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SEMIMODULE OF SEMIRING DERIVATIONS

We study derivations of semirings, differential semirings and the set of all deriva-
tions on a semiring. The notion of a semiring derivation is traditionally defined as an
additive map satisfying the Leibnitz rule. In the paper, we give new examples of semiring
derivations, prove some of their properties. We also prove that the set of all derivations
on a semiring forms a semimodule over its center. We show that the commutator of any
two derivations is contained in a subsemimodule 𝑉 (𝑀) of elements of 𝑀 having additive
inverse.

Keywords: semiring derivation, semimodule, semiring, subsemimodule, differential semir-
ing.

1. Introduction and preliminaries. Throughout the paper N denotes the
set of positive integers and N0 = N

⋃︀
{0} the set of non-negative integers.

The notion of a semiring derivation is defined in [3] as an additive map satisfying
the Leibnitz rule. In [2] the authors investigated some simple properties of semir-
ing derivations. The objective of this paper is to give new examples of semiring
derivations, further explore their properties and investigate the semimodule of the
semiring derivations.

Let 𝑅 be a nonempty set and let + and · be binary operations on 𝑅 named
addition and multiplication respectively. (𝑅,+, ·) is called a semiring if the following
conditions hold:

1) 𝑎+ (𝑏+ 𝑐) = (𝑎+ 𝑏) + 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅;
2) (𝑎𝑏) 𝑐 = 𝑎 (𝑏𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑅;
3) (𝑎+ 𝑏) 𝑐 = 𝑎𝑐+ 𝑏𝑐 and 𝑎 (𝑏+ 𝑐) = 𝑎𝑏+ 𝑎𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅.

A semiring which is not a ring is called a proper semiring. A subset of 𝑅 closed
under addition and multiplication is called a subsemiring of 𝑅.

The centre of a semiring 𝑅 is a set 𝑍(𝑅) = {𝑟 ∈ 𝑅|𝑟𝑠 = 𝑠𝑟 ∀𝑠 ∈ 𝑅}. It is a
subsemiring of 𝑅. An element 𝑟 ∈ 𝑍(𝑅) is called central.

If not stated otherwise 𝑅 denotes a semiring. A semiring (𝑅,+, ·) is called
additively commutative if + is a commutative binary operation on 𝑅. A semiring
(𝑅,+, ·) is said to be multiplicatively commutative if · is commutative on 𝑅. It is
said to be commutative if both + and · are commutative.

An element 0 ∈ 𝑅 is called zero if 𝑎 + 0 = 0 + 𝑎 = 𝑎 for all 𝑎 ∈ 𝑅. An element
1 ∈ 𝑅 is called identity if 𝑎 · 1 = 1 · 𝑎 = 𝑎 for all 𝑎 ∈ 𝑅. Suppose 1 ̸= 0, otherwise
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𝑅 = {0}. Zero 0 ∈ 𝑅 is called (multiplicatively) absorbing if 𝑎 · 0 = 0 · 𝑎 = 0 for
all 𝑎 ∈ 𝑅. Note that a multiplicatively absorbing zero 0 ∈ 𝑅 cannot be additively
absorbing unless 𝑅 contains just one element.

An element 𝑎 ∈ 𝑅 is called a unit if there exists 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 𝑏𝑎 = 1.
The set of all units of 𝑅 is denoted by 𝑈(𝑅). 1 ∈ 𝑈(𝑅) and 0 /∈ 𝑈(𝑅).

Many authors define a semiring as additively commutative semirings in the above
sense. Moreover, Golan considers additively commutative semirings with zero.

An element 𝑎 ∈ 𝑅 is called left additively cancellable if 𝑎 + 𝑏 = 𝑎 + 𝑐 follows
𝑏 = 𝑐 for all 𝑏, 𝑐 ∈ 𝑅. An element 𝑎 ∈ 𝑅 is called right additively cancellable if
𝑏 + 𝑎 = 𝑐 + 𝑎 follows 𝑏 = 𝑐 for all 𝑏, 𝑐 ∈ 𝑅. An element 𝑎 ∈ 𝑅 is called additively
cancellable if it is both left and right additively cancellable. Denote by 𝐾+(𝑅) the
set of all additively cancellable elements of 𝑅. A semiring 𝑅 is called (left, resp.
right) additively cancellative if every element of 𝑅 is (left, resp. right) additively
cancellable.

Similarly we can define multiplicatively (left, right) cancellable elements and
multiplicatively (left, right) cancellative semirings. An element 𝑎 ∈ 𝑅 is called
left multiplicatively cancellable if 𝑎 · 𝑏 = 𝑎 · 𝑐 follows 𝑏 = 𝑐 for all 𝑏, 𝑐 ∈ 𝑅. An
element 𝑎 ∈ 𝑅 is called right multiplicatively cancellable if 𝑏 · 𝑎 = 𝑐 · 𝑎 follows 𝑏 = 𝑐
for all 𝑏, 𝑐 ∈ 𝑅. An element 𝑎 ∈ 𝑅 is called multiplicatively cancellable if it is
both left and right multiplicatively cancellable. Denote by 𝐾×(𝑅) the set of all
multiplicatively cancellable elements of 𝑅. Clearly any unit of 𝑅 is multiplicatively
cancellable and 1 ∈ 𝑈(𝑅) ⊂ 𝐾×(𝑅). Moreover, 0 /∈ 𝐾×(𝑅) and no multiplicatively
cancellable element of 𝑅 is a zero divisor. A semiring 𝑅 is called (left, resp. right)
multiplicatively cancellative if every element of 𝑅 is (left, resp. right) multiplicatively
cancellable. 𝐾×(𝑅) is a submonoid of (𝑅, ·).

An element 𝑎 ∈ 𝑅 is called additively idempotent if 𝑎+ 𝑎 = 𝑎. Denote by 𝐼+(𝑅)
the set of all additively idempotent elements of 𝑅. Remind that 𝐾+(𝑅)

⋂︀
𝐼+(𝑅) =

{0}. An element 𝑎 ∈ 𝑅 is called multiplicatively idempotent if 𝑎 · 𝑎 = 𝑎. A semiring
𝑅 is called additively (multiplicatively) idempotent if every element of 𝑅 is additively
(multiplicatively) idempotent.

Let 𝑅 be an additively commutative semiring with absorbing zero 0𝑅. A left
semimodule over a semiring𝑅 is a commutative additive monoid (M,+) with additive
identity 0𝑀 together with a scalar multiplication 𝑅 ×𝑀 → 𝑀 (sending (𝑟,𝑚) to
𝑟𝑚) such that (𝑟𝑠)𝑚 = 𝑟(𝑠𝑚), (𝑟 + 𝑠)𝑚 = 𝑟𝑚 + 𝑠𝑚, 𝑟(𝑚 + 𝑛) = 𝑟𝑚 + 𝑟𝑛 and
0𝑅 ·𝑚 = 𝑟 · 0𝑀 = 0𝑀 for all 𝑟, 𝑠 ∈ 𝑅 and 𝑚,𝑛 ∈𝑀 .

Additively idempotent semirings are of great interest due to their applications.
They are widely known as idempotent semirings. For more information on semirings.
semimodules, including those with derivations we refer the reader to [3–8].

2. Differential semirings and semiring derivations. Let 𝑅 be a semiring.
A map 𝛿 : 𝑅 → 𝑅 is called a derivation on 𝑅 if for any 𝑎, 𝑏 ∈ 𝑅 the following
conditions hold

1) 𝛿 (𝑎+ 𝑏) = 𝛿 (𝑎) + 𝛿 (𝑏);
2) 𝛿 (𝑎𝑏) = 𝛿 (𝑎) 𝑏+ 𝑎𝛿 (𝑏).

The definition of a derivation on an additively commutative semiring with ab-
sorbing zero was given by Golan in [3], and generalized for semirings without these
conditions by M. Chandramouleeswaran and V. Thiruveni [2]. A semiring𝑅 equipped
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with a derivation 𝛿 is called differential with respect to the derivation 𝛿, or 𝛿-
semiring, and denoted by (𝑅, 𝛿) [2]. Denote the set of all derivations on 𝑅 by Der𝑅.

Example 1. Let 𝑅 be a semiring. Consider the following subsemiring 𝑆 ⊆
𝑀3 (𝑅) with respect to ordinary matrix addition and multiplication

𝑆 =

⎧⎨⎩
⎛⎝ 𝑎 0 𝑏

0 𝑎 𝑏
0 0 𝑎

⎞⎠⃒⃒⃒⃒⃒⃒ 𝑎, 𝑏 ∈ 𝑅
⎫⎬⎭ .

A map 𝛿 : 𝑆 → 𝑆, defined by

𝛿

⎛⎝⎛⎝ 𝑎 0 𝑏
0 𝑎 𝑏
0 0 𝑎

⎞⎠⎞⎠ =

⎛⎝ 0 0 𝑏
0 0 0
0 0 0

⎞⎠ ,

is a derivation on 𝑆. Thus (𝑆, 𝛿) is a differential semiring.

Proposition 1. If (𝑅, 𝛿) is a differential semiring then the matrix semiring
𝑀𝑛(𝑅) is a differential semiring.

Proof Define a map ∆: 𝑀𝑛(𝑅)→𝑀𝑛(𝑅) elementwise. For a matrix 𝐴 = (𝑎𝑖𝑗) ∈
𝑀𝑛(𝑅) define ∆(𝐴) = (𝛿 (𝑎𝑖𝑗))𝑖,𝑗=1,𝑛. Prove that ∆ is a derivation on 𝑀𝑛(𝑅).

Let 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗=1,𝑛 and 𝐵 = (𝑏𝑖𝑗)𝑖,𝑗=1,𝑛. Then ∆(𝐴+𝐵) = (𝛿 (𝑎𝑖𝑗 + 𝑏𝑖𝑗))𝑖,𝑗=1,𝑛 =
(𝛿 (𝑎𝑖𝑗) + 𝛿 (𝑏𝑖𝑗))𝑖,𝑗=1,𝑛 = (𝛿 (𝑎𝑖𝑗))𝑖,𝑗=1,𝑛 + (𝛿 (𝑏𝑖𝑗))𝑖,𝑗=1,𝑛 = 𝛿 ((𝑎𝑖𝑗))𝑖,𝑗=1,𝑛+

+𝛿 ((𝑏𝑖𝑗))𝑖,𝑗=1,𝑛 = ∆(𝐴) + ∆ (𝐵) . Similarly ∆(𝐴 ·𝐵) = ∆ (
∑︀𝑛

𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑗)𝑖,𝑗=1,𝑛 =

(
∑︀𝑛

𝑘=1 𝛿 (𝑎𝑖𝑘𝑏𝑘𝑗))𝑖,𝑗=1,𝑛 = (
∑︀𝑛

𝑘=1 (𝛿 (𝑎𝑖𝑘) 𝑏𝑘𝑗 + 𝑎𝑖𝑘𝛿 (𝑏𝑘𝑗)))𝑖,𝑗=1,𝑛 =

= (
∑︀𝑛

𝑘=1 𝛿 (𝑎𝑖𝑘) 𝑏𝑘𝑗)𝑖,𝑗=1,𝑛 + (
∑︀𝑛

𝑘=1 𝑎𝑖𝑘𝛿 (𝑏𝑘𝑗))𝑖,𝑗=1,𝑛 = ∆(𝐴) ·𝐵 + 𝐴 ·∆(𝐵) .

Example 2. Consider the following example [1] of a two-element semiring 𝑆2 =
{0, 1} under addition and multiplication defined by the following tables

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Semiring 𝑆2 is additively commutative, additively idempotent but not additively
cancellative, and zero is not absorbing. It is easily seen that the identity map
𝛿1 = 𝑖𝑑𝑅 (𝑖𝑑𝑅(𝑎) = 𝑎 for all 𝑎 ∈ 𝑅) and the map 𝛿2 : 𝑆2 → 𝑆2, given by 𝛿2(𝑎) = 1 for
all 𝑎 ∈ 𝑆2, are derivations on 𝑆2. Here Der𝑆2 = {𝛿1, 𝛿2}. Hence it is not generally
true that 𝛿(0) = 𝛿(1) = 0 in a semiring. Note that the zero map is not a derivation
on 𝑆2. This motivates the following easy-to-check proposition

Proposition 2. If 𝑅 contains absorbing (left and right) zero then the zero map
0: 𝑅→ 𝑅 (i. e. 0(𝑟) = 0 for all 𝑟 ∈ 𝑅) is a derivation on 𝑅.

If a zero map 0: 𝑅 → 𝑅 is a derivation on 𝑅 it is called a trivial derivation.
Every semiring with absorbing zero is differential with respect to trivial derivation.
Obviously, every ring is differential as a semiring with respect to trivial derivation.

Proposition 3. The identity map 𝑖𝑑𝑅 : 𝑅 → 𝑅 is a derivation on 𝑅 in each of
the following cases:

1) 𝑅 is additively cancellative and 𝑅2 = (0);
2) 𝑅 is an additively idempotent semiring.
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Proof. The identity map is obviously additive. Let 𝑎, 𝑏 ∈ 𝑅. The equality
𝑖𝑑𝑅(𝑎𝑏) = 𝑖𝑑𝑅(𝑎) · 𝑏+ 𝑎 · 𝑖𝑑𝑅(𝑏) holds if and only if 𝑎𝑏 = 𝑎𝑏+ 𝑎𝑏. The second part is
shown by Golan [3] for semirings in his sense.

Clearly, for an additively idempotent semiring 𝑅 with 1 ̸= 0 there exists a
derivation 𝛿 on 𝑅 such that 𝛿 (1) = 1. This does not agree (contradicts) to a
well-known fact for differential rings with 1 ̸= 0 that 1 is constant with respect to
any ring derivation.

Proposition 4. Let 𝑅 be a semiring with absorbing zero. For any semiring
derivation 𝛿 : 𝑅→ 𝑅 we have 𝛿(0) = 0.

Proof . It follows from 𝛿 (0) = 𝛿 (0 · 0) = 𝛿 (0) · 0 + 0 · 𝛿 (0) = 0 + 0 = 0.

Proposition 5. If 𝑅 is additively cancellative semiring, 𝛿 : 𝑅 → 𝑅 is a deriva-
tion then 𝛿(1) = 0 and 𝛿(0) = 0.

Proof . Since 𝑅 is additively cancellative, it follows from 𝛿 (1) = 𝛿 (1 · 1) = 𝛿 (1)·
1+1·𝛿 (1) = 𝛿 (1)+𝛿 (1) that 𝛿 (1) = 0. Similarly, from 𝛿 (0) = 𝛿 (0 + 0) = 𝛿 (0)+𝛿 (0)
we have 𝛿 (0) = 0.

Proposition 6. If 𝛿 : 𝑅→ 𝑅 is a semiring derivation 𝑅 such that ∀𝑎 ∈ 𝑅 2𝑎 =
0, then 𝛿 (1) = 0 and 𝛿 (0) = 0.

Proof . By the product rule, 𝛿 (1) = 𝛿 (1 · 1) = 𝛿 (1) ·1+1 ·𝛿 (1) = 𝛿 (1)+𝛿 (1) =
2𝛿 (1). By the sum rule 𝛿 (0) = 𝛿 (0 + 0) = 𝛿 (0) + 𝛿 (0) = 2𝛿 (0). If 𝑅 is a semiring
such that ∀𝑎 ∈ 𝑅 2𝑎 = 0, then 𝛿 (1) = 0 𝛿 (0) = 0.

Definition. Call a semiring (with absorbing zero) differentially trivial
if 𝐷𝑒𝑟(𝑅) = {0}.

Example 3. Find all derivations on the semiring N0. Let 𝛿 be any derivation on
𝑅. Since a proper semiring N0 is additively cancellative (see [3], p. 49) for all 𝑛 ∈ N

we have 𝛿 (𝑛) = 𝛿

(︃
1 + 1 + . . .+ 1⏟  ⏞  

𝑛

)︃
= 𝑛 · 𝛿 (1) = 0. Hence, N0 is a differentially

trivial semiring.
Example 4. The semiring (N0

⋃︀
{∞},+, ·) obtained from (N0,+, ·) by adjoining

a doubly absorbing element ∞ is not differentially trivial. The map

𝛿(𝑎) =

{︂
∞, 𝑎 =∞;
0, 𝑎 ∈ N0.

is a nontrivial derivation on N0

⋃︀
{∞}. Note that it is not additively cancellative.

Definition. An element 𝑟 ∈ 𝑅 is called constant under the derivation 𝛿 if
𝛿(𝑟) = 0.

Clearly, 0 and 1 are constants in any additively cancellative semiring containing
these elements. Any natural number is a constant under the trivial derivation.

Example 5. In a semiring 𝑆 =

{︂(︂
𝑎 𝑏
0 𝑐

)︂⃒⃒⃒⃒
𝑎, 𝑏, 𝑐 ∈ 𝑅

}︂
with respect to ordinary

addition and multiplication under the derivation 𝑑 : 𝑆 → 𝑆 given by 𝑑
(︂(︂

𝑎 𝑏
0 𝑐

)︂)︂
=

=

(︂
0 𝑏
0 0

)︂
for each 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎 ̸= 0 𝑑

(︂(︂
𝑎 0
0 𝑐

)︂)︂
=

(︂
0 0
0 0

)︂
. Hence, each

diagonal matrix of 𝑆 is constant.
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Example 6. Matrices

⎛⎝ 0 0 0
0 𝑎 0
0 0 0

⎞⎠ are constant under the derivation in the

Example 1.

Proposition 7. Let 𝑅 be additively cancellative semiring. Then every additively
idempotent element 𝑎 ∈ 𝑅 is a constant with respect to any derivation 𝛿 on 𝑅.

Proof . Since 𝑅 is additively cancellative 𝛿 (𝑎) = 𝛿 (𝑎+ 𝑎) = 𝛿 (𝑎)+ 𝛿 (𝑎) follows
𝛿 (𝑎) = 0.

A derivation 𝛿 : 𝑅→ 𝑅 is said to be commuting 𝑟 · 𝛿(𝑟) = 𝛿(𝑟) · 𝑟 for all 𝑟 ∈ 𝑅. .

Proposition 8. Let 𝑅 be additively cancellative entire semiring. Then every
multiplicatively idempotent element 𝑎 ∈ 𝑅 is a constant with respect to any commut-
ing derivation 𝛿.

Proof . Let 𝑎 ∈ 𝑅 be any multiplicatively idempotent element. Suppose 𝑎 ̸=
0; otherwise clear. Taking the derivative 𝛿 (𝑎) = 𝛿 (𝑎 · 𝑎) = 𝛿 (𝑎) · 𝑎 + 𝑎 · 𝛿 (𝑎).
Multiplying by 𝑎 on the left 𝑎 · 𝛿 (𝑎) = 𝑎 · 𝛿 (𝑎) · 𝑎 + 𝑎2 · 𝛿(𝑎). By idempotency and
additive cancelativeness we get 𝑎 · 𝛿 (𝑎) = 𝑎 · 𝛿 (𝑎) · 𝑎 + 𝑎 · 𝛿(𝑎) and 𝑎 · 𝛿 (𝑎) · 𝑎 = 0.
By commutativity and idempotency we have 𝑎 · 𝛿 (𝑎) = 0. Since 𝑅 contains no zero
divisors and 𝑎 ̸= 0, then 𝛿 (𝑎) = 0.

Note that in the additively cancellative semiring the only additively idempotent
element is 0. It is clearly constant.

A subsemiring 𝑆 of a differential semiring (𝑅, 𝛿) is called differential if 𝛿(𝑆) ⊆ 𝑆.

Proposition 9. Let (𝑅, 𝛿) be an additively cancellative additively commutative
differential semiring with the center 𝑍(𝑅). Then 𝑍(𝑅) is a differential subsemiring
of 𝑅.

Proof . Let 𝑎 ∈ 𝑍(𝑅), 𝑏 ∈ 𝑅. We have 𝛿 (𝑎𝑏) = 𝛿 (𝑏𝑎). Then 𝛿 (𝑎𝑏) = 𝛿 (𝑎) · 𝑏+
𝑎 · 𝛿 (𝑏) = 𝛿 (𝑎) · 𝑏 + 𝛿 (𝑏) · 𝑎. On the other hand 𝛿 (𝑏𝑎) = 𝛿 (𝑏) · 𝑎 + 𝑏 · 𝛿 (𝑎). Since
𝑅 is additively cancellative and additively commutative we have 𝛿 (𝑎) · 𝑏 = 𝑏 · 𝛿 (𝑎).
Hence, 𝛿 (𝑎) ∈ 𝑍 (𝑅).

Proposition 10. The set 𝐶𝛿(𝑅) = {𝑎 ∈ 𝑅 |𝛿(𝑎) = 0} of all constants of 𝑅 with
respect to the derivation 𝛿 forms a differential subsemiring of 𝑅.

Proof . It is shown in [2] that 𝐶𝛿(𝑅) is a subsemiring of 𝑅. If 𝑎 ∈ 𝐶𝛿(𝑅) then
𝛿(𝑎) = 0 ∈ 𝐶𝛿(𝑅). Hence, 𝐶𝛿(𝑅) is closed under 𝛿.

Corollary 1. The set 𝐼+(𝑅) of additively idempotent elements of the additively
cancellative semiring 𝑅 is a differential semiring.

Example 7. For a semiring 𝑆2 from Example 2 𝐶𝛿1(𝑆2) = (0), but 𝐶𝛿2(𝑆2) = ∅.
Also 𝐶𝛿(N0

⋃︀
{∞}) = N0.

Proposition 11. If 𝐹 is a 𝛿-semifield then the semiring of constants 𝐶𝛿 is a
𝛿-semifield.

Proof . Let 𝑎 ∈ 𝐶𝛿(𝑅), 𝑎 ̸= 0. Then 𝛿 (𝑎) = 0 and 𝑎 ∈ 𝐹 follows 𝑎−1 ∈ 𝐹 and
𝑎 · 𝑎−1 = 1. Then 0 = 𝛿 (1) = 𝛿 (𝑎 · 𝑎−1) = 𝛿 (𝑎) · 𝑎−1 + 𝑎 · 𝛿 (𝑎−1) = 𝑎 · 𝛿 (𝑎−1). Thus
𝑎 · 𝛿 (𝑎−1) = 0. Hence 𝛿 (𝑎−1) = 0 and 𝑎−1 ∈ 𝐶𝛿(𝑅).

The following properties follow from the definition of a derivation.
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Proposition 12. If 𝛿 : 𝑅 → 𝑅 is a semiring derivation and 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑅
then

𝛿

(︃
𝑛∑︁

𝑖=1

𝑎𝑖

)︃
=

𝑛∑︁
𝑖=1

𝛿 (𝑎𝑖) .

𝛿

(︃
𝑛∏︁

𝑖=1

𝑎𝑖

)︃
=

𝑛∑︁
𝑘=1

𝑎1 · 𝑎2 · · · 𝑎𝑘−1 · 𝛿 (𝑎𝑘) · 𝑎𝑘+1 · · · 𝑎𝑛.

Proof . 1 is obvious. Prove 2 by induction on 𝑛. The case 𝑛 = 2 is obvious.
Suppose the equality holds for 𝑛− 1. Then for 𝑛 we have

𝛿

(︃
𝑛∏︁

𝑖=1

𝑎𝑖

)︃
= 𝛿

(︃
𝑛−1∏︁
𝑖=1

𝑎𝑖

)︃
· 𝑎𝑛 +

(︃
𝑛−1∏︁
𝑖=1

𝑎𝑖

)︃
· 𝛿 (𝑎𝑛) =

=

(︃
𝑛−1∑︁
𝑘=1

𝑎1 · · · 𝑎𝑘−1 · 𝛿 (𝑎𝑘) · 𝑎𝑘+1 · · · 𝑎𝑛−1

)︃
· 𝑎𝑛 +

(︃
𝑛−1∏︁
𝑖=1

𝑎𝑖

)︃
· 𝛿 (𝑎𝑛) =

=
𝑛∑︁

𝑘=1

𝑎1 · · · 𝑎𝑘−1 · 𝛿 (𝑎𝑘) · 𝑎𝑘+1 · · · 𝑎𝑛.

Corollary 2. If 𝑅 is a multiplicatively commutative 𝛿-semiring and
𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑅 then

𝛿

(︃
𝑛∏︁

𝑖=1

𝑎𝑖

)︃
=

𝑛∑︁
𝑘=1

𝛿 (𝑎𝑘) ·
∏︁
𝑖 ̸=𝑘

𝑎𝑖.

Define 𝛿2 (𝑎) = 𝛿 (𝛿 (𝑎)), 𝛿3 (𝑎) = 𝛿 (𝛿2 (𝑎)), . . . By induction we can prove

Proposition 13. If 𝛿 : 𝑅→ 𝑅 is a semiring derivation then 𝛿𝑛 : 𝑅→ 𝑅 is also
a semiring derivation for any 𝑛 ∈ N.

Proposition 14. If 𝑐 ∈ 𝐶𝛿(𝑅) then 𝛿(𝑛) (𝑐𝑟) = 𝑐𝛿(𝑛) (𝑟) for any 𝑟 ∈ 𝑅 and
𝑛 ∈ N.

Proof . By induction on 𝑛. For 𝑛 = 1 we have 𝛿 (𝑐𝑟) = 𝛿 (𝑐) 𝑟 + 𝑐𝛿 (𝑟) = 𝑐𝛿 (𝑟).
The rest is obvious.

Theorem 1. If (𝑅, 𝛿) is a differential semiring then for any 𝑎, 𝑏 ∈ 𝑅 and 𝑛 ∈ N
it holds

𝛿𝑛 (𝑎𝑏) =
𝑛∑︁

𝑘=0

𝐶𝑘
𝑛𝛿

𝑛−𝑘 (𝑎) 𝛿𝑘 (𝑏) .

Proof . By induction on 𝑛. The case 𝑛 = 1 is obvious. Suppose the equality
holds for 𝑛− 1 and prove it for 𝑛.

𝛿𝑛 (𝑎𝑏) = 𝛿

(︃
𝑛−1∑︁
𝑘=0

𝐶𝑘
𝑛−1𝛿

𝑛−𝑘−1 (𝑎) 𝛿𝑘 (𝑏)

)︃
=

𝑛−1∑︁
𝑘=0

𝐶𝑘
𝑛−1 · 𝛿

(︀
𝛿𝑛−𝑘−1 (𝑎) 𝛿𝑘 (𝑏)

)︀
=
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=
𝑛−1∑︁
𝑘=0

𝐶𝑘
𝑛−1 ·

(︀
𝛿𝑛−𝑘 (𝑎) 𝛿𝑘 (𝑏) + 𝛿𝑛−𝑘−1 (𝑎) 𝛿𝑘+1 (𝑏)

)︀
=

= 𝛿𝑛 (𝑎) · 𝑏+ 𝛿𝑛−1 (𝑎) · 𝛿 (𝑏) + (𝑛− 1) 𝛿𝑛−1 (𝑎) · 𝛿 (𝑏) + (𝑛− 1) 𝛿𝑛−2 (𝑎) · 𝛿2 (𝑏)+

+ . . .+ 𝐶𝑘−1
𝑛−1 · 𝛿𝑛−𝑘+1 (𝑎) · 𝛿𝑘−1 (𝑏) + 𝐶𝑘−1

𝑛−1 · 𝛿𝑛−𝑘 (𝑎) · 𝛿𝑘 (𝑏)+

+𝐶𝑘
𝑛−1 · 𝛿𝑛−𝑘 (𝑎) · 𝛿𝑘 (𝑏)+𝐶𝑘

𝑛−1 · 𝛿𝑛−𝑘−1 (𝑎) · 𝛿𝑘+1 (𝑏)+ . . .+ 𝛿 (𝑎) · 𝛿𝑛−1 (𝑏)+𝑎 · 𝛿𝑛 (𝑏) =

=
𝑛∑︁

𝑘=0

𝐶𝑘
𝑛𝛿

𝑛−𝑘 (𝑎) 𝛿𝑘 (𝑏) .

3. Semimodule of semiring derivations. In what follows let 𝑅 be a addi-
tively commutative semiring with absorbing zero. Denote the set of all derivations
on 𝑅 by Der𝑅. In this case Der𝑅 ̸= ∅. Let 𝛿1 : 𝑅 → 𝑅 and 𝛿2 : 𝑅 → 𝑅 be deriva-
tions. The sum of derivations 𝛿1 and 𝛿1 on 𝑅 is a map 𝛿1 + 𝛿2 : 𝑅→ 𝑅 defined by
(𝛿1 + 𝛿2)(𝑟) =df 𝛿1(𝑟) + 𝛿2(𝑟) for all 𝑟 ∈ 𝑅.

In [3] it is shown that the sum of two arbitrary semiring derivations is a semiring
derivation. The set Der𝑅 forms a monoid under addition where the neutral element
is a trivial derivation. This implies, by induction

Lemma 1. Let 𝛿𝑖 : 𝑅→ 𝑅 be semiring derivations, 𝑖 = 1, 2, . . . 𝑛. Then
∑︀𝑛

𝑖=1 𝛿𝑖
is a derivation on 𝑅.

Lemma 2. Let 𝛿 : 𝑅 → 𝑅 be a derivation on 𝑅, 𝑎 ∈ 𝑍 (𝑅). Then the map
𝑎𝛿 : 𝑅→ 𝑅 given by (𝑎𝛿)(𝑟) =df 𝑎 · 𝛿(𝑥) for all 𝑟 ∈ 𝑅 is a derivation on 𝑅.

Proof. It is trivally checked that 𝑎𝛿 is additive. Let 𝑟, 𝑠 ∈ 𝑅 be arbitrary
elements. We have (𝑎𝛿) (𝑟 · 𝑠) = (𝑎𝛿 (𝑟)) 𝑠+ (𝑎𝑟) 𝛿 (𝑠) = (𝑎𝛿) (𝑟) · 𝑠+ 𝑟 (𝑎𝛿) (𝑠).

Corollary 3. Let 𝑅 be a semiring, 𝛿𝑖 : 𝑅 → 𝑅 a derivation on 𝑅, 𝜆𝑖 ∈ 𝑍 (𝑅),
𝑖 = 1, 2, ..., 𝑛. Then the map

∑︀𝑛
𝑖=1 𝜆𝑖𝛿𝑖 : 𝑅→ 𝑅 is a derivation on 𝑅.

Corollary 4. If 𝛿 : 𝑅→ 𝑅 is a derivation of a semiring, then 𝛼0𝛿
𝑛+𝛼𝑛−1𝛿

𝑛−1+
. . .+ 𝛼𝑛−1𝛿 + 𝛼𝑛𝜀 for all 𝛼𝑖 ∈ 𝑅, is a semiring derivation.

Theorem 2. The set 𝑀 = Der𝑅 of derivations on a semiring 𝑅 is a semimodule
over the center 𝑍(𝑅) of the semiring 𝑅.

Proof. The associativity and commutativity of addition on Der𝑅 follows from
the associativity and commutativity of addition on𝑅 respectively. The trivial deriva-
tion is clearly a neutral element under addition on Der𝑅.

All the other conditions are checked trivially. Let 𝑎 ∈ 𝑅, 𝜆1, 𝜆2 ∈ 𝑍 (𝑅), and 𝛿 ∈
𝐷𝑒𝑟 (𝑅) be abritrary elements. Then ((𝜆1𝜆2) 𝛿) (𝑎) = (𝜆1𝜆2)·𝛿 (𝑎) = 𝜆1 (𝜆2 · 𝛿 (𝑎)) =
𝜆1 ((𝜆2𝛿) (𝑎)) = (𝜆1 (𝜆2𝛿)) (𝑎) follows associativity ((𝜆1𝜆2)𝛿) = (𝜆1(𝜆2𝛿)). Similarly
check distributivity ((𝜆1 + 𝜆2) 𝛿) (𝑎) = (𝜆1 + 𝜆2) · 𝛿 (𝑎) = 𝜆1 · 𝛿 (𝑎) + 𝜆2 · 𝛿 (𝑎) =
(𝜆1𝛿) (𝑎) + (𝜆2𝛿) (𝑎), so ((𝜆1 + 𝜆2)𝛿) = (𝜆1𝛿) + (𝜆2𝛿).

Let 𝑎 ∈ 𝑅, 𝜆 ∈ 𝑍 (𝑅), and 𝛿1, 𝛿2 ∈ 𝐷𝑒𝑟 (𝑅) be abritrary elements. Then
(𝜆 (𝛿1 + 𝛿2)) (𝑎) = 𝜆 · (𝛿1 + 𝛿2) (𝑎) = 𝜆 · (𝛿1 (𝑎) + 𝛿2 (𝑎)) = 𝜆 · 𝛿1 (𝑎) + 𝜆 · 𝛿2 (𝑎) =
(𝜆𝛿1) (𝑎) + (𝜆𝛿2) (𝑎) follows 𝜆(𝛿1 + 𝛿2) = (𝜆𝛿1) + (𝜆𝛿2).

Let 𝑎 ∈ 𝑅 and 𝛿 ∈ 𝐷𝑒𝑟 (𝑅) be abritrary elements. Then (1 · 𝛿) (𝑎) = 1 · 𝛿 (𝑎) =
𝛿 (𝑎) follows 1𝑅 · 𝛿 = 𝛿 .
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Let 𝑎 ∈ 𝑅, 𝜆 ∈ 𝑍 (𝑅) and 𝛿 ∈ 𝐷𝑒𝑟 (𝑅) be abritrary elements. Then (𝜆 · 0𝑀) (𝑎) =
𝜆 · 0𝑀 (𝑎) = 𝜆 · 0𝑅 = 0𝑅 = 0𝑀 (𝑎), similarly (0𝑅 · 𝛿) (𝑎) = 0𝑅 · 𝛿 (𝑎) = 0𝑅 = 0𝑀 (𝑎).
It follows 𝜆 · 0𝑀 = 0𝑀 and 0𝑅 · 𝛿 = 0𝑀 .

Hence, 𝐷𝑒𝑟 (𝑅) is a 𝑍(𝑅)-semimodule.

Corollary 5. The set 𝐷𝑒𝑟 (𝑅) of derivations of a multiplicatively commutative
semiring 𝑅 is a 𝑅-semimodule.

Theorem 3. Let 𝛿1 : 𝑅 → 𝑅, 𝛿2 : 𝑅 → 𝑅 be derivations of an additively can-
cellative semiring 𝑅. Then 𝛿1𝛿2 is a derivation on 𝑅 if and only of 𝛿2 (𝑟) · 𝛿1 (𝑠) +
𝛿1 (𝑟) · 𝛿2 (𝑠) = 0 for all 𝑟, 𝑠 ∈ 𝑅.

Proof . (=⇒) Let 𝑟, 𝑠 ∈ 𝑅 be arbitrary elements. Since 𝛿1𝛿2 is a derivation
we have (𝛿1𝛿2) (𝑟𝑠) = (𝛿1𝛿2) (𝑟) · 𝑠 + 𝑟 · (𝛿1𝛿2) (𝑠). On the other hand (𝛿1𝛿2) (𝑟𝑠) =
𝛿1 (𝛿2 (𝑟𝑠)) = 𝛿1 (𝛿2 (𝑟) · 𝑠+ 𝑟 · 𝛿2 (𝑠)) = (𝛿1𝛿2) (𝑟) · 𝑠+ 𝛿2 (𝑟) · 𝛿1 (𝑠) + 𝛿1 (𝑟) · 𝛿2 (𝑠) +
𝑟 · (𝛿1𝛿2) (𝑠). It follows

(𝛿1𝛿2) (𝑟) · 𝑠+ 𝑟 · (𝛿1𝛿2) (𝑠) = (𝛿1𝛿2) (𝑟) · 𝑠+ 𝛿2 (𝑟) · 𝛿1 (𝑠)+ 𝛿1 (𝑟) · 𝛿2 (𝑠)+ 𝑟 · (𝛿1𝛿2) (𝑠) .

From additive cancellativeness of 𝑅 it follows the equality to be proved, i. e.

𝛿2 (𝑟) · 𝛿1 (𝑠) + 𝛿1 (𝑟) · 𝛿2 (𝑠) = 0.

(⇐=) Let 𝑟, 𝑠 ∈ 𝑅 be arbitrary elements. Then additivity of 𝛿1𝛿2 follows from
the additivity of 𝛿1 and 𝛿2 (𝛿1 · 𝛿2) (𝑟 + 𝑠) = 𝛿1 (𝛿2 (𝑟) + 𝛿2 (𝑠)) = (𝛿1 · 𝛿2) (𝑟) +
(𝛿1 · 𝛿2) (𝑠).

If 𝛿2 (𝑟) · 𝛿1 (𝑠) + 𝛿1 (𝑟) · 𝛿2 (𝑠) = 0 then (𝛿1𝛿2) (𝑟𝑠) = 𝛿1 (𝛿2 (𝑟) · 𝑠+ 𝑟 · 𝛿2 (𝑠)) =
(𝛿1𝛿2) (𝑟) · 𝑠+ 𝛿2 (𝑟) · 𝛿1 (𝑠)+ 𝛿1 (𝑟) · 𝛿2 (𝑠)+ 𝑟 · (𝛿1𝛿2) (𝑠) = (𝛿1𝛿2) (𝑟) · 𝑠+ 𝑟 · (𝛿1𝛿2) (𝑠).

Hence 𝛿1𝛿2 is a derivation on 𝑅.

Corollary 6. Let 𝛿1 : 𝑅→ 𝑅, 𝛿2 : 𝑅→ 𝑅 be derivations of an additively commu-
tative semiring 𝑅. Then 𝛿1𝛿2 is a derivation on 𝑅 if and only if 𝛿2𝛿1 is a derivation
on 𝑅.

Denote by {𝛿1, 𝛿2} the anti-commutator of the derivations 𝛿1 and 𝛿2 on 𝑅, i. e.
{𝛿1, 𝛿2} = 𝛿1 · 𝛿2 + 𝛿2 · 𝛿1.

Corollary 7. If 𝛿1𝛿2 is a derivation on 𝑅 then {𝛿1, 𝛿2} is a derivation on 𝑅.

Theorem 4. If 𝑅 is a 2-torsion-free semiring, 𝛿 : 𝑅 → 𝑅 is a derivation,
{𝛿 (𝑟) , 𝛿 (𝑠)} = {𝑟, 𝑠} for all 𝑟, 𝑠 ∈ 𝑅, then there exists 𝑎 ∈ 𝑍 (𝑅) such that 𝑎2 = 1.

Proof . From {𝛿 (𝑟) , 𝛿 (𝑠)} = {𝑟, 𝑠} we obtain that 𝛿 (𝑟) · 𝛿 (𝑠) + 𝛿 (𝑠) · 𝛿 (𝑟) =
𝑟𝑠+ 𝑠𝑟 for all 𝑟, 𝑠 ∈ 𝑅. In particular, 𝛿 (1) · 𝛿 (1) + 𝛿 (1) · 𝛿 (1) = 1 · 1 + 1 · 1, which
implies 2 (𝛿 (1))2 = 2. Since 𝑅 is 2-torsion-free, then (𝛿 (1))2 = 1. Hence, 𝑎2 = 1,
𝑎 ∈ 𝑍 (𝑅) , where 𝑎 = 𝛿 (1).

Example. Let 𝑅 be any semiring, 𝑆 ⊆𝑀3 (𝑅) be a subsemiring of 𝑀3 (𝑅)

𝑆 =

⎧⎨⎩
⎛⎝ 0 𝑎 𝑏

0 0 𝑐
0 0 0

⎞⎠⃒⃒⃒⃒⃒⃒ 𝑎, 𝑏 ∈ 𝑅
⎫⎬⎭
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under ordinary matrix addition and multiplication. The maps 𝛿1 : 𝑆 → 𝑆 and
𝛿2 : 𝑆 → 𝑆 defined by the following rules are both derivations on 𝑆.

𝛿1

⎛⎝⎛⎝ 0 𝑎 𝑏
0 0 𝑐
0 0 0

⎞⎠⎞⎠ =

⎛⎝ 0 0 𝑎
0 0 0
0 0 0

⎞⎠ and 𝛿2

⎛⎝⎛⎝ 0 𝑎 𝑏
0 0 𝑐
0 0 0

⎞⎠⎞⎠ =

⎛⎝ 0 0 𝑐
0 0 0
0 0 0

⎞⎠ .

It is easy to check that the product of 𝛿1 and 𝛿2 is also a derivation on 𝑆. Moreover,
these derivations commute, i. e. 𝛿1𝛿2 = 𝛿2𝛿1.

Let 𝑉 (𝑀) be a set of all elements of the semimodule 𝑀 over a semiring 𝑅 having
additive inverse. The set 𝑉 (𝑀) is a subsemimodule of the 𝑅-semimodule 𝑀 . []

Denote by [𝛿1, 𝛿2] the commutator of the derivations 𝛿1 and 𝛿2, i. e. a map
[𝛿1, 𝛿2] = 𝛿1𝛿2 − 𝛿2𝛿1.

Theorem 5. For all 𝛿1, 𝛿2 ∈ 𝑉 (𝐷𝑒𝑟 (𝑅)), [𝛿1, 𝛿2] = 𝛿1𝛿2 − 𝛿2𝛿1 ∈ 𝑉 (𝐷𝑒𝑟 (𝑅)).

Proof. Let 𝑎, 𝑏 ∈ 𝑅. Consider [𝛿1, 𝛿2](𝑎+ 𝑏) = (𝛿1𝛿2 − 𝛿2𝛿1) (𝑎+ 𝑏) =
= 𝛿1 (𝛿2 (𝑎+ 𝑏))− 𝛿2 (𝛿1 (𝑎+ 𝑏)) = 𝛿1 (𝛿2 (𝑎)) + 𝛿1 (𝛿2 (𝑏))− 𝛿2 (𝛿1 (𝑎))− 𝛿2 (𝛿1 (𝑏)) =
((𝛿1𝛿2) (𝑎)− (𝛿2𝛿1) (𝑎)) + ((𝛿1𝛿2) (𝑏)− (𝛿2𝛿1) (𝑏)) = (𝛿1𝛿2 − 𝛿2𝛿1) (𝑎)+
+ (𝛿1𝛿2 − 𝛿2𝛿1) (𝑏) = [𝛿1, 𝛿2](𝑎) + [𝛿1, 𝛿2](𝑏).

Check the second condition [𝛿1, 𝛿2](𝑎𝑏) = (𝛿1𝛿2 − 𝛿2𝛿1) (𝑎𝑏) = 𝛿1 (𝛿2 (𝑎𝑏))−
−𝛿2 (𝛿1 (𝑎𝑏)) = 𝛿1 (𝛿2 (𝑎) 𝑏+ 𝑎𝛿2 (𝑏))− 𝛿2 (𝛿1 (𝑎) 𝑏+ 𝑎𝛿1 (𝑏)) = (𝛿1𝛿2) (𝑎) 𝑏+
+𝛿2 (𝑎) 𝛿1 (𝑏) + 𝛿1 (𝑎) 𝛿2 (𝑏) + 𝑎 (𝛿1𝛿2) (𝑏)− (𝛿2𝛿1) (𝑎) 𝑏− 𝛿1 (𝑎) 𝛿2 (𝑏)− 𝛿2 (𝑎) 𝛿1 (𝑏)−
−𝑎 (𝛿2𝛿1) (𝑏) = ((𝛿1𝛿2) (𝑎)− (𝛿2𝛿1) (𝑎)) 𝑏+ 𝑎 ((𝛿1𝛿2) (𝑏)− (𝛿2𝛿1) (𝑏)) =
= (𝛿1𝛿2 − 𝛿2𝛿1) (𝑎) 𝑏+ 𝑎 (𝛿1𝛿2 − 𝛿2𝛿1) (𝑏) = [𝛿1, 𝛿2](𝑎)𝑏+ 𝑎[𝛿1, 𝛿2](𝑏).

4. Conclusions and prospects for further research. In this article we
study derivations of semirings and their sets. Namely, we give new examples of
such derivations, prove some of their properties. We also prove that the set of all
derivations on a semiring forms a semimodule over its center. The obtained results
can be used in further research in differential algebra, in a study semirings and
semimodules with derivations.
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Мельник I. О., Андрушко А. I. Напiвмодуль диференцiювань напiвкiльця.
Вивчаються диференцiювання напiвкiлець, диференцiальнi напiвкiльця та мно-

жина диференцiювань напiвкiльця. Поняття диференцiального напiвкiльця тради-
цiйно означають як адитивне вiдображення, що задовольняє правило Лейбнiца. У
статтi наведено новi приклади диференцiювань напiвкiлець, доведено деякi їх вла-
стивостi. Також доведено, що множина всiх диференцiювань напiвкiльця утворює
напiвмодуль над своїм центром. Показано, що комутатор будь-яких двох диференцi-
ювань мiститься в пiднапiвмодулi 𝑉 (𝑀) елементiв 𝑀 , якi мають адитивнi оберненi.

Ключовi слова: диференцiювання напiвкiльця, напiвмодуль, напiвкiльце, пiднапiв-
модуль, диференцiальне напiвкiльце.
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