due to the unique nature of FinOps, where costs are visible at
different levels and need constant monitoring, the cascade architecture is particularly
well-suited.

Implementing anomaly detection in cloud cost management involves several prac-
tical considerations, such as ensuring data quality and consistency through pre-
processing steps like normalization, handling missing values, and outlier removal.
Deploying the detection mechanism to operate in real-time is crucial, providing im-
mediate alerts and insights. Seamless integration with existing cloud monitoring
and management tools allows for automated responses and comprehensive visibility.

Defining any abstract problem using mathematical concepts is crucial to ensure
that the problem statement is clear and precise. Once the mathematical formulation
of the problem is established, various parameters such as the algorithm and data
sources can be adjusted without altering the core definition of the problem. This
approach ensures consistency and accuracy in addressing the problem, allowing for
effective monitoring and management of cloud spending, ensuring financial control
and operational efficiency.

2.4. Cost management and optimization. As cloud technology continues
to evolve, the variety of pricing and commitment options available to organizations
has increased significantly. Cloud providers offer numerous pricing models such as
on-demand, reserved instances, spot instances, and various discount plans. Addi-
tionally, there are multiple ways to commit to these resources, each with its own
set of terms and potential cost savings. With these options, there are more combi-
nations and strategies for managing cloud costs based on an organization’s specific
needs and usage patterns. However, this increased flexibility also adds complexity,
making it challenging to determine the most cost-effective approach.

When an organization grows large enough, managing cloud costs at scale for
a vast number of resources becomes a significant challenge. The dynamic nature
of cloud pricing, combined with the need to monitor and optimize resource usage
continuously, requires sophisticated tools and strategies.

One major challenge is understanding and selecting the most cost-effective pric-
ing options while considering usage patterns. It is difficult to estimate how many
commitments to buy and to understand if, at any given moment, you can manipulate
instances to avoid driving usage to unused commitments, thus wasting money on
resources that are not being fully utilized. Cloud providers frequently update their
pricing structures, which necessitates continuous adaptation and strategy updates.
This complexity, together with the variability in cloud usage, further complicates
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cost management. These challenges necessitate the use of advanced mathematical
models and optimization techniques to manage and optimize cloud costs effectively.
FinOps practitioners must leverage these tools to navigate the complexity of cloud
pricing, manage resource usage efficiently, and ensure that spending aligns with
business objectives.

To address the challenges of cost management and optimization in the FinOps
domain, we will focus on the most dynamic and complex resource type, which is
EC2 (Elastic Compute Cloud) in AWS. The variability and cost structure of EC2
instances present unique challenges that require sophisticated mathematical mod-
els and optimization techniques. Let’s define a more detailed cost function that
accounts for different types of EC2 instances (Box, Spot) and the impact of pur-
chasing commitments (Reserved Instances, Compute Savings Plans, EC2 Savings
Plans). The total EC2 cost is the sum of the costs for both Box and Spot instances.
For simplicity, we define an EC2 instance that is not Spot as Box. Each cloud
provider has its own terminology for these instances.

Cost of Spot Usage can be defined like this:

𝑆𝑝𝑜𝑡 𝐶𝑜𝑠𝑡 (𝑁𝑠𝑝𝑜𝑡) =

𝑁𝑠𝑝𝑜𝑡∑︁
𝑖=1

(𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒𝑖 × 𝑈𝑠𝑎𝑔𝑒𝑖),

where:
– 𝑁𝑠𝑝𝑜𝑡 is the total number of spot instances;
– 𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒𝑖 is the price of the 𝑖-th spot instance;
– 𝑈𝑠𝑎𝑔𝑒𝑖 describes amount of usage of spot instance (normalized units or amount
of minutes/hours).
Cost of “Box” Usage can be defined like this:

𝐵𝑜𝑥 𝐶𝑜𝑠𝑡 (𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) =

𝑁𝑏𝑜𝑥∑︁
𝑖=1

(𝑃𝑟𝑖𝑐𝑖𝑛𝑔𝑂𝑝𝑡𝑖𝑜𝑛𝑖 × 𝑈𝑠𝑎𝑔𝑒𝑖),

where:
– 𝑁𝑏𝑜𝑥 is the total number of spot instances;
– 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠 is a variable that defines amount of commitments customer has;
– 𝑃𝑟𝑖𝑐𝑖𝑛𝑔𝑂𝑝𝑡𝑖𝑜𝑛𝑖 is the cost of instance depends on 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠 it can be dif-
ferent even for same instance;
Then the total EC2 Cost is given by:

𝐸𝐶2 𝐶𝑜𝑠𝑡 = 𝐵𝑜𝑥 𝐶𝑜𝑠𝑡 (𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) + 𝑆𝑝𝑜𝑡 𝐶𝑜𝑠𝑡 (𝑁𝑠𝑝𝑜𝑡) + 𝐶𝑊,

where new variable 𝐶𝑊 means commitments waste or amount of cost customer
wasting because of not proper use of commitments and more exacly because of
commitments underutilization.

To minimize the total 𝐸𝐶2 𝐶𝑜𝑠𝑡, we need to find the optimal values for
(𝑁𝑠𝑝𝑜𝑡, 𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) for cost function:

𝐸𝐶2 𝐶𝑜𝑠𝑡 (𝑁𝑠𝑝𝑜𝑡, 𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) → min .

Intentionally for simplicity time granularity dimension was ignored but as in any
other FinOps problem this cost function can be viewed on hourly, daily, weekly and
monthly level, etc.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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In a more general view current approach can be applied to any cloud services or
to the whole cloud account at once. However, different compute types and services
could have different ways of optimization. In this paper we focused on the most
complex case, which is compute instances.

3. Conclusion. FinOps faces numerous challenges that arise from the dynamic
and complex nature of cloud environments. The increasing variety of pricing models,
the need for real-time data analysis, and other complexities create many abstract
problems. Mathematical modeling provides a way to address these abstract problems
effectively, enhancing decision-making and operational efficiency.

For any abstract problem to be effectively addressed, it must be defined mathe-
matically. Mathematical formulations provide a structured way to solve problems,
allowing for the application of advanced techniques like optimization algorithms
and machine learning. This approach not only clarifies the problem but also offers
systematic methods to address it.

This paper overviews the main FinOps problems and contributes by classifying
these problems into distinct categories. By proposing mathematical formulations
for each class, we think that integrating statistical models, optimization algorithms,
and machine learning techniques can improve the accuracy and efficiency of FinOps
practices. This structured approach guides organizations toward better financial
management and operational excellence in the cloud.
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Розвиток хмарних обчислень революцiонiзував пiдхiд органiзацiй до управлiння
IТ-ресурсами, пропонуючи масштабованi та гнучкi рiшення для рiзноманiтних опера-
цiйних потреб. Проте, з пiдвищеним впровадженням хмарних сервiсiв, фiнансовi опе-
рацiї (FinOps) стали бiльш складними, створюючи виклики в управлiннi витратами,
розподiлi ресурсiв та фiнансовому прогнозуваннi. Традицiйнi методи часто не здатнi
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ефективно вирiшувати цi складнощi, що призводить до неефективностi та субопти-
мального прийняття рiшень. У цiй роботi дослiджується застосування математичного
моделювання в сферi FinOps як потужного рiшення цих викликiв. Пропонується кла-
сифiкацiя проблем FinOps на окремi класи та математична постановка задачi для
кожного класу, що має на метi пiдвищити ефективнiсть FinOps-практик. Iнтеграцiя
математичних моделей покращує точнiсть та ефективнiсть, забезпечуючи системати-
чний пiдхiд до управлiння фiнансовими операцiями у хмарному середовищi. Через
вивчення кейсiв та прикладiв з реального свiту ця робота демонструє трансформацiй-
ний потенцiал математичного моделювання у стимулюваннi iнновацiй та досягненнi
операцiйної досконалостi в FinOps.

Ключовi слова: математичне моделювання, управлiння хмiрними обчисленнями,
аналiз даних, прогнозування, FinOps, оптимiзацiйнi процеси.

Список використаної лiтератури
1. State of FinOps. URL: https://data.finops.org (date of access: 25.08.2024).
2. AI and FinOps Predicted to Lead Observability Innovation in 2024. URL:

https://www.infoq.com/news/2024/02/observability-2024-predictions (date of access:
25.08.2024).

3. Gaur R. R., Budruk S. C., Patil N. V. Survey on Cloud Load Prediction using Machine
Learning Techniques. IJIRT. 2022. Vol. 9, No. 1. P. 792–796.

4. Archana Y., Kushwaha Sh., Gupta J., Saxena D., Singh A. K. A survey of the workload
forecasting methods in cloud computing. Proceedings of 3rd International Conference on
Machine Learning, Advances in Computing, Renewable Energy and Communication : MARC.
Singapore : Springer Nature Singapore, 2021. pp. 539–547.

5. Hofmann E. and Rutschmann E. Big data analytics and demand forecasting in supply chains:
a conceptual analysis. The international journal of logistics management. 2018. Vol. 29, No. 2.
P. 739–766.

6. Kureljusic M. and Karger E. Forecasting in financial accounting with artificial intelligence
— A systematic literature review and future research agenda. Journal of Applied Accounting
Research. 2023. Vol. 25, No. 1. P. 81–104.

7. FinOps Open Cost and Usage Specification. URL: https://focus.finops.org (date of access:
25.08.2024).

8. Find Open Datasets and Machine Learning Projects. URL: https://www.kaggle.com/datasets
(date of access: 27.08.2024).

9. Automate the deployment of an Amazon Forecast time-series forecasting model. URL:
https://aws.amazon.com/blogs/machine-learning/automate-the-deployment-of-an-amazon-
forecast-time-series-forecasting-model/ (date of access: 27.08.2024).

10. BigQuery public datasets. URL: https://cloud.google.com/bigquery/public-data (date of
access: 25.08.2024).

Recived 11.10.2024

ISSN 2616-7700 (print), 2708-9568 (online) Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2


