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AVERAGED OPTIMAL CONTROL PROBLEMS OF NON-LINEAR
DIFFERENTIAL INCLUSIONS ON THE FINITE AND INFINITE
INTERVALS

In this paper, we use the averaging method to find an approximate solution for the
optimal control of nonlinear differential inclusions with rapidly oscillating coefficients.

This work highlights the interplay between averaging methods and asymptotic analy-
sis, suggesting that a hybrid approach can provide reliable strategies for solving complex
optimal control problems. Addressing both finite interval and unbounded domains, the
studies together contribute to a more complete framework for understanding and apply-
ing control methodology in nonlinear settings. We use the averaging method to find an
approximate solution to these optimal control problems. Future research can benefit from
integrating insights from both methodologies to further improve control strategies, poten-
tially leading to improved results in various fields of engineering and applied mathematics.
The Carathéodory-type differential switching optimal control problems are considered.

Keywords: non-linear differential inclusion, optimal control, averaging method, approxi-
mate solution.

1. Introduction. In recent years, the study of optimal control problems involving
differential inclusions has gained significant attention due to its wide range of appli-
cations in engineering, economics, and the natural sciences. This article address the
complexities of controlling systems described by differential inclusions, albeit from
different perspectives and methodologies.

The first part of research explores the application of the averaging method to
non-linear differential inclusions within a finite interval, providing insights into sim-
plifying complex control systems for practical implementation. The second one
delves into the asymptotic behavior of optimal control problems on the semiaxes,
particularly focusing on Carathéodory differential inclusions with fast oscillating co-
efficients, thereby offering a deeper understanding of the impact of rapid oscillations
on system dynamics. Together, these works contribute to advancing the theoretical
framework and application strategies for optimal control in systems governed by
differential inclusions.

2. Statement of the problem. Let us consider two optimal control problems.
The first one

() € X (&, x(t),u(t)),t € (0,7),
95(0) o, u(*) €

ul 1)
[ L(t, 2(t), ult))dt + ®(x(T)) — it .

Hayxk. Bicuuk Y:kropom. yu-ty, 2024, rom 45, Ne 2 ISSN 2616-7700 (print), 2708-9568 (online)



76 T. Yu. ZHUK

Here ¢ > 0 is a small parameter, x : [0,7] — R is an unknown phase variable,
u:[0,7] — R™ is an unknown control function, X : Ry x R™ x R™ — conv(R") is
a multi-valued function, U C L?(0,T) is a fixed set.

Assume that uniformly with respect to x for every u € R™

1 S
dist g —/X(T,x,u)dT,Y(:C,u) — 0, s— 00, (2)
s
0

where limits for multi-valued function are considered in the sense of [1,2|, disty is
the Hausdorff metric, Y : R” x R™ — conv(R"), and the integral of multi-valued
function is considered in the sense of Aumann [3]. We consider the following problem
with averaged right hand side:

T (3)
Jx,u] = b[L t,y(t),u(t))dt + ®(x(T)) — inf.

Under the natural assumptions on X, L, ®, U we will show that the problems (1)
and (3) have solutions {Z.,u.} and {7, u} respectively,
Je, = J, e, — 0,

where J. = J[Z.,,%.,], J := [,7], and up to a subsequence

U., — win L*(0,T),

T., — y in C([0,T)).

In what follows we consider the problem of finding an approximate solution of (1)
by transition to averaged coefficients. We note that the transition to the averaging
parameters can essentially simplify the problem.

We consider the second following optimal control problem

#(1) € F(5 1) + gle()ult), 120,

z(0) = zo,
u € U= {uc L*0,00; R™)| u(t) € U a.e. on (0,00)} (5)
is such that -
Tz, u) = /0 (e o(x() + [u@))dt — inf, (6)

where € > 0 is a small parameter, and f, g, ¢ satisfy the following:
1) f:]0,00) x R — conv;
2) Vo € RY the map f(-,x) possesses a measurable selector;
3) Vt > 0 the map f(t,-) is upper semicontinuous;
4)IM >0Vz e RAVE> 0 ||f(t,2)||s < M;
5) g : R — R™™ is continuous and bounded, that is IN > 0 with ||g(z)|| <
N, z€R%
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6) U C R™ is closed, convex and 0 € U;
7) ¢ : R? — R is continuous and there are constants ¢ > 0 and p > 1 with

inf o(r) 2 —c, o) < el + [|z][").
z€ER?

For a given control function v € U we understand solution of (1) as an absolutely
continuous function z which satisfies (1) almost everywhere (a.e.) on [0, +00). In
this case we say that {z,u} is an admissible pair for (1)-(3). An admissible pair
{z®,u} is called an optimal pair (or solution) for (1)-(3) if for every admissible pair
{z,u} we have

J(2%,u%) < J(z,u).

The existence of an optimal solution {z°, u°} is established in the next section.

Let us denote
J® :=1inf J(z,u) = J(2°, u).

Using approach of [5] we define the average function f basing on the notion of the
Kuratowski upper limit [6]

f(@) = M=o F° (),

where [ is the convex hull of the map

®°(x) = limsup lim sup 10T, T, x,9),

01 Tooo (1—6)T

T

10T, T, 2,6) = { / (1)t [ 0() € (0,00 RY, 0ft) € f(tp), y € 05(@) }.

It is proved in [5] that if there exists F(z) = limp_,o0 fOT f(t,z)dt in the sense of
the Hausdorff distance disty, and if f(¢.-) is Lipschitz, then f = F.
Also we consider the optimal control problem

& € f(x) + g(@)u(t), x(0) = o, (7)
u € U, (8)
J(z,u) — inf 9)

Our aim is to prove that for ¢ — 0 it follows that
J¢ — Jand {2°,u°} — {Z,u} in some sense,

where {Z,u} is a solution of (7)—(9), J = J(Z, ).
3. Main resuts. Let Q = {t > 0,z € R",u € R™} and assume the following
assumptions hold.
(A1) the mapping ¢, z,u — X(t,z,u) is continuous in Hausdorff metric;
(A2) the multi-valued function X(¢,x,u) satisfies the next growth property: there
exists M > 0 such that

[1X (2, u)[[y < M1+ [|2]]) V(¢ 2, u) € @,

where || X (¢, 2, u)||+ = Subeex (2 €], [|€]] is the Euclidian norm of £ € R™;

t,x,u
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(A3) the multi-valued function X (¢, x,u) satisfies the next Lipschitz condition: there
exists A > 0 such that

disty (X (¢, 71, u1), X (¢, 22, u2)) < A(||lz1 — 22| + [|[ur — ual]);

(A4) the function (z,u) — L(t,x,u) is continuous, moreover the function ¢
L(t,x,u) is measurable Vo € R" u € R™ and

Ltz u)| < e(t)(1+ [[ul]),

where ¢ € L?(0,T) is a given function;
(A5) the function ® : R" — R is continuous;
(A6) the set U C L*(0,T) is compact.

Theorem 1. Under the Assumptions A1-A6 the problem (1) (resp. the problem
(3)) has the solution {Z.,u.} (resp. {y,u}).

Proof. Fix € > 0 and suppress it in what follows. Under the conditions on L
and ® the cost functional in (1) reaches its finite extremum. Now deduce a priory
estimate for z(¢). Since x is an absolutely continuous function then ¢ — ||z(?)|| is
an absolutely continuous too and

L)l < 1)) ae.

Then

%le(t)H < @ < [[X(# @, w)lly < M+ [[]]),

and
lz(0)]] < [le(O)] +/M<1+ [zll)ds = [|z(0)] +MT+/M\|x||ds.

Taking into account Gronwall’s inequality we have

t

()] < ([z(O)]] + MT)ed "™ = (Ja(0)]] + MT) €M < (|| (0)]| + MT) M7

(10)
Let {x,, U, fnen be a minimizing sequence for the problem (1), that is:
{Zn,un} € {(x,u) : uw C U,z is the solution to the Cauchy problem (1)

for all admissible u},

and J(2,,u,,) < J + L. Due to (10) we have the uniform boundedness of the
sequence {z,}nen on every finite interval (0,7, i.e. 3L > 0:

sup ||z, (t)|] < L.t € [0, T].
te[0,T7]

Moveover,

sup ||, (t)|] < L,t € [0,T7, (11)
te[0,7)
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and

[l (ts) — xn(t1)]] < /M(l + L)ds = M(1+4 L)(ty — ty),

so the sequence {z,}nen is precompact in C([0,7]). Due to the Arcel’s theorem
x, — T in C([0,T7]) up to a subsequence.

From [2] and (11) we deduce that T is absolutely continuous and &,, — 7 *-weakly
as n — oo in L>(0,T). Since Ve > 0 for a.e. t there exists ng such that ¥Yn > ng

Al (t) = 2@ + [lun(t) —a(®)]]) <e,
then by the Assumption A3 we have

in(t) € X (g,xn(t),un(t)) co. (X (g,xn(t),un(t))) |

Taking into account the convergence theorem [4, p.60| for a.e. ¢ we have

#(t) € X (f,m),a(ﬂ) .

3

By the Assumption A6 we obtain the convergence u, — u,n — oo in L?[0,T] up to
a subsequence.

Now we will show that {Z, %} is the solution of (1). Since w,(t) — u(t) and
xn(t) = Z(t),n — oo a.e. by the Assumption A4 we obtain that

L(t, z,(t), u,(t)) = L(t,Z(t),u(t)) a.e., n— oo,

and {L(t, z,,u,)} is bounded in L?*(0,T). Therefore by the Lions’ Lemma we have
that L(t,z,,u,) — L(t,7,u) weakly in L*(0,T) for n — oo.

Hence,
T

/L(t,mn(t),un(t))dtﬁ /L(t,f(t),ﬂ(t))dt, n — 0o,
With the convergence ®(x,(T)) — ®(T(T)) we have lim J[z,,u,] = J[T,u] = J

n—oo
and therefore {Z,u} is the solution of (1).

For the second optimal control problem we have a similar result.

Lemma 1. Under the conditions 1)-7) the optimal control problem 1-3 has a
solution {x° u°}.

Lemma 2. Let f : [0,00)xR? — conv satisfy 1)—4). Then there exists a sequence
of locally Lipschitz maps f* :[0,00) x RY — conv satisfying 1)-4) for k € N with

flt,z) C---C Yt x) C fA(t,x), t>0, zeR) keN (12)
and for each k € N and x € R? there exist I, > 0 and 6, > 0 such that
disty(fF(t, o), fF(t,2")) < Ll|l2’ —2"||, o', 2" € Os,(x), t >0, (13)
moreover, for any € > 0, t > 0, x € R? there is K = K(e,t, 1) with

f*(t,x) ceof(t,0-(x)), k>K. (14)
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Moreover for a fixed e > 0, if x, is the solution to (4) corresponding to the
control u,, n € N and sup,,cy ||un||z2 < oo then up to a subsequence the following
convergence holds

u, — u weakly in L*(0, oo; R™), (15)

z, — xin C([0,T];RY), T >0, (16)

where z is a solution of (4) with control u. Additionally, if u, € U for n € N then
ue U

Lemma 3. Let g, — 0 as n — 0o and x, be a solution of (4) with control u,.
Let {xp,u,} — {x,u} as n — oo in the sense of (15),(16). Then x is a solution of
(7) with control u.

Now we are in a position to prove our main result.

Theorem 2. Assume that conditions 1)-7) are satisfied. Assume that for any
u € W the problem (7) has a unique solution. Let {x°,u®} be an optimal pair in

(4)—6), J° = J(x%,u®). Then

J*—=J for &—0, (17)

and for e, — 0 it holds that
v — 1z in C(0,T;RY), T >0 (18)
u™ — u weakly in  L*(0,00;R™), (19)

where {7, u} is an optimal pair in (7)—(9), J = J(z, ).

Proof.
Let for €, — 0, {z°",u*"} be an optimal pair for (4)-(6). From the optimality of
u;, it follows that
J(x ur) < J(xy,0),

where z,, is a solution of (4) with € =&, u = 0. Then
Sl < el < [ e el (M4 NP < G, (0
0 0

where C does not depend on n. Additionally, we have
5, (8) — @5, (s)|| < Mt — s| + Nt — s[> [|u, | (21)

Estimations (20),(21) and the Arzela-Ascoli theorem imply that on some subse-
quence {z°" u*}, n € N converges to some {Z,u} in the sense of (18),(19). Hence,
from Lemma 3 we deduce that Z is a solution of (7) with control u € U. Let us
prove that {Z,a} is an optimal pair.

For every u € U and the corresponding solution z, to (4) we have

J(zT u™) < J(xp, ). (22)
Arguing as in the proof of Lemma 1, we get from (22) after passing to the limit:

J(z,u) <lim inf J(z™,u") <lim inf J(z,,u). (23)

n—oo n—o0
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Due to (21) with u¢ replaced with u we have that z,, — z in the sense of (18). By
Lemma 3 it follows that = is a unique solution of (7) with control u. So, from (23)
follows

J(z,u) <lim inf J(z,,u) = J(z,u).

n—oo
This inequality means that {Z,u} is an optimal pair.
Applying previous arguments with « = u we get

J(z,u) <lim inf J* <lim sup J" < lim J(z,,a) = J(Z,u).

n—00 n—00 n—00

This means, that there exists lim,,_,o, J* = J(Z,u). Because of arbitrariness of
en — 0, we get (17). Theorem is proved.
4. Concusions. We significantly advance our understanding of optimal

control problems characterized by non-linear dynamics and varying conditions. The
first study introduces the averaging method as a viable technique to address finite
interval problems, elucidating how it simplifies the control process by reducing the
complexity of the differential inclusions involved. This approach not only facilitates
the identification of optimal solutions but also broadens the applicability of control
strategies to a wider range of practical scenarios.

Conversely, the second article delves into the asymptotic behavior of control
problems defined on semiaxes, where the challenges posed by fast oscillating coef-
ficients are meticulously examined. The authors demonstrate that under specific
conditions, asymptotic techniques can effectively yield optimal control solutions,
thereby enhancing our ability to manage systems with rapidly changing dynamics.

Together, these works highlight the interplay between averaging methods and
asymptotic analysis, suggesting that a hybrid approach may yield robust strategies
for solving complex optimal control problems. By addressing both finite intervals
and unbounded domains, the studies collectively contribute to a more comprehen-
sive framework for understanding and applying control methodologies in non-linear
settings. Future research could benefit from integrating insights from both method-
ologies to further refine control strategies, potentially leading to improved outcomes
in various engineering and applied mathematics fields.

This research was supported by NRFU project No. 2023.03/0074 "Infinite-
dimensional evolutionary equations with multivalued and stochastic dynamics"
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Kyxk T. FO. Ycepeaueni 3a/1a4i ONTUMAJILHOTO KePYBAHHA HEJIHIHHUMU Tude-
pPEHIIIAJILHUMHI BKJIIOYEHHSIMHN Ha CKIHYEHHWX 1 HECKIHUYEHHWX 1HTepBaJax.

Y mawiit crarTi MM BHKOPHCTOBYEMO METOJ yCEepeIHEHHsi, o0 3HaiTu HaOIMKeHUi
PO3B’S30K [1JIsi ONTUMAJIBHOTO KEPYBAHHS HEeTiHITHUMEU nudepeHIiaTbHIMI BKIIOYeHHAMY
3 IIBUAKOOCIITIOIYNMA KoeillieHTamMu.

Jana poboTa BHCBITIIOIOE B3AEMOIIIO MiK METOIaMU YCEPETHEHHS Ta ACUMITOTHIHAM
aHAJII30M, MPUITYCKAIOYH, M0 TiOpUIHUN TiaxXimg MOXKe JaTh HaJilHI cTpaTeril Ijs BUpi-
MIEHHS CKJIQTHUX TPOOJIEM ONTUMAJIBHOIO KEPYBAHHS. 3BEPTAIOYNCH SIK /10 CKIHYEHHUX iH-
TEpBAJIiB, TaK 1 10 HEOOMEKEHUX 00J1aCTell, MTOCTiIKEHHS PA30M POOJIATH BHECOK Y OLIIBII
MOBHY CTPYKTYPY JJisi PO3YMiHHS Ta 3aCTOCYBAHHS METOJOJIOTT KOHTPOJIIO B HEJIHIHHUX
ymoBax. Mu BHKOPHCTOBYEMO MeTO[ ycepeaHeHHsd, 100 3HaiTH HAOIMKEeHe PIllleHHS s
LIUX 3329 ONTHUMAJIBHOIO KepyBanusda. MallOyTHi HOCIipKeHHA MOXKYTh OTPUMATH BUIOLY
Bij iHTerparii po3ymiHHS 3 000X METOIOJIOTi#l /I MOmAJIBINOr0 BIOCKOHAJIEHHS CTPATE-
riif KOHTPOJIIO, IO TOTEHIIINHO TPU3BEE /10 MOKPAIEHHS PEe3YIbTaTiB Y PI3HUX TaTy3IX
iHzKeHepii Ta MPUKIATHOI MATeMATHKH. PO3rIsaIaloThCsd 3a0a9i ONTUMATLHOTO KepyBAHHS
nudepeHIiaabHIM BKIIOYEHHIM THILy Kapareomopi.

Kurrogosi ciroBa: Hestiniline qudepeHIiagibHe BKIIOYEHHS, ONTUMAJIbHE KePYBAHHSI, METOI
yCepeaHeHHs, HaOIMXKEHU PO3B’A30K.
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