
46 V. M. BONDARENKO, M. V. STYOPOCHKINA

UDC 512.56
DOI https://doi.org/10.24144/2616-7700.2024.45(2).46-55

V. M. Bondarenko1, M. V. Styopochkina2

1 Institute of Mathematics of NAS of Ukraine,
Leading researcher of the department of algebra and topology,
Doctor of physical and mathematical sciences
vitalij.bond@gmail.com

ORCID: https://orcid.org/0000-0002-5064-9452

2 Polissia National University,
Associate professor of the department of higher and applied mathematics,
Candidate of physical and mathematical sciences
stmar@ukr.net

ORCID: https://orcid.org/0000-0002-7270-9874

ON MINIMAL MINIMAX SYSTEMS OF GENERATORS
FOR POSITIVE POSETS

The representations of partially ordered sets (abbreviated: posets), introduced by
L. A. Nazarova and A. V. Roiter (in matrix form) in 1972, play an important role in
the modern representation theory and its applications. Yu. A. Drozd proved in 1974 that
a poset 𝑆 has finite representation type over a field if and only if its Tits quadratic form

𝑞𝑆(𝑧) =: 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,

is weakly positive (i.e., positive on the set of non-negative vectors), but this statement is
not true, unlike the case of the quivers, when considering the positive quadratic forms.
Hence the posets with positive Tits quadratic forms aroused great interest from various
points of view as analogs of Dynkin diagrams. In 2005 the authors described up to iso-
morphism all posets with positive Tits quadratic form. The basic method for solving this
problem is so-called minimax equivalence method proposed by the first author. Recently
he introduced some concept (namely, minimax system of generations) with consideration
of the corresponding examples, which can be considered as the emergence of a new theory,
which study combinatorial properties of posets with respect to minimax equivalence.

In this paper we study from such new point of view the posets with positive Tits
quadratic form (which are called positive posets).

Keywords: positive quadratic form, Tits quadratic form, positive poset, minimax equiv-
alence and isomorphism, minimax system of generators.

1. Introduction. When studying the representations of quivers, P. Gabriel [1]
introduced a quadratic form of a (finite) quiver 𝑄. This form was called the Tits
quadratic form of the quiver 𝑄. P. Gabriel proved that the quiver 𝑄 is of finite
representation type over a field 𝑘 if and only if its Tits quadratic form is positive.
This Gabriel’s result laid the foundations of a new direction in the representation
theory dealing with the investigation of the relationships between the properties of
representations of various objects and the properties of quadratic forms associated
with these objects.

In [2], Yu. A. Drozd showed that a (finite) poset 𝑆 is of finite representation
type if and only if its Tits quadratic form

𝑞𝑆(𝑧) = 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,
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is weakly positive, i.e. positive on the non-zero vectors with non-negative coordinates
(representations of posets were introduced by L. A. Nazarova and A. V. Roiter in [3]).
In contrast to the quivers, the posets with weakly positive and with positive Tits
forms do not coincide. Since the connected quivers having positive Tits quadratic
form coincide with the quivers whose underlying graphs are (simply faced) Dynkin
diagrams [1], the posets with positive Tits form are analogs of the Dynkin diagrams.
Therefore investigation related to posets with positive Tits form are important.
In [4], [5] the authors classified the posets with positive Tits quadratic form and the
minimal posets with non-positive Tits form.

In solving the specified problems, a method based on the notion of minimax
equivalence of posets was used (see [6]). In [7] the first author introduced some
concept (namely, minimax system of generations) with consideration of the corres-
ponding examples, which can be considered as the emergence of a new theory, which
study combinatorial properties of posets with respect to minimax equivalence.

In this paper we study from the new point of view the posets with positive Tits
quadratic form. Such posets are called positive.

The first author is supported by a grant from the Simons Foundation (1030291,
1290607, V.M.B.).

2. Preliminaries.
2.1. Definitions on posets. Throughout the paper, all posets are finite of

order 𝑛 > 0 without an element 0. A poset 𝑇 is called dual to a poset 𝑆 and is
denoted by 𝑆op if 𝑇 = 𝑆 as usual sets and 𝑥 < 𝑦 in 𝑇 if and only if 𝑥 > 𝑦 in 𝑆.
If 𝑆 and 𝑆op are isomorphic, the poset 𝑆 is called self-dual. 𝑇 and 𝑆 are called
anti-isomorphic if 𝑇 and 𝑆op are isomorphic.

By a subposet we always mean a full one, and singletons are identified with
the elements themselves. Sometime (in definitions or statements) we admit empty
posets which are or may be later subposets of some posets.

A poset 𝑆 is called a sum of subposets 𝐴1, 𝐴2, . . . , 𝐴𝑚 and write 𝑆 = 𝐴1 + 𝐴2 +
· · ·+ 𝐴𝑚, if 𝑆 = ∪𝑖∈𝑆𝐴𝑖 and 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for each 𝑖 and 𝑗 ̸= 𝑖. If any two elements
of different summands are incomparable, the sum is called direct and is denoted in
this case also by

∐︀
instead of +.

A sum 𝑆 = 𝐴 + 𝐵 with 𝐴,𝐵 ̸= ∅ is said to be left (resp. right) if 𝑎 < 𝑏 (resp.
𝑏 < 𝑎) for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and there is no 𝑎′ ∈ 𝐴, 𝑏′ ∈ 𝐵 such that 𝑎′ > 𝑏′

(resp. 𝑏′ > 𝑎′). Both left and right sums are called one-sided. A sum 𝑆 = 𝐴+ 𝐵 is
called two-sided if 𝑎 < 𝑏 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝑏′ < 𝑎′ for some 𝑎′ ∈ 𝐴, 𝑏′ ∈ 𝐵.
Finally, a one-sided (left or right) or two-sided sum 𝑆 = 𝐴+𝐵 is called minimax if
𝑥 < 𝑦 with 𝑥 and 𝑦 belonging to different summands implies that 𝑥 is minimal and
𝑦 maximal in 𝑆.

2.2. Positive posets. Let 𝑆 be a poset. The Tits quadratic form of 𝑆 is by
definition the following quadratic form 𝑞 : Z|𝑆|+1 → Z:

𝑞 = 𝑞𝑆(𝑧) = 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,

(see [2]). Here Z denotes the set of integer numbers and Z|𝑆|+1 consists of the integer
vectors (𝑧𝑖) with 𝑖 ∈ 0 ∪ 𝑆. The poset 𝑆 is called positive if so is its Tits quadratic
form.
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The positive posets were first described in [4] (for posets of width two) and [5]
(in general case). They can be of two types: serial and non-serial.

A positive poset 𝑆 is called serial if for any 𝑚 ∈ N, there is a positive poset
𝑆(𝑚) ⊃ 𝑆 such that |𝑆(𝑚) ∖ 𝑆| = 𝑚, and non-serial otherwise. There are 108
non-serial positive posets up to isomorphism and duality [5, Table 1] (see also below
Section 5).

Now formulate two theorems on positive serial posets (see [4], [5] and also [7]).
A linear ordered set with 𝑛 ≥ 0 elements is called a chain of length 𝑛. A poset

of the foem 𝑎1 < . . . < 𝑎𝑝 < {𝑏, 𝑐} < 𝑑1 < . . . 𝑑𝑞 (𝑝, 𝑞 ≥ 0) with one pair of
incomparable elements is called an almost chain of length 𝑛 = 𝑝+ 𝑞 + 1.

Theorem 1. A poset 𝑇 is serial positive if and only if it is isomorphic to one
of the following poset 𝑆:

(1) 𝑆 is a direct sum of a chain of length 𝑘 ≥ 0 and a chain of length 𝑠 ≥ 1,
where 𝑘 ≤ 𝑠;

(2) 𝑆 is a left minimax sum of two chains of lengths 𝑘 ≥ 1 and 𝑠 ≥ 1, where
𝑘 + 𝑠 > 3;

(3) 𝑆 is a direct sum of a chain of length 𝑘 ≥ 0 and an almost chain of length
𝑠 ≥ 1, where 𝑘 + 𝑠 > 1.

Moreover, all these posets are pairwise non-isomorphic.

Theorem 2. Any positive poset of order 𝑛 < 5 or 𝑛 > 7 is serial.

3. Main results.
3.1. Minimax equivalence of posets. This concept was introduced by the

first author in [6] and studied in detail in [5].
For a poset 𝑆 and its minimal (resp. maximal) element 𝑎, let us 𝑇 = 𝑆↑

𝑎 (resp.
𝑇 = 𝑆↓

𝑎) denotes the following poset: 𝑇 = 𝑆 as usual sets, 𝑇 ∖ 𝑎 = 𝑆 ∖ 𝑎 as posets,
the element 𝑎 is maximal (resp. minimal) in 𝑇 , and 𝑎 is comparable with 𝑥 in 𝑇
if and only if they are incomparable in 𝑆. Two posets 𝑆 and 𝑇 are called (min,
max)-equivalent if there are posets 𝑆1, . . . , 𝑆𝑝 (𝑝 ≥ 0) such that, if we put 𝑆 = 𝑆0

and 𝑇 = 𝑆𝑝+1, then, for every 𝑖 = 0, 1, . . . , 𝑝, either 𝑆𝑖+1 = (𝑆𝑖)
↑
𝑥𝑖
or 𝑆𝑖+1 = (𝑆𝑖)

↓
𝑦𝑖
.

Obviously, any poset is (min, max)-equivalent to itself (if one put 𝑝 = 0). Since
some time we also use the term minimax equivalence.

The notion of minimax equivalence can be naturally continued to the notion of
minimax isomorphism: posets 𝑆 and 𝑆 ′ are minimax isomorphic if there exists a
poset 𝑇 which is minimax equivalent to 𝑆 and isomorphic to 𝑆 ′.

In the case when for every 𝑖 = 0, 1, . . . , 𝑝‘ one has 𝑆𝑖+1 = (𝑆𝑖)
↑
𝑥𝑖
, 𝑇 and 𝑆 are

called min-equivalent.

Proposition 1. The following conditions are equivalent:
(1) 𝑇 and 𝑆 are (min, max)-equivalent;
(2) 𝑇 and 𝑆 are min-equivalent.

In a similar way one can defines the notion of max-equivalence.
3.2. Minimax systems of generators. The concept of such systems of

generators was introduced by the first author in [7].
Let K be a class of finite posets closed under isomorphism and duality (or,

equivalently, isomorphism and anti-isomorphism), and let 𝑈 = {𝑈𝑖} be a set of
posets 𝑈𝑖 ∈ K with 𝑖 running through a (finite or infinite) set 𝐼. The set 𝑈 is called
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a minimax system of generators of K if any 𝑋 ∈ K is minimax isomorphic to a poset
𝑈𝑖 for some 𝑖 ∈ 𝐼. In the case when any proper subset of 𝑈 is not a minimax system
of generators, the system of generators 𝑈 is called minimal. The system 𝑈 is called
self-duaI is so are all 𝑈𝑖.

Example. From [5, Theorem 2] it follows that the minimal posets with non-
positive Tits quadratic form (which are called 𝑃 -critical) has a self-dual minimal
minimax system from 5 generators, consisting of the Kleiner posets [8].

3.3. Formulations of the maim theorems. Recall that the Hasse diagram
of a poset 𝑆 is a type of diagram that represents 𝑆 in the plane. Namely, for a poset
𝑆 one represents each element of 𝑆 as a vertex and each pair of elements 𝑥, 𝑦 of 𝑆,
such that 𝑦 covers 𝑥 (i. e. 𝑥 < 𝑦 and there is no 𝑧 satisfying 𝑥 < 𝑧 < 𝑦), as an
edge (a line segment or curve) that goes upward from 𝑥 to 𝑦. We call a poset 𝑆
quasi-chained if 𝐻(𝑆) is a chain.

Theorem 3. The classes of serial and non-serial positive posets have minimax
systems of quasi-chained generators. Moreover, one can assume that each generator
is is of width 2 or self-dual.

Theorem 4. The class of serial positive posets of even order has a self-dual
minimax system of quasi-chained generators, but the class of those of odd order does
not have.

Theorem 5. The class of non-serial positive posets does not have a self-dual
minimax system of quasi-chained generators.

Theorem 6. The class of non-serial positive posets has a minimax system of
quasi-chained generators of width 3, but the class of serial ones does not have.

Under proving these theorems, in each case when (by the formulation of some
theorem) the indicated system exists we even indicate such a minimal system.

4. Proofs of the theorems.
4.1. The case of serial posets. Let 𝑆 be a serial poset (see Theorem 1). From

the definition of 𝑆↑
𝑥 we have the following statements:

(4.1.1) if 𝑆 is of the form (1), 𝑆 := 𝑆1𝑘𝑠 = {𝑎 = 𝑎1 < . . . < 𝑎𝑘}
∐︀
{𝑏 = 𝑏1 <

. . . 𝑏𝑠}, then (when 𝑘 ̸= 0) 𝑆↑
𝑎
∼= 𝑆1,𝑘−1,𝑠+1 and 𝑆

↑
𝑏
∼= 𝑆1,𝑘+1,𝑠−1;

(4.1.2) if 𝑆 is of the form (2), 𝑆 := 𝑆2𝑘𝑠 = {𝑎 = 𝑎1 < . . . < 𝑎𝑘}
∐︀
{𝑏 = 𝑏1 < . . . 𝑏𝑠}

with 𝑎1 < 𝑏𝑠, then 𝑆
↑
𝑎 is isomorphic to the poset {𝑎2 < . . . < 𝑎𝑘}

∐︀
{𝑏1 < . . . 𝑏𝑠−1 <

(𝑏𝑠, 𝑎1)} of the form (3) (or to 𝑆(3, 𝑘 − 1, 𝑠, 𝑠 − 1) in the notation of (4.1.3)) and
(when 𝑠 > 1) 𝑆↑

𝑏
∼= 𝑆2,𝑘+1,𝑠−1;

(4.1.3) if 𝑆 is of the form (3), 𝑆 := 𝑆3𝑘𝑠𝑡 = {𝑎 = 𝑎1 < . . . < 𝑎𝑘}
∐︀
{𝑏 =

𝑏1 < . . . 𝑏𝑡 < (𝑐, 𝑑) < 𝑏𝑡+1 < . . . < 𝑏𝑠−1}, then (when 𝑘 ̸= 0) 𝑆↑
𝑎
∼= 𝑆3,𝑘−1,𝑠+1,𝑡,

𝑆↑
𝑏
∼= 𝑆3,𝑘+1,𝑠−1,𝑡−1 when 𝑡 ̸= 0 and 𝑆↑

𝑐
∼= 𝑆2,𝑠,𝑘+1 when 𝑡 = 0.

A simple analysis shows that these statements (with using the min-equivalence
by Proposition 1) emply that

(4.1.4) the posets 𝑆1,0,𝑛 with 𝑛 running through N and 𝑆2,1,𝑚 with 𝑚 running
through N ∖ 1 form a minimal minimax system of quasi-chained generators of the
class of serial positive posets;

(4.1.5) the posets 𝑆1,0,2𝑛 with 𝑛 running through N and 𝑆2,𝑛,𝑛 with 𝑛 running
through N ∖ 1 form a minimal self-dual minimax system of quasi-chained generators
of the class of serial positive posets of even order;
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(4.1.6) for any fixed 𝑛 > 0, the poset 𝑆2,1,2𝑛+1 is not minimax isomorphic to a
self-dual quasi-chained posets.

(4.1.7) for any fixed 𝑚 > 0, the poset 𝑆1,0,𝑚 is not minimax isomorphic to a
poset of width 3.

Obviously, the first part of Theorem 3 (for serial posets) follows from (4.1.4),
Theorem 4 follows from (4.1.5) and (4.1.6), the second part of Theorem 5 follows
from (4.1.6), and the second part of Theorem 6 follows from (4.1.7).

4.2. The case of non-serial posets. Consider now the case of non-serial
posets using the language of Hasse diagrams. Such posets were classified by the
authors in [5]; see below the corresponding table in Section 5. We will refer to this
table in following the following discussion, calling it Main table.

Proposition 2. All posets of Main table are divided on 8 classes with respect to
minimax isomorphism:

(I) 1, 2, 3, 4, 46, 47, 49;

(II) 5, 48, 50;

(III) 6, 7, 8, 9, 10, 11, 12, 13, 51, 52, 53, 54, 57, 60, 61;

(IV) 14, 15, 16, 17, 18, 19, 20, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67;

(V) 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 68, 69, 70, 71, 76, 77, 79,
87, 88, 89;

(VI) 31, 32, 36, 37, 40, 41, 43, 72, 74, 80, 81, 82, 86, 90, 92, 94, 96,
98, 99, 103, 108;

(VII) 33. 34, 35, 38, 39, 42, 44, 73, 75, 78, 83, 84, 91, 93, 95, 97, 100,
102, 104, 106, 107;

(VIII) 45, 85, 101, 105.

The upper underlined posets (and only they) are quisi-chained.

This statement follows from the result of the paper in [5], but some explanations
are required.

If one uses the terminology of Subsection 3.2, in [5] the authors show that the
set of posets of width two 𝑀 = {1, 5, 6, 14, 21, 31, 33, 45} together with the set 𝑀op

(consisting of their duals) form a minimal minimax system of generators for all non-
serial positive posets. Moreover, from the proofs in [5] it follows that each poset of
Main table and its dual are minimax isomorphic to the same poset of 𝑀 . In other
words, each class minimax isomorphism is closed under duality. Therefore, the set
𝑀 itself is a minimal minimax system of generators for the non-serial positive posets.

From all that has been said it follows that if one writes out all non-serial pos-
itive posets not only with accuracy up to isomorphism, but also with accuracy to
duality (Main table is exactly this), then it is correct to consider classes of minimax
isomorphism with accuracy to duality too.

But in the case when the classes are considered up to duality and we want to
make sure that some property is not satisfied for posets of some class, then this
property must be closed under duality. All property of non-serial positive posets
that will be considered below will satisfy this requirement by silence.

It is easy to see that the sets 𝑄𝐶(I) . . .QC(VIII) of quasi-chained posets of
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the classes (I) . . . (VIII) consist of, respectively, the following ones (the symbol 𝑠𝑑
denotes self-dual posets):

qq qq�
q4

q qq qq��

49

q qqq q
��
�

50 𝑠𝑑

qq qq�
�qq13

q qq qq�
�
q

�

61

q qqq qq
��
�

62

q qqq qq��
�

63

q qqq
q q
��

�
��

65 𝑠𝑑

q qq qq�
q
�

66 𝑠𝑑

qq qq�
�
��qqq

28

q qq qq�
�
��q

�

q88

q qqq qq
��
�

q90

q qqq qq�
�

�
�

q
92

q qqq
q q
��

�
�
�
q98 𝑠𝑑

q qqq
q

q��
�
�� q

95

q qq qq�
�q

�

q100

q qq qq
�

q�q102 𝑠𝑑

q qq qq�
q
�
�
q101 𝑠𝑑

From the description of the sets 𝑄𝐶(I), . . . ,QC(VIII) the next statements follow:
(4.2.1) for 𝑁 = I, IV,VI, the sets 𝑄𝐶(N) contain quasi-chained posets of width

2, and for the rest 𝑁 contain self-dual quasi-chained posets;
(4.2.2) there is not such 𝑁 that the set 𝑄𝐶(N) contains both a quasi-chained

poset of width 2 and a self-dual quasi-chained poset;
(4.2.3) every set 𝑄𝐶(N) contains a quasi-chained poset of width 3.
Obviously, the second part of Theorem 3 (for non-serial posets) follows from

(4.2.1), Theorem 5 follows from (4.2.2), and the first part of Theorem 6 follows from
(4.2.3).

Thus, Theorems 3–6 are proved in both serial and non-serial cases.
The method we proposed allows to establish other properties of positive and not

only positive posets.
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5. Table of all non-serial positive posets up to isomorphism and duality
from the paper [5]. For aesthetic reason, the posets 12 and 13 are arranged in
the below table in opposite order.

q qqq�
�

q1

qq q
�

q
�
�
q2=1′ 𝑠𝑑

qq qq�

q
3

qq qq�
q

4

qq qq�

q
�

5

q qqq�
�

qq6

qq q
�

q
�
�
qq7=6′

q qqq�
�
��
qq8

qq q
�

q
�
�
��qq9=8′ 𝑠𝑑

qq qq�

qq
10

qq qq�
�
qq

11

qq qq�
�qq

12

qq qq�

qq13

q qqq
�

q
�

q14

qq q
�

q
�

qq�15=14′ 𝑠𝑑

q qqq
�

q
�
�
q16

qq q
�

q
�

qq17=16′

q qqq
�
�
q

�
�
q18

qq q
�

q
�
�
qq

19=18′

qq qq�

q
�
q

20 𝑠𝑑

q qqq�
�

qqq
21

qq q
�

q
�
�
qqq

22=21′

qqq�q�
�qqq

23=21′′ 𝑠𝑑

q qqq�
�
�
�qqq

24

qq q
�

q
�
�
�
�qqq

25=24′ 𝑠𝑑

qq qq�

qqq
26

qq qq�
�
��qqq

27

qq qq�
�
��qqq

28

qq qq�
�
qq q

29

qq qq�
�qq q

30

qq qq�

q
�

qq31

qqq�q�
qqq

�

32=31′

qq qq�

q
�
�
qq33

qqq�q�
�qqq

�

34=33′

qqq�qq
�

qq35=33′′

qq qq�

q
�
�
��qq36

qqq qq
�
�

qq37=36′

qq qq�
�
q

�
�
��qq38

qqq qq
�
�
�
qq39=38′

qq qq�
�
��q

�
�
��qq40

qqq qq
�
�
�
��qq41=40′

qq qq�
�qq q
�

42

qq qq�
�qq q
�
�

43

qq qq�qq q
�
�

44

qq qq�
qq q

�

�

45

q qq qq
46 𝑠𝑑

q q qqq�
�

47

q qq qq�

48 𝑠𝑑

q qq qq��

49

q qqq q
��
�

50 𝑠𝑑

q qq qqq
51 𝑠𝑑

q q qqq�
�

q52

q qq q
�

q
�
�
q53=52′ 𝑠𝑑

q q qqq�
�
��
q54

q qq qq�

q55

q qq qq�
�
q56

q qq qq�
�
q57

q qq qq�
q58 𝑠𝑑

q qq qq�

q
�

59

q qq qq�

q
�

60
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q qq qq�
�
q

�

61

q qqq qq
��
�

62

q qqq qq��
�

63

q qqq
q q
��
�

64

q qqq
q q
��

�
��

65 𝑠𝑑

q qq qq�
q
�

66 𝑠𝑑

q qqq qq
��
��

67

q qq qqq
q68 𝑠𝑑

q q qqq�
�

qq69

q qq q
�

q
�
�
qq70=69′

q q qqq�
�
�
�qq71

q qq qq�

qq
72

q qq qq�
�
qq73

q qq qq�
�
��qq74

q qq qq�
�
qq75 𝑠𝑑

q qq qq�
�
qq76

q qq q
�

q
�
�
qq

77=76′ 𝑠𝑑

q qq qq�
q q78

q qq qq�
�q q79

q qq qq�
qq

80 𝑠𝑑

q qq qq�

q
�

q81

q qq q
�

q
�

qq�82=81′ 𝑠𝑑

q qq qq�

q
�
�
q83

q qq q
�

q
�

qq84=83′

q qq qq�

q
�
q85 𝑠𝑑

q qq qq�

q
�q

86

q qq qq�

q
�

q87

q qq qq�
�
��q

�

q88

q qq qq�
�
q

�

q89

q qqq qq
��

�

q90

q qqq qq��
�

q
91

q qqq qq�
�

�
�

q
92

q qqq
q q
��
� q

93

q qqq
q

q��
� q

94

q qqq
q
q��

�
�� q

95

q qqq
q q
��

�

q96

q qqq
q q
��

�
��

q97

q qqq
q q
��

�
�
�
q98

𝑠𝑑

q qq qq�
q
�

q
99

q qq qq�
�q

�

q
100

q qq qq�
q
�
�
q

101

𝑠𝑑

q qq qq
�

q�q
102

𝑠𝑑

q qqq qq
��
��

q103

q qqq qq
��
��
�
q104

q qqq qq
��

�
��
�

q105

q qqq
qq�

�
�
��
�

q106

q qqq qq
��

��q
107

q qqq qq
�

��q
108

Some remarks on the table.
In upper right corners the symbol 𝑠𝑑 means that the corresponding poset is

self-dual.
If a poset 𝑖 has width 2 and the table writes 𝑖 = 𝑗′, this means that 𝑖 can be

obtained from 𝑗 by replacing its only maximal point with its only new minimal
point. Note that these two posets are (min, max)-isomorphic. The same applies to
the case 𝑖 = 𝑗′′ = (𝑗′)′ (it is needed to compare the posets 𝑖 and 𝑗′). If the poset 𝑖
has width 3 and the table writes 𝑖 = 𝑗′, this means that the above applies not to the
posets 𝑖 and 𝑗 themselves, but to their connected components of width 2. Note that
here 𝑖 and 𝑗 are (min, max)-isomorphic too. The same applies to the case 𝑖 = 𝑗′′.

Arbitrary posets 𝑆 and 𝑇 , which are obtained from each other using similar
operations are called 0-isomorphic. And if we remove from the table the posets with
numbers 𝑖 = 𝑗′ and 𝑖 = 𝑗′′, we obtain a description of non-serial positive posets up
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to 0-isomorphism and duality.
6. Conclusions. Recently the first author introduced some concept with

consideration of the corresponding examples, which can be considered as the emer-
gence of a new theory on combinatorial properties of posets with respect to minimax
equivalence. In this paper we study from such new point of view the posets with
positive Tits quadratic form (which are called positive posets). The received results
can be generalized to other classes of posets.
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Бондаренко В. М., Стьопочкiна М. В. Ïðî ìiíiìàëüíi ìiíiìàêñíi ñèñòåìè
òâiðíèõ äëÿ äîäàòíèõ ÷àñòêîâî âïîðÿäêîâàíèõ ìíîæèí.

Зображення частково впорядкованих множин (скорочено ч. в. множин), введених
Л. А. Назаровою i А. В. Ройтером (у матричнiй формi) в 1972 р., вiдiграють важливу
роль у сучаснiй теорiї зображень та її застосуваннях. Ю. А. Дрозд у 1974 р. довiв,
що ч. в. множина 𝑆 має скiнченний зображувальний тип над полем тодi i лише тодi,
коли її квадратична форма Тiтса

𝑞𝑆(𝑧) =: 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,

є слабко додатною (тобто додатною на множинi невiд’ємних векторiв), але це твердже-
ння не є правильним, на вiдмiну вiд випадку сагайдакiв, коли розглядаються додатнi
форми. Тому ч. в. множини з додатною квадратичною формою Тiтса викликали ве-
ликий iнтерес з рiзних точок зору як аналоги дiаграм Динкiна. У 2005 р. автори
описали з точнiстю до iзоморфiзму всi множини з додатною квадратичною формою
Тiтса. Основним методом вирiшення цiєї проблеми є так званий метод мiнiмаксної
еквiвалентностi, запропонований першим автором. Нещодавно вiн представив деяке
поняття (а саме, мiнiмаксної системи твiрних) з розглядом вiдповiдних прикладiв,
якi можна розглянути як появу нової теорiї, яка дослiджує комбiнаторнi властивостi
множин вiдносно мiнiмаксної еквiвалентностi.

У цiй статтi ми вивчаємо з такої нової точки зору ч. в. множини з додатною ква-
дратичною формою Тiтса (якi називаються додатними).

Ключовi слова: додатна квадратична форма, квадратична форма Тiтса, додатна
ч. в. множина, мiнiмаксна еквiвалентнiсть та iзоморфiзм, мiнiмаксна система твiрних.
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