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STOCHASTICITY AND DETERMINICITY OF MECHANICAL
SYSTEMS

The article is devoted to stochasticity and determinicity in mechanical systems: it is
shown how a mechanical system can behave in a random way which contradicts the deter-
minicity principle of classical mechanics. A mechanical system is considered, a dumbbell
which after being tossed moves in the vertical plane and bounces off the horizontal plane
until it stops, one of its tips pointing to the positive direction. On the one hand, the initial
conditions uniquely define the dumbbell orientation on the axis, on the other hand, the
experiment shows that this is not true. The stochastic nature of the dumbbell behavior is
caused by the boundedness from below of measurement device errors and locally “lined”
structure of the final state diagram.

Keywords: The determinicity principle, stochasticity, mechanical system, diagram of final
states, probability.

1. Introduction. According to the principle of determinicity of classical mechan-
ics the initial position of a mechanical system uniquely defines its trajectory. But
experience shows that there exist mechanical systems which movement can not be
predicted and these are not unpleasant exceptions but rather a natural situation.
One of such simple systems is a dumbbell which after tossing moves in the vertical
plane and afterwards bounces off a horizontal plane until it stops with one of its ends
pointing to the positive direction. The initial conditions — i.e., the angular velocity
and the height from which the dumbbell was thrown, according to the principle of
determinicity, uniquely define the orientation of the dumbbell on the abscissa axis.
But this is wrong — experience shows that it is impossible to predict (determine)
the dumbbell’s orientation by the initial conditions. How can it happen?

In this article we undertook an attempt to explain the seeming contradiction
between the determinicity principle of classical mechanics and stochastic behavior
of a certain mechanical system.

Stochastic behavior of mechanical systems which should behave deterministically
according to the determinicity principle of classical mechanics was studied by many
authors.

Diaconis, Holmes and Montgomery studied tossing of a coin using a tossing
machine (see [1]). The analysis of their model was very careful and comprehensive.
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Keller, in particular, considered a mathematical model of flipping a symmetric
coin with random initial conditions (see [2]). He supposed that the surface is an
absorbing barrier. Keller also considered a wheel and other chance devices.

Nagler and Richter (see [3,4]) researched dice tossing (a dice was modeled as a
barbell with point masses at the tips). The first of these articles is devoted to the
symmetrical case of equal masses and the second one contains a generalization of
these results to the asymmetric case.

Vulovi¢ and Prange studied in [5] a two-dimensional coin toss. They reached a
conclusion that the coin flip is not random but closeness to randomness in various
randomizers is connected to precision of a tossing mechanism.

2. Model of the dumbbell’s movement. The dumbbell is tossed in the
vertical plane with the angular velocity wy from height hg. The dumbbell stops after
several bounces off the horizontal plane, one of its tips — white (A) or black (B) —
pointing to the positive direction.

The dumbbell’s motion is modeled (described) by a system of ordinary differen-
tial equations. And the determinicity principle of classical mechanics corresponds
to the uniqueness theorem for solutions of an ordinary differential equation.

Let us build a model of the planar motion of the dumbbell in the uniform grav-
itational field in the vertical plane which passes through the dumbbell’s center of
mass.

Our dumbbell is modeled as two point masses (the masses of both tips are equal)
at the ends of a zero-mass rod. The surface off which the dumbbell bounces is
horizontal, absolutely flat and ideally smooth.

Y/

Figure 1. Two Cartesian coordinate systems.

Let us introduce two right-handed Cartesian coordinate systems (see Fig. 1). The
first one is an inertial coordinate system Oxy, the Oz axis belongs to the horizontal
plane off which the dumbbell bounces, the Oy axis points vertically upwards. The
dumbbell’s center of mass belongs to the Oy axis. The second coordinate system
O'x'y’ is a body-fixed coordinate system which is attached to the dumbbell’s center
of mass, O'x’ is pointed along the dumbbell’s rod, the positive direction of O'x’
is the direction towards the black (B) dumbbell’s tip, O’y is orthogonal to O'z’.
The orientation of the O’z'y’ coordinate system with respect to the Oxy coordinate
system is defined by the angle a between Oz and O’z (see Fig. 1), the positive
direction for « is the counterclockwise one.
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The dumbbell is a perfectly rigid body. The dumbbell’s mass is concentrated at
its tips — m/2 at each one.

Denote the dumbbell’s length by 2[, the center of mass coordinates by (x,y),
the tips’ coordinates by (z4,y4) and (xp,yp) correspondingly, the dumbbell’s axial
moment of inertia with respect to the O’z axis by I (O'z’ is perpendicular to the
plane O'z'y’), the dumbbell’s angular velocity with respect to the O'z’ axis by w, the
acceleration of free fall by g (¢ = 9.8 m/s?). We neglect the air drag. The friction
coefficient is zero (the bounce surface is absolutely smooth). The dumbbell’s free
motion until the bounce with the surface under the assumptions above is described
by the following system of ordinary differential equations:

mz = 0,

lw=0,

o= w.
Y’ Y
A

Figure 2. The dumbbell at a bounce moment.

The solution of system (1) until moment ¢; of the first dumbbell’s bounce (on
[0;¢1) interval) under the initial conditions x = g = 0, & = &9 = 0, y = yo = h,
Y=19 =0, ¢ =qap, w=wp is

z =0,
., gt?
= h+ ot — —
Yy +y0 2; (2)
W = Wo,
Ka:ao—i—wot.

Let us note that z(t) = 0 for all £: since the friction coefficient is zero, dumbbell’s
bounces do not change the center of mass velocity along the Oz axis.

At a moment of a dumbbell’s bounce off the surface ¢; (at this moment the
ordinate ya(t;) of the A tip or the ordinate yp(t;) of the B tip is equal to 0) the
center of mass velocity and the dumbbell’s angular velocity instantly change and
the dumbbell continues its movement until the moment ¢, of the second bounce (on
[t1;t2) interval) according to (1) with the initial conditions

'I(tl) =0, 'jj(tl) =0, y(t1)> y(t1)> a(tl)v w(tl)' (3)
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The velocity of the dumbbell’s center of mass §(t;) and the dumbbell’s angular
velocity w(t;) are reevaluated in the following way:

2 2
oy (1) prr(A+k)\ o A+E)rp®
2
wlty) = w® = (1 _ M) ORI Gl LEND 5)
rz e ikt v

where the following notations are used: w(® is the angular velocity before the bounce,

w® is the angular velocity after the bounce, U?SO) is the projection of the dumbbells’

center of mass velocity vector v(® before the bounce, Ugsl) is the projection of the
dumbbells’ center of mass velocity vector v!) after the bounce, r, = lcosa if the
dumbbell bounces off the surface on its A tip and r, = —l[cosa if the dumbbell
bounces off the surface on its B tip, k is the coefficient of restitution which describes
the physical properties of the impact surface (k = e / UZSO)), p*=1/m=1%

We can find moment ¢, of the second bounce using the known solution of system
(1) between the moment ¢; of the first bounce and the moment of the second bounce
(on [tq,t9) interval).

Then, reevaluating the initial conditions at the moment t, of the second bounce
(similar to reevaluation of initial conditions at the moment ¢; according to (3)—(5))
we obtain the initial conditions for solving system (1) of differential equations which
describes the dumbbell’s movement between the moments of the second and the
third bounce and so on until the dumbbell stops at some moment (i.e. until it
positions itself on the Oz axis or stops in a vertical position) due to lack of energy
for further movement. The dumbbell’s tip which points to the positive direction of
Oz (the white or the black one) is registered, the vertical dumbbell’s position is also
registered.

The dumbbell’s energy at moment ¢ is

1 1
E(t) = §v2(t)m + EIwQ(t) + mgy(t).
It changes (decreases) at bounce moments t; (energy is dissipated as a result of
a bounce). The dumbbell will continue moving after the k-th bounce (i.e. it
will overturn at least once) if its energy E(tj) after the bounce is not less than

FE.in = mgl, i.e. the condition of continuation of the dumbbell’s movement after
the k-th bounce is the inequality

E(t) > Epin. (6)

3. The moment of the dumbbell’s bounce off the surface. It is necessary
to know the moment ¢; of the first dumbbell’s bounce off the surface in order to
reevaluate the initial conditions at the moment of the bounce according to (3)—(5).
We will find it using the known solution (2) of system (1) until the moment ¢; (from
now on oy = 0, o = 0).

Obviously a moment ¢ of a dumbbell’s bounce off the surface must satisfy the
equality

[Isina(t)] = y(t) (7)
(see Fig. 2). And the first bounce moment is the smallest root of equation
gt?

|lsin (wot)| = h — 5
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Figure 3. The plot of f(t).

We will find it as follows. The plot of function

2

£t = b= L~ Jisin (o)

is shown in Fig. 3 (the axis of abscissas corresponds to ¢, the axis of ordinates — to
values f(t)). Function f(t) has local minima at the points

== (E—i—knr), k=0,1,2,...
wo \2

The moment t; of the first bounce belongs to the interval |7y, 71| for which

f(m) > 0 and f(mg+1) < 0, besides, t; is the only root of equation f(¢) = 0 from

this interval. For given ¢ > 0 we will find an interval [7'5(1)77'5(2)] C [Tk, Tkt1] such

that 75(2) - 7'5(1) <, f(Tg(l)) > 0 and f(Tg(2)) < 0. A point #; from [7'5(1),7'5(2)] taken
randomly according to the uniform distribution on [7'5(1), 7'5(2)} will be considered as
the moment of the first bounce which is calculated with error €. Let us note that
it is impossible to avoid error when we determine a moment of bounce. We can
reevaluate the initial conditions using the known value of moment ¢; of the first
bounce and if the energy is big enough for the dumbbell’s overturning we can find
the moment ty of the second bounce, etc. (all the bounce moments are random
variables).

We will also consider experiments with an absorbing barrier at the n-th bounce
besides the experiment which was described above. An experiment with an absorb-
ing barrier at the n-th bounce will mean the experiment with tossing of a dumbbell
and bounces off the surface afterwards such that the n-th bounce is perfectly inelas-
tic and therefore the last one. We register the dumbbell’s tip which points to the
positive direction of Oz axis.

4. Final state diagram.

We will use the following values for numerical experiments: 2l = 0.6 m, m =
=2kg, k=08, 20=0m, 2o =0 m/s, Jo = 0 m/s, ag = 0 rad.

Let us determine the outcome of an experiment for given initial conditions
(w,h) € (—00,+00) x [0,+00): the dumbbell’s black tip points towards the po-
sitive direction, the white tip points towards the positive direction, the dumbbell
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stopped vertically. Let us paint the point (w,h) black if the dumbbell’s black tip
points towards the positive direction, paint it gray if the white tip points towards the
positive direction and paint it white if the dumbbell stopped vertically. We will use
the term “final state diagram” for the set of possible initial conditions (w, h) painted
in such a way. Examples of final states diagrams are given in Fig. 4, 5, 6 (these
are the final states diagrams for the [33;35] x [81;83] neighborhood of the point
(34;82)). The final states diagram for the first bounce (with an absorbing barrier at
the first bounce) is shown in Fig. 4, the final states diagrams for the second and the
third bounces are shown in Fig. 5 and 6 correspondingly. The final states diagrams
for the subsequent bounces have structure similar to the structure shown in Fig. 6.

Figure 4. Diagram, Figure 5. Diagram, Figure 6. Diagram,
first bounce. second bounce. third bounce.

5. Local structure of a final state diagram. We will give examples of local
structure of final state diagrams for the case when the dumbbell starts movement
with high initial energy — the dumbbell has high initial angular velocity and and it
is tossed from large height, or at least one of this parameters has a large value.

Enlarged final state diagrams for the [85—107%; 8541074 x [0.5—107%;0.5+107]
neighborhood of the point (85;0.5) for the 4th, 5th and 6th bounces are shown in
Fig. 7, 8 and 9 correspondingly. We see “uniformly gray” structure of the final state
diagrams but really the final state diagrams have locally line structure (see Fig. 10,
11, 12). The enlarged fragment [85 —1077;85+107"] x [0.5—3-107";0.5+3-1077]
of a neighborhood of the point (85;0.5) at the 4th bounce is shown in Fig. 10. The
enlarged fragment [85—1077; 85+107%]x [0.5—3-107; 0.5+3-107?] of a neighborhood
of the point (85;0.5) at the 5th bounce is shown in Fig. 11. The enlarged fragment
(85 —1071:85 + 107" x [0.5 — 3-107:0.5 4+ 3 - 107!] of a neighborhood of the
point (85;0.5) at the 6th bounce is shown in Fig. 12. (Let us note that the hydrogen
atom size is 107 m.)

The final state diagram for the case when the contribution of h into the dumb-
bell’s energy is substantially greater than the the contribution of w has locally “ver-
tical” line structure.

The final state diagram will also have locally line structure for other quite large
values of the dumbbell’s energy and the slope of stripes (see Fig. 4) depends on
contribution of w and h into the dumbbell’s energy.

6. Measurement errors and local structure of a final state diagram.
Locally line structure of final state diagram holds for large values of the dumbbell’s
energy for a numerical experiment. This fact provides grounds for concluding that
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final state diagram for a physical experiment also has locally line structure when
energy is large.

We set the initial conditions (the initial angular velocity wp and the initial
height hg) using a measurement device. Boundedness of the measurement error
A of the measurement device from below — it cannot be less than certain A (the
error cannot be arbitrarily small) and locally line structure of the final state diagram
(when energy is large enough) make impossible prediction of the experiment out-
come (i.e. the dumbbell’s orientation) from the initial conditions. By “setting” the
initial conditions (wy, ko) using a measurement device which has the measurement
error A = (A,,A,) we actually obtain as initial conditions a point (w,h) from a
rectangle [wy — Ay /2,wo + Ay/2] X [ho — An/2, ho + Ap/2]. A measurement device
which has the measurement error A = (A, Ay) cannot distinguish between initial
conditions (wq, hy) and (wsq, hy) such that |w; — we| < A, and |hy — he| < Aj. But
a mechanical system “distinguishes” between arbitrarily close but different initial
conditions. Therefore every time when we set the initial conditions using a mea-
surement device we actually obtain as initial conditions a random point (w, h) from
a neighborhood [wy — Ay /2, wo + Ay /2] X [ho — Ap/2, ho + Ap/2]. But the final state
diagram for the [wy — A, /2,wo + Ay /2] X [ho — Ar/2, ho + Ap /2] neighborhood of
(wo, ho) point has line structure. This fact makes impossible determination of the
dumbbell’s orientation using the initial conditions (wy, hg).

When we conduct the numerical experiment the boundedness of error A for
the initial conditions (wp, hy) from below is modeled as random choice of a point
(w, h) from the [wo — Ay /2, wo + Ay /2] X [hog — Ay/2, ho + Ay /2] neighborhood of
(wo, ho) point. The second error (which is impossible to avoid during a numeri-
cal simulation of the dumbbell’s movement) is the error of determining a bounce
moment, this error depends on the accuracy of a computer and a calculations al-
gorithm. But the system (1) “can distinguish” between arbitrarily close but dif-
ferent initial conditions. The line structure of the final state diagram for the
[wo— Ay /2, wo+ Ay /2] X [ho— Ar/2, ho+ Ay /2] neighborhood of (wy, hy) and bound-
edness of the measurement device error from below (this error is greater or equal to
a certain Ag) make impossible determination of the experiment’s outcome by the
initial conditions (wy, ko) in a numerical experiment.

Figure 7. Enlarged, Figure 8. Enlarged, Figure 9. Enlarged,
fourth bounce. fiftth bounce. sixth bounce.

The results we obtain do not contradict either the principle of determinicity of
classical mechanics or the uniqueness theorem for solutions of an ordinary differential

equation. The phenomenon of non-deterministic, stochastic dumbbell’s behavior is
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caused by fundamental boundedness of measurement device error from below and
locally line structure of the final state diagram.

The numerical simulation of the dumbbell’s movement was realized by V.I.
Dubyna, Master student of Oles Honchar Dnipro National University.

Figure 10. Figure 11. Figure 12.
Line structure, Line structure, Line structure,
fourth bounce. fiftth bounce. sixth bounce.

7. Conclusions. Initial conditions uniquely define behavior of a mechanical
system by reason of the principle of determinicity of classical mechanics. A mecha-
nical system is considered in the article which behaves stochastically, it is shown
why the principle of determinicity does not hold for this system.
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Typuun B. M., IIupoxxkeako O. B. CroxacTuaHiTh i JIeTepMiHOBaHICTh MeXaHi-
YHUX CHUCTEM.
Pobora mpucssadena cTOXaCTUIHOCTI 1 I€TEPMIHOBAHOCTI Y MEXaHITHUX CUCTEMAX.
3riJIHO 3 IPUHIUIIOM JIETEPMIHOBAHOCTI KJIACKYHOI MEXaHIKU II0YaTKOBI YMOBH OJJHO3HAYHO

BU3HAYAIOTH €BOJIIONIIO cucteMu y daci. IIpore /ocBil cBimIUTh, M0 1€ JTaJIeKO He 3aBXK U
TaK.
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Posrnsinaerbea MexanivuHa cucteMa — TFaHTENb MIC/Is MiIKUIAHHSI PYXa€ThC Y BEPTUKAIb-
Hill TUIOMWHI CIBYIAPAIOYUCH 3 NOPU3OHTAJIHHOIO ILIONIAHOIO, JOIMOKA PAHO YH MI3HO He
3YHUHUTHCS TUM UM IHITUM KIiHIIEM Yy JOJaTHBOMY HampsiMi. lkuM came — mepembadntu
HEMOKJIMBO, IO Ha MEPIN OIS IPOTUPIINTh MPUHITHITY JeTepminoBanocTi. Hacmpasi
[IPOTUPIYYs HEMAE — CTOXACTUYHUN XapaKTep MOBEJiKU raHTesi 00yMOBJIEHUI IPUHITUIIO-
BOIO OOMEXKEHICTIO 3HU3Y MOXMOKU BUMIPIOBAJIBHOIO MPUJIALY 1 JIOKAJIBHOK “JIiHiiiyacTon”
CTPYKTYPOIO JliarpaMu KiHIIEBUX CTaHIB.

Kumaro4uosi cioBa: [Ipunnun 1eTepMiHOBAHOCTI, CTOXACTUIHICTD, MEXaHITHa, CUCTEMA, JTia~
rpama KiHIIEBUX CTaHIB, IMOBIDHICTb.
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