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A GENERALIZATION OF THE EXPONENTIATED G
DISTRIBUTION FAMILY WITH APPLICATIONS TO THE BURR
DISTRIBUTION AND THE JOHNSON Sy DISTRIBUTION

A new general approach for building the distribution families is proposed. This approach
is quite simple but it allows to create a very extensive range of distributions (a so-called
MET-G family). Two particular cases, the monotone exponent transformation Burr XII
and the monotone exponent transformation Johnson Sy are studied in detail. Flexibility
of the new distributions is demonstrated by fitting them to real data.

Keywords: exponentiated G family, Burr distribution, Johnson family of distributions,
maximum likelihood estimation, goodness of fit.

1. Introduction. Creation of new distribution families has attracted considerable
attention during recent years. One well-known family is the exponentiated G family
(see [1]). This family and its various extensions and generalizations were often used
for extension of existing distributions (such new distributions usually exhibit im-
proved flexibility and allow to describe real data more precisely). Models based on
the exponentiated G family or the exponentiation of a distribution function include,
in particular, the exponentiated generalized G distributions (see [2]), the weighted
exponentiated family of distributions by Ahmad et al. (see [3]), the exponenti-
ated generalized alpha power G family (see [4]), the exponentiated generalized Mar-
shall-Olkin family (see [5]), the generalized exponentiated class of distributions by
Rezaei et al. (see [6]), the transmuted exponentiated generalized-G family (see [7]),
the Marshall-Olkin exponentiated generalized G family (see [§]), to mention but a
few.

We propose a new wide-ranging extension of the exponentiated G family, the
monotone exponent transformation G (MET-G) family. We study theoretical pro-
perties of the MET-G family for two concrete G distributions (the Burr XII dis-
tribution and the Johnson Sy distribution) and illustrate the usefulness of the two
corresponding MET-G subfamilies by fitting them to real data.

2. The MET-G family. Let G be a distribution which is concentrated on an
interval I C R!. Denote its cdf and pdf by G(x) and g(z) correspondingly.

Definition 1. Suppose that a(x) is a non-increasing differentiable function on I,
a(x) > 0. The cdf of the MET-G distribution is defined by

F(z) = G(x)"@. (1)

Remark 1. If a(z) = a then the MET-G family coincides with the exponenti-
ated G family.
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Remark 2. [t is worth noting that due to very mild restrictions on a(x) the
MET-G family is extremely diverse for a fixed G.

It follows immediately from Definition 1 that the pdf of the MET-G distribution
is

f(x) = Ga)*® (a'(x) nG(z) + a(x) f;(?)) . @

The quantile function is not available in closed form in general case.
The nth moment of the MET-G distribution can be expressed as

= / ()@ (a'(m) InG(z) + a(z) g((%) da.

e}

Let us acquire the densities of order statistics of the MP-G distribution. Using
the formula for the pdf of the k-th order statistic (see e.g. [9]), we obtain that the
density of the k-th order statistic of MP-G can be expressed as

n!

G<x)ka(x) (1 _ G(x)a(it))nfk (I,(.CE) IHG(QZ') + a(az) g(l’) )
G(x)
3. Monotone exponent transformation Burr XII (METB). Let us in-

vestigate the case when the base distribution G is the Burr XII distribution.
The three-parameter Burr XII distribution has the cdf

G(x;a,@,fy):l—(l—l—(%y)_a, x>0 (3)
and the density
g(x;0,0,7) = ayd 27! (1 + <%>7> - , x> 0. (4)

We will use the Burr XII distribution in conjunction with a(z) = o exp{—2*} in
order to create the monotone exponent transformation Burr XII (METB) distribu-
tion. The cdf of the METB distribution is obtained by plugging G(x) from (3) into
(1), it equals

oexp{—z*}

F(zyo,\ a,0,7) = (1 — (1 + (g)'y) _a) , x> 0. (5)

The pdf of the METB distribution is
_ O €ex {—aj>‘}
; — A . f T\~ P
flz;o\, a,0,7) = ocexp{—a"} (1 <1+ (9) > )
T
7)

- (—Ax“ In (1 _ (1 n (
)

(6)
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Figure 1. Density plots of the METB distribution.

We will use notations F'(z) and f(z) for the left-hand sides of (5) and (6) cor-
respondingly when this is unambiguous.

Fig. 1 displays plots of the pdf of the METB distribution for selected parameter
values.

There exists no closed form for the quantile function Q(u;o, A\, a,6,7) of the
METB distribution. However, it can be obtained approximately by numerical in-
version of the cdf using a package like Mathematica, MATLAB or R.

The quantile function allows to determine such shape measures as the Bowley’s
skewness and the Moors’ kurtosis. Namely, the Bowley’s skewness

o QB/4) —2Q01/2) + Q/4)
7 QB/A) —Q(1/4)

the Moors’ kurtosis

Ky = Q(7/8) — Q(5/8) + Q(3/8) — Q(1/8)

Q(6/8) — Q(2/8)

The plots of the Bowley’s skewness and Moors’ kurtosis of the METB distri-
bution are displayed in Fig. 2 (on the left-hand side and on the right-hand side,
respectively).

It is evident that the influence of the values of A and ¢ on the skewness and the

kurtosis is significant.
The nth moment of a random variable X which has the METB distribution can
be obtained as
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Figure 2. Plots of Bowley’s skewness and Moors’ kurtosis, METB distribution.
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The nth moment can not be expressed in closed form but it is possible to calculate
it using numerical methods.

Let us illustrate the flexibility of the METB distribution using real data. We will
consider the data set which consists of the values which resulted from the algorithm
SC16 for estimating unit capacity factors, see [10].

The fit of the METB model will be compared to those of the following alternative
distributions: the Burr XII distribution, the beta Burr XII distribution (see [11]), the
exponentiated Burr XII distribution, and the Gamma-Uniform Burr XII distribution
(see [12]).

The values of the MLEs of the METB parameters are given in Table 1. The R
software was used for obtaining the estimates numerically.

Table 1.
Maximum likelihood estimates of the METB model

Parameter o A « 0 ~
Estimate | 29.5884 | 17.9115 | 0.2024 | 0.0151 | 1.8425

Table 2 provides the log-likelihood and several information criteria.
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Figure 3. Plot of the estimated pdf
for the values obtained by the algorithm SC16 dataset.

Table 2.
Goodness of fit criteria of the considered models,
values obtained by the algorithm SC16 dataset
Distribution Log-likelihood | AIC BIC | HQIC
METB 14.945 -19.889 | -14.212 | -18.461
Burr XII 7.265 -8.530 | -5.123 | -7.673
Beta-Burr XII 7.753 -5.506 | 0.172 | -4.078
Exponentiated Burr XII 9.296 -10.591 | -6.049 | -9.449
Gamma uniform Burr XII 9.731 -11.461 | -6.919 | -10.319

Obviously the results indicate that the METB model corresponds to the better
fit since it has the lowest values of the AIC, BIC and HQIC statistics (and the

log-likelihood is the highest).
The histogram and the fitted pdf of the METB distribution are depicted in Fig. 3.

4. Monotone exponent transformation Johnson Sy (METJSu). The
second special model is the monotone exponent transformation Johnson Sy distri-
bution (METJSu). The base family for this case is the Johnson Sy system, its cdf

and pdf are
Glr:7.6.6.0) = (7 ¥ 6arsinh($)) 7)

and

g(x;%&ﬁ,)\):\/%\/(x(s_gwexp{—% <7+5arsinh<IT_§>)2} (8)

correspondingly, where 0, A € (0;00) and ®(x) is the cdf of N(0; 1) distribution. We
will use the function a(z) = exp{—bx}, where b € (0; 00). Then the cdf and the pdf
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of the METJSu model are given by

and

. é' exp{—bx}
F(LE, bafyaé?ga )‘> = <(I) <7 + (5&1‘811111(%)))

exp{—bzx}
f(x) b’ Y, 57 ga )\) = e—ba: (q) ("Y + d arsinh <LU——£ ))

A
. (—bln@ ('y+(5arsinh<xT_£))

S exp{—% (’y—l—éarsinh(”ﬁ—;g))Q}

(10)

* V2 /(=2 + X2® (v + 5arsinh(¥))>.

Plots of the density function of the METJSu distribution for selected parameter
values are displayed in Fig.4.
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Figure 4. Density plots of the METJSu distribution.

The quantile function of the METJSu distribution can be obtained only numer-
ically. The same is true for the quantile measures, i.e. the Bowley’s skewness and
the Moors’ kurtosis.

We plot the measures Sg and K, for selected parameter values of the METJSu
distribution in Fig. 5 (the upper and the lower figure, respectively).

We fitted the METJSu model to the data set of COP (ConocoPhillips) stock
returns from January 13, 1986 till April 4, 1986 (see [13]). The results were compared
with the Johnson Sy distribution (JSu), the beta Johnson Sy distribution (BJSu),
the exponentiated generalized Johnson Sy distribution (EGJSu), and the generalized
hyperbolic distribution (GH).

The histogram and the fitted pdf of the METJSu distribution are shown in Fig. 6.
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Figure 5. Plots of Bowley’s skewness and Moors’ kurtosis, METJSu distribution.

Table 3.
Maximum likelihood estimates of the METJSu model
Parameter b ~ 0 I3 A
Estimate | 6.2363 | 0.4429 | 0.1207 | 0.0479 | 0.0030
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Figure 6. Plot of the estimated pdf for the stock returns dataset

The values of the MLEs of the METJSu parameters are provided in Table 3.
Several goodness of fit statistics are shown in Table 4. The values clearly show
that the METJSu distribution is preferable to the competing models.

Table 4.

Goodness of fit criteria of the considered models, the stock returns dataset

Distribution | Log-likelihood AIC BIC | HQIC
METJSu 56.139 -102.278 | -91.806 | -98.182
JSu 45.373 -82.746 | -74.369 | -79.469
BJSu 44.987 -77.973 | -65.407 | -73.058
EGJSu 45.014 -78.027 | -65.461 | -73.112
GH 45.471 -80.942 | -70.470 | -76.845

5. Conclusions. A new distribution family (monotone exponent transfor-
mation G family or MET-G), which extends the exponentiated G family, is proposed.
The new family encompasses a very wide range of distributions. A detailed analysis
of two representatives of the MET-G model, the monotone exponent transformation
Burr XII (METB) distribution and the monotone exponent transformation Johnson
Sy (METJSu) distribution, is given. Various theoretical properties are studied,
in particular, the moments, the Bowley’s skewness and the Moors’ kurtosis. Two
applications to real data prove usefulness and potentiality of the proposed family.

Further studies in this area can include, for instance, generalizations of the mono-
tone exponent transformation G family by including additional parameters and extra
transforms.
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Typuun €. B. ¥Yszaranbuenns “G-mijgHecenol 10 cryners’ ciM’i po3mojiiiB i3 3a-
cTocyBaHHAMU JI0 po3noity beppa ta posmnomginy J[xkoncona Sy.

3alpoIIOHOBAHO HOBWIl IijXij 70 1mo0y10BU ciMeil IMOBIpHICHUX PO3IOJALIB. Xo4a Ieil
HiJIXiJ| € JOCUTh OPOCTHM, BiH JIO3BOJISIE YTBOPUTH JIy?Ke IMMPOKUi KJIac pO3NOALIiB (Tak
sBany ciMm’'io MET-G posuoginis). JdeTajbHo BUBYAIOTHCA JABa OKPEMI BUNAIKY 3 i€l cim’T
— MOHOTOHHO MTOKa3HUKOBO TepeTBopenuit po3nomaisi Beppa XII Ta MOHOTOHHO MOKA3HUKO-
Bo meperBopenuii posnoin Jxkoucona Sy. I'HyUKiCTh HOBHX PO3HOMIUIB ITiITBEP/ZKEHO 1X
TITOHKOIO 0 peaJbHUX HAOOPIB JTaHUX.

Kurouosi cioBa: “mnimmecena mo crymenst” cim’s G posnoginis, posmomii Beppa, cim’s
posmoninis /[>KoHCcoHA, OIIHKKA MaKCHMAJIBLHOI TPABIOMOAI0HOCTI, aeKBaATHICTh MOJIEJI.
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