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SEMIMODULE OF SEMIRING DERIVATIONS

We study derivations of semirings, differential semirings and the set of all deriva-
tions on a semiring. The notion of a semiring derivation is traditionally defined as an
additive map satisfying the Leibnitz rule. In the paper, we give new examples of semiring
derivations, prove some of their properties. We also prove that the set of all derivations
on a semiring forms a semimodule over its center. We show that the commutator of any
two derivations is contained in a subsemimodule V(M) of elements of M having additive
inverse.

Keywords: semiring derivation, semimodule, semiring, subsemimodule, differential semir-
ing.

1. Introduction and preliminaries. Throughout the paper N denotes the
set of positive integers and Ny = N|J {0} the set of non-negative integers.

The notion of a semiring derivation is defined in [3] as an additive map satisfying
the Leibnitz rule. In [2| the authors investigated some simple properties of semir-
ing derivations. The objective of this paper is to give new examples of semiring
derivations, further explore their properties and investigate the semimodule of the
semiring derivations.

Let R be a nonempty set and let + and - be binary operations on R named
addition and multiplication respectively. (R, +, ) is called a semiring if the following
conditions hold:

1) a+(b+c)=(a+b)+cforalla,bceR;
2) (ab)c = a(be) for all a,b,c € R,
3) (a+b)c=ac+bcand a(b+c) =ab+ ac for all a,b,c € R.

A semiring which is not a ring is called a proper semiring. A subset of R closed
under addition and multiplication is called a subsemiring of R.

The centre of a semiring R is a set Z(R) = {r € R|rs = srVs € R}. It is a
subsemiring of R. An element r € Z(R) is called central.

If not stated otherwise R denotes a semiring. A semiring (R,+,-) is called
additively commutative if 4+ is a commutative binary operation on R. A semiring
(R,+, ) is said to be multiplicatively commutative if - is commutative on R. It is
said to be commutative if both + and - are commutative.

An element 0 € R is called zero if a+0 =0+ a = a for all a € R. An element
1 € R is called identity if a-1 =1-a = a for all a € R. Suppose 1 # 0, otherwise
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SEMIMODULE OF SEMIRING DERIVATIONS 63

R = {0}. Zero 0 € R is called (multiplicatively) absorbing if a -0 = 0-a = 0 for
all a € R. Note that a multiplicatively absorbing zero 0 € R cannot be additively
absorbing unless R contains just one element.

An element a € R is called a unit if there exists b € R such that ab = ba = 1.
The set of all units of R is denoted by U(R). 1 € U(R) and 0 ¢ U(R).

Many authors define a semiring as additively commutative semirings in the above
sense. Moreover, Golan considers additively commutative semirings with zero.

An element a € R is called left additively cancellable if a + b = a + ¢ follows
b = cforall b,c € R. An element a € R is called right additively cancellable if
b+ a = c+ a follows b = ¢ for all b,c € R. An element a € R is called additively
cancellable if it is both left and right additively cancellable. Denote by K*(R) the
set of all additively cancellable elements of R. A semiring R is called (left, resp.
right) additively cancellative if every element of R is (left, resp. right) additively
cancellable.

Similarly we can define multiplicatively (left, right) cancellable elements and
multiplicatively (left, right) cancellative semirings. An element a € R is called
left multiplicatively cancellable if a - b = a - ¢ follows b = ¢ for all b,c € R. An
element a € R is called right multiplicatively cancellable if b-a = ¢ - a follows b = ¢
for all b,c € R. An element a € R is called multiplicatively cancellable if it is
both left and right multiplicatively cancellable. Denote by K*(R) the set of all
multiplicatively cancellable elements of R. Clearly any unit of R is multiplicatively
cancellable and 1 € U(R) C K*(R). Moreover, 0 ¢ K*(R) and no multiplicatively
cancellable element of R is a zero divisor. A semiring R is called (left, resp. right)
multiplicatively cancellative if every element of R is (left, resp. right) multiplicatively
cancellable. K*(R) is a submonoid of (R, -).

An element a € R is called additively idempotent if a + a = a. Denote by I (R)
the set of all additively idempotent elements of R. Remind that K™ (R) ([T (R) =
{0}. An element a € R is called multiplicatively idempotent if a - a = a. A semiring
R is called additively (multiplicatively) idempotent if every element of R is additively
(multiplicatively) idempotent.

Let R be an additively commutative semiring with absorbing zero Og. A left
semimodule over a semiring R is a commutative additive monoid (M,+) with additive
identity 0j; together with a scalar multiplication R x M — M (sending (r,m) to
rm) such that (rs)m = r(sm), (r + s)m = rm + sm, r(m +n) = rm + rn and
Op-m=1r-0p =0y forall r,s € R and m,n € M.

Additively idempotent semirings are of great interest due to their applications.
They are widely known as idempotent semirings. For more information on semirings.
semimodules, including those with derivations we refer the reader to [3-8].

2. Differential semirings and semiring derivations. Let R be a semiring.
A map 6: R — R is called a derivation on R if for any a,b € R the following
conditions hold

1) d(a+b)=6(a)+d(b);
2) & (ab) = b (a) b+ ad (b).

The definition of a derivation on an additively commutative semiring with ab-
sorbing zero was given by Golan in [3], and generalized for semirings without these
conditions by M. Chandramouleeswaran and V. Thiruveni [2]|. A semiring R equipped

Hayk. Bicuuk Yxkropoa. yu-ry, 2025, Tom 46, Ne 1 ISSN 2616-7700 (print), 2708-9568 (online)



64 I. O. MELNYK, A. I. ANDRUSHKO

with a derivation 0 is called differential with respect to the derivation 9, or §-
semiring, and denoted by (R, d) [2]. Denote the set of all derivations on R by Der R.

Example 1. Let R be a semiring. Consider the following subsemiring S C
M; (R) with respect to ordinary matrix addition and multiplication

a 0 b
S = 0 a b a,be R
0 0 «a

is a derivation on S. Thus (S, 9) is a differential semiring.

Proposition 1. If (R,0) is a differential semiring then the matriz semiring
M, (R) is a differential semiring.

Proof Define a map A: M,,(R) — M, (R) elementwise. For a matrix A = (a;;) €
M, (R) define A(A) = (0 (aij)), j_15- Prove that A is a derivation on M,(R).

Let A = (ai;); ;_17 and B = (by;), ;_15- Then A (A+ B) = (6 (ai; + bij)), j_17 =
(0 (aij) 4+ 0 (bij); j—7 = (6 (i), jr7 + (0 (bi)); joi7 = 0 ((a5)); 77 +
+0((b35)); jo1m = A(A) + A(B). Similarly A(A-B) = A awbij), ;7 =
(ke 0 (@ikbg)); s = ey (6 (aik) brj + aiwd (bkj))), sy =
= (k1 0 (@in) bay), j i+ (gmy @ik (b)) 7 = A(A) - B+ A-A(B).

Example 2. Consider the following example [1] of a two-element semiring S, =
{0,1} under addition and multiplication defined by the following tables

+ 10 1 0 1
0 0 1 0 0 0
1 1 1 1 0 1

Semiring 5o is additively commutative, additively idempotent but not additively
cancellative, and zero is not absorbing. It is easily seen that the identity map
01 = idg (idr(a) = a for all a € R) and the map dy: Sy — S, given by da(a) =1 for
all a € S, are derivations on Sy. Here Der Sy = {d1,d2}. Hence it is not generally
true that 6(0) = §(1) = 0 in a semiring. Note that the zero map is not a derivation
on Sy. This motivates the following easy-to-check proposition

Proposition 2. If R contains absorbing (left and right) zero then the zero map
0: R— R (i. e. 0(r) =0 for all v € R) is a derivation on R.

If a zero map 0: R — R is a derivation on R it is called a trivial derivation.
Every semiring with absorbing zero is differential with respect to trivial derivation.
Obviously, every ring is differential as a semiring with respect to trivial derivation.

Proposition 3. The identity map idr: R — R is a derivation on R in each of
the following cases:

1) R is additively cancellative and R? = (0);
2) R is an additively idempotent semiring.
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SEMIMODULE OF SEMIRING DERIVATIONS 65

Proof. The identity map is obviously additive. Let a,b € R. The equality
idg(ab) = idgr(a) b+ a-idg(b) holds if and only if ab = ab+ ab. The second part is
shown by Golan [3] for semirings in his sense.

Clearly, for an additively idempotent semiring R with 1 # 0 there exists a
derivation § on R such that §(1) = 1. This does not agree (contradicts) to a
well-known fact for differential rings with 1 # 0 that 1 is constant with respect to
any ring derivation.

Proposition 4. Let R be a semiring with absorbing zero. For any semiring
derivation 0: R — R we have 6(0) = 0.

Proof. Tt follows from 6 (0) =6 (0-0)=6(0)-0+0-5(0)=0+0=0.

Proposition 5. If R is additively cancellative semiring, 6: R — R is a deriva-
tion then 6(1) = 0 and 6(0) = 0.

Proof. Since R is additively cancellative, it follows from § (1) = (1-1) =6 (1)-
1410 (1) =6 (1)+46 (1) that ¢ (1) = 0. Similarly, from 6 (0) = § (0 4+ 0) = ¢ (0)+6 (0)
we have 6 (0) = 0.

Proposition 6. Ifd : R — R is a semiring derivation R such thatVa € R 2a =
0, then 6 (1) =0 and § (0) = 0.

Proof. By the product rule, 6 (1) =6 (1-1) =4d(1)-14+1-6(1) =0 (1)+6(1) =
26 (1). By the sum rule 6 (0) = (04+0) =6 (0) + 6 (0) = 20 (0). If R is a semiring
such that Va € R 2a =0, then § (1) =0 4§ (0) = 0.

Definition. Call a semiring (with absorbing zero) differentially trivial
if Der(R) = {0}.

Example 3. Find all derivations on the semiring Ny. Let § be any derivation on
R. Since a proper semiring Ny is additively cancellative (see [3], p. 49) for alln € N

we have  (n) = ¢ (1 +14+...+ 1) =n-0(1) = 0. Hence, Ny is a differentially
—_——

n
trivial semiring.

Example 4. The semiring (No [ J{oo}, +, ) obtained from (Ny, +, -) by adjoining
a doubly absorbing element oo is not differentially trivial. The map

00, a = 00;
5(@) - { 0, a € No.
is a nontrivial derivation on Ny [ J{oco}. Note that it is not additively cancellative.
Definition. An element r € R is called constant under the derivation § if
d(r) = 0.

Clearly, 0 and 1 are constants in any additively cancellative semiring containing
these elements. Any natural number is a constant under the trivial derivation.

Example 5. In a semiring S = { ( 8 IC) )

a,b,ce R} with respect to ordinary

addition and multiplication under the derivation d: S — S given by d g [; ) =

0 b a 0 0 0
= (0 O) for each a,b,cGR,a%Od((O c)) = (O O)' Hence, each

diagonal matrix of S is constant.
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66 I. O. MELNYK, A. I. ANDRUSHKO

Example 6. Matrices are constant under the derivation in the

o O O
o2 O
o O O

Example 1.

Proposition 7. Let R be additively cancellative semiring. Then every additively
idempotent element a € R is a constant with respect to any derivation 6 on R.

Proof. Since R is additively cancellative ¢ (a) =0 (a + a) = ¢ (a) 4 d (a) follows
d(a)=0.
A derivation §: R — R is said to be commuting r-6(r) = 6(r) -r for all r € R. .

Proposition 8. Let R be additively cancellative entire semiring. Then every
multiplicatively idempotent element a € R is a constant with respect to any commut-
ing derivation ¢.

Proof. Let a € R be any multiplicatively idempotent element. Suppose a #
0; otherwise clear. Taking the derivative ¢ (a) = d(a-a) = d(a)-a+ a - d(a).
Multiplying by a on the left a -6 (a) = a -6 (a) - a+ a® - §(a). By idempotency and
additive cancelativeness we get a -0 (a) =a-d(a)-a+a-d(a) and a-d(a)-a = 0.
By commutativity and idempotency we have a -6 (a) = 0. Since R contains no zero
divisors and a # 0, then ¢ (a) = 0.

Note that in the additively cancellative semiring the only additively idempotent
element is 0. It is clearly constant.

A subsemiring S of a differential semiring (R, §) is called differential if 6(S) C S.

Proposition 9. Let (R,0) be an additively cancellative additively commutative
differential semiring with the center Z(R). Then Z(R) is a differential subsemiring
of R.

Proof. Let a € Z(R), b € R. We have § (ab) = 0 (ba). Then § (ab) =0 (a) - b+
a-0(b)=20(a)-b+6(b)-a. On the other hand 6 (ba) = 0 (b) -a+b- 0 (a). Since
R is additively cancellative and additively commutative we have § (a) -b=1b-4 (a).
Hence, 0 (a) € Z (R).

Proposition 10. The set C°(R) = {a € R|6(a) = 0} of all constants of R with

respect to the derivation 0 forms a differential subsemiring of R.

Proof. 1t is shown in [2] that C°(R) is a subsemiring of R. If a € C°(R) then
§(a) =0 € C°(R). Hence, C°(R) is closed under §.

Corollary 1. The set IT(R) of additively idempotent elements of the additively
cancellative semiring R is a differential semiring.

Example 7. For a semiring S, from Example 2 C?1(S;) = (0), but C%(S,) = @.
Also C%(Ng U{oo}) = Ny.

Proposition 11. If F is a §-semifield then the semiring of constants C° is a
d-semifield.

Proof. Let a € C°(R), a # 0. Then § (a) = 0 and a € F follows a~! € F and
a-a'=1.Then0=6§(1)=d(a-a')=d(a)-a*+a-d(at)=a-0(a""). Thus
a-6(a"t)=0. Hence § (a™!) =0 and a~! € C°(R).

The following properties follow from the definition of a derivation.
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Proposition 12. If § : R — R is a semiring derivation and aq,as,...,a, € R
then

) <Hai> :Zal-ag---ak_l-é(ak) CAgy1 Oy

=1 k=1

Proof. 1 is obvious. Prove 2 by induction on n. The case n = 2 is obvious.
Suppose the equality holds for n — 1. Then for n we have

()i (i)

= Zal d(ag) - gy Qp.

Corollary 2. If R is a multiplicatively commutative d-semiring and
ai,ao,...,a, € R then

) (H ai> Z J (ax) H a;.
=1 i#£k
Define 6% (a) = (§ (a)), 6* (a) = § (6% (a)), ... By induction we can prove

Proposition 13. If6: R — R is a semiring derivation then 6": R — R is also
a semiring derivation for any n € N.

Proposition 14. If ¢ € C%(R) then 6™ (cr) = 0™ (r) for any r € R and
n € N.

Proof. By induction on n. For n = 1 we have 0 (¢r) = 6 (¢)r + ¢d (r) = ¢d (r).
The rest is obvious.

Theorem 1. If (R,0) is a differential semiring then for any a,b € R andn € N
it holds
= Ch"F(a) 8" ().
k=0

Proof. By induction on n. The case n = 1 is obvious. Suppose the equality
holds for n — 1 and prove it for n.

" (ab) = & (Z 0" () 6" (b)) => Ch - 5(0" 1 (a) 68 () =

k=0
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68 I. O. MELNYK, A. I. ANDRUSHKO

i
L

Ck_ - (6" 7% (a) 8% (b) + 6" (a) *1 (b)) =

=6"(a)-b+0""(a)-6(b)+ (n—1)6""(a)-§(b) + (n —1)8"?(a) - 52 (b) +
o CE LR () L SR () + OF 67 F (a) - 68 (B) +

B
Il

+CF - 5"F (@) -6 (b)Y +CF oM (@) - 6F T (D) . 6 (a) - 0" (D) a0 (b) =

= Chs"F(a) ¥ ().

3. Semimodule of semiring derivations. In what follows let R be a addi-
tively commutative semiring with absorbing zero. Denote the set of all derivations
on R by Der R. In this case Der R # &. Let 6;: R — R and d5: R — R be deriva-
tions. The sum of derivations 9, and d; on R is a map d; + do: R — R defined by
(01 4 62)(r) =a¢ 61(1) 4 d2(r) for all r € R.

In [3] it is shown that the sum of two arbitrary semiring derivations is a semiring
derivation. The set Der R forms a monoid under addition where the neutral element
is a trivial derivation. This implies, by induction

Lemma 1. Let §;: R — R be semiring derivations, i = 1,2,...n. Then Y ;| ;
1 a derwation on R.

Lemma 2. Let 6: R — R be a derivation on R, a € Z(R). Then the map
ad: R — R given by (ad)(r) =qr a - 6(x) for all v € R is a derivation on R.

Proof. 1t is trivally checked that ad is additive. Let r,s € R be arbitrary
elements. We have (ad) (r-s) = (ad (1)) s + (ar) 0 (s) = (ad) (r) - s + 1 (ad) (s).

Corollary 3. Let R be a semiring, §;: R — R a derivation on R, \; € Z (R),
i=1,2,..,n. Then the map Y ., X\;0;: R — R is a derivation on R.

Corollary 4. If§: R — R is a derivation of a semiring, then agd™ + o, 10" 1 +
et a,_ 10+ aye for all o € R, is a semiring derivation.

Theorem 2. The set M = Der R of derivations on a semiring R is a semimodule
over the center Z(R) of the semiring R.

Proof. The associativity and commutativity of addition on Der R follows from
the associativity and commutativity of addition on R respectively. The trivial deriva-
tion is clearly a neutral element under addition on Der R.

All the other conditions are checked trivially. Let a € R, A\;, A2 € Z (R), and § €
Der (R) be abritrary elements. Then ((AjA2)0) (@) = (A A2)-d(a) = A1 (A2 0 (a)) =
A1 ((A29) (@) = (A1 (A20)) (a) follows associativity ((A1A2)d) = (A1(A2d)). Similarly
check distributivity (A + X2)0)(a) = (A1 +X2) -6 (a) = A -0(a)+ A2 -6(a) =
(A10) (@) + (A20) (@), so (A1 + A2)d) = (A15) + (A29).

Let @ € R, A € Z(R), and 61,02 € Der(R) be abritrary elements. Then
()\((51"‘52))(@) =\ (514‘62)((1) =X\ (51(@)4‘52(01)) = )\(51(&) +)\52(CL) =
(/\(51> (a) + (/\52) (CL) follows )\(51 + 52) = ()\61) + (/\(52)

Let a € R and § € Der (R) be abritrary elements. Then (1-9)(a) =1-6(a) =
d(a) follows 1 -6 =19 .
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Leta € R, A € Z(R) and § € Der (R) be abritrary elements. Then (X - 0y) (a) =
A0y (a) =X-0r = 0r = 0y (a), similarly (0g-0)(a) =0g-d(a) = 0r = 0y (a).
It follows A - OM = OM and OR = OM

Hence, Der (R) is a Z(R)-semimodule.

Corollary 5. The set Der (R) of derivations of a multiplicatively commutative
semiring R is a R-semimodule.

Theorem 3. Let 6;: R — R, do: R — R be derivations of an additively can-

cellative semiring R. Then 6105 is a derivation on R if and only of 62 (r) - 41 (s) +
01 (r)-02(s) =0 for allr,s € R.

Proof. (=) Let r,s € R be arbitrary elements. Since 0,02 is a derivation
we have (0102) (rs) = (0102) (r) - s + r - (d102) (s). On the other hand (d109) (rs) =
01 (02 (rs)) =01 (02 (1) - s+71-82(8)) = (0102) (1) - s+ a2 (1) - 61 (8) + 61 (1) - 02 (s) +
7+ (0102) (s). It follows

(5152) (7‘) ST (51(52) (S) = (6152) (T’) - S +(52 (7“) . (51 (S) +(51 (7“) . (52 (S) +r- (5152) (S) .
From additive cancellativeness of R it follows the equality to be proved, i. e.
(52(T)'(51(S)+(51(T)'52(8) = 0.

(<) Let r,s € R be arbitrary elements. Then additivity of ;0 follows from
the add1t1v1ty of (51 and 62 (51 . 52) (7” + S) = (51 (52 (7") -+ 52 (8)) = (51 . 52) (T’) -+
(51 : 52) (S)

If 6o (1) - 61 (s) + 61 (1) - 92 (s) = 0 then (6192) (rs) = d1 (02 (r) - s+71-d2(s)) =
(0102) (1) -8+ 02(r) - 61 (5) + 01 (r) - 62 (s) +1-(0102) (5) = (6162) (1) - s +7-(6152) ().

Hence 6,05 is a derivation on R.

Corollary 6. Letd,: R — R, 62: R — R be derivations of an additively commu-

tative semiring R. Then 0105 is a derivation on R if and only if 0201 is a derivation
on R.

Denote by {01,02} the anti-commutator of the derivations §; and d, on R, i. e.
{51,52} - 51 . 62 —|— (52 . 51.

Corollary 7. If 6105 is a derivation on R then {61,052} is a derivation on R.

Theorem 4. If R is a 2-torsion-free semiring, 6 : R — R is a derivation,
{6(r),d(s)} ={r,s} for allr,s € R, then there exists a € Z (R) such that a* = 1.

Proof. From {6 (r),0(s)} = {r,s} we obtain that 6 (r)-d(s) +3(s) -0 (r) =
rs+ sr for all ;s € R. In particular, 6 (1) -0 (1) +0(1)-0 (1) =1-141-1, which
implies 2 (6 (1))* = 2. Since R is 2-torsion-free, then (5 (1))> = 1. Hence, a® = 1,
a € Z(R), where a=4(1).

Example. Let R be any semiring, S C M (R) be a subsemiring of M3 (R)

A
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under ordinary matrix addition and multiplication. The maps ¢; : S — S and
09 : S — S defined by the following rules are both derivations on S.

0 a b 0 0 a 0 a b 0 0 ¢
o1 0 0 ¢ =1 000 and d9 0 0 ¢ =1 000
00 0 0 00 0 0 0 000

It is easy to check that the product of ; and d, is also a derivation on S. Moreover,
these derivations commute, i. e. §102 = 0907.
Let V (M) be a set of all elements of the semimodule M over a semiring R having
additive inverse. The set V' (M) is a subsemimodule of the R-semimodule M. ||
Denote by [d1, 2] the commutator of the derivations d; and 9, i. e. a map
(01, 02] = 9109 — 6207

Theorem 5. For all 61,05 € V (Der (R)), [61,02] = 6105 — 0201 € V(Der (R)).

Proof. Let a,b € R. Consider [0y, d2](a + b) = (0102 — 0201) (a + b) =
=01 (02 (a+b)) =02 (61 (a+b)) = 61 (62 (a)) + 01 (d2 (b)) — 62 (61 (a)) — 02 (61 (b)) =
((6102) (a) — (0201) (@) + ((0192) (b) — (d201) (b)) = (6102 — 0261) (@) +

+ (0102 — 6201) (b) = [01, d2](a) + [01, 02)(D).

Check the second condition [01, ds](ab) = (d102 — d201) (ab) =
—(52 (51 (ab)) = 51 ((52( )b+a52 (b)) 62 (51( )b—i—a51( )) ((515
+02 (a) 61 (b) + 01 (a) 02 (b) + a (6192) (b) — (d201) (a) b — 61 (a) 62 (b)
—a (6201) (b) = ((6102) (a) — (0201) (@) b+ a ((6102) (b) — (0261) (b)) =
= (6152 — 52(51) (CL) b +a ((5152 — 62(51) (b) = [51, 52]( )b + (Z[(Sl, (52]([))

4. Conclusions and prospects for further research. In this article we
study derivations of semirings and their sets. Namely, we give new examples of
such derivations, prove some of their properties. We also prove that the set of all
derivations on a semiring forms a semimodule over its center. The obtained results
can be used in further research in differential algebra, in a study semirings and
semimodules with derivations.

b)) —

0 (a
a) b+
02 (@) 01 (b) —

References

1. Bourne, S., & Zassenhaus, H. (1958). On the semiradical of a ring. Proc. Nath. Acad. Sci.
USA, 44, 907-914.

2. Chandramouleeswaran, M., & Thiruveni, V. (2010). On derivations of semirings. Advances in
Algebra, 1, 123-131.

3. Golan, J. S. (1999). Semirings and their Applications. Kluwer Academic Publishers.

4. Hebisch, U., & Weinert, H. J. (1998). Semirings: Algebraic Theory and Applications in Com-
puter Science. World Scientific.

5. Melnyk, I. (2008). Sdm-systems, differentially prime and differentially primary modules. Nauk.
visnyk Uzhgorod. Univ. Ser. Math. and informat., 1(16), 110-118.

6. Melnyk, I. (2021). On differentially prime subsemimodules. Buletinul Academiei de Stiinte a
Republicii Moldova. Matematica, 97(3), 30-35.

7. Melnyk, I., Kolyada, R., & Melnyk, O. (2021). Some properties of differential, quasi-prime and
differentially prime subsemimodules. Nauk. visnyk Uzhgorod. Univ. Ser. Math. and informat.,
39(2), 60-67.

8. Melnyk, I. (2022). On quasi-prime subsemimodules. Visnyk of the Lviv. Univ. Series Mech.
Math., 93, 66-73.

Poszain 1: Maremaruka i crarucTuka



SEMIMODULE OF SEMIRING DERIVATIONS 71

Menbuuk 1. O., Aaapymko A. I. Hamismosyib iudepeHniitoBaHb HAIiBKIJIBIIS.

Busuarorbest nudepennioBanns HaniBkinenb, gubepeHrnianbHi HanmiBKiabLIs Ta MHO-
KrHa udepenIiioBanb HAMBKiIbA. [[oHATTS mubepeHnianbHOr0 HANiBRIIBIE TPAIU-
MifHO O3HAYAIOTh SIK AJUTUBHE BiJOOparKeHHsI, IO 3a0BOJIbHsIE mpaBuao Jleiibuima. Y
CTaTTi HaBEJIEHO HOBI MPUKJIAIU JUMEPEHITIIOBAHb HAIIBKIIEIb, JOBEJIEHO JesKi X Bja-
cruBocTi. TakoxK JOBeJIeHO, IO MHOXKWHA, BCIX JAuepeHIoBaHb HAIBKIJIbISI YTBOPIOE
HamiBMOZYIb HAJI CBOIM IeHTpOM. IlokazaHo, 110 KOMyTaTop Oyab-KUX JIBOX JAu(epeHIy-
10BaHb MicTuThCs B migHanismozyni V(M) enemenris M, aki MaioTh ajuTHBHI 0GepHEHI.

Kuarodosi cioBa: judepeHIitoBaHHsT HAINBKIJIbIS, HATIIBMOJLYJIb, HAINBKIJIbIE, IIiIHAITIB-
MOJIYJIb, MU epeHITiaIbHe HATIBKIIbIIE.
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