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INTERPOLATION PROBLEM FOR PERIODICALLY
CORRELATED PROCESSES WITH MISSING OBSERVATIONS

The problem of the optimal linear estimation of a linear functional depending on the
unknown values of periodically correlated stochastic process from observations of the pro-
cess with additive noise with missing observations is considered. Formulas for calculating
the mean square error and the spectral characteristic of the optimal linear estimate of the
functional are proposed in the case where spectral densities are exactly known. Formulas
that determine the least favorable spectral densities and the minimax spectral character-
istics are proposed in the case of spectral uncertainty, where the spectral densities are not
exactly known while some classes of admissible spectral densities are specified.

Keywords: periodically correlated stochastic process, spectral characteristics, mean-
square error, minimax (robust) estimate, least favorable spectral density, minimax spectral
characteristics.

1. Introduction. The investigation of cyclostationarity as a phenomenon was
started by W. R. Bennett in 1958, [1|. He studied the statistical characteristics of
signals in channels of communication and called the group of such signals the cyclo-
stationary process. That is a nonstationary process having a periodically varying
in time statistical characteristics. Literature review of theory and application of
cyclostationarity in different spheres of research is presented in the article [2] by
W. A. Gardner, A. Napolitano, L. Paura. In other sources cyclostationary processes
are called periodically stationary, periodically nonstationary, periodically correlated.
We will use the term periodically correlated processes.

E. G. Gladyshev, [3], was one of the first who started the study of periodically
correlated processes with continuous time. H. L. Hurd continued study of period-
ically correlated processes and their properties in the papers [4], [5]. A. Makagon
in [6] investigated relations between periodically correlated processes and stationary
processes.

A. N. Kolmogorov [7], N. Wiener [8], A. M. Yaglom [9], [10], proposed their
methods of solution of estimation problems for stationary processes and sequences
in the case of spectral certainty. In the case where complete information on the
spectral densities is impossible, but a set of admissible spectral densities is given,
the minimax approach to estimation problem is used. That is we find estimate
that minimizes the mean square error for all spectral densities from a given class
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INTERPOLATION PROBLEM FOR PC PROCESSES WITH MISSING OBSERVATIONS 29

of densities simultaneously. U. Grenander, [11], was the first who applied the mini-
max estimation method to find solution of the extrapolation problem for stationary
processes.

The detailed analysis of the estimation problems with missing observations are
presented in the books by M. J. Daniels and J. W. Hogan [12], P. E. McKnight
et al [13]. The interpolation and extrapolation problems of linear functionals from
periodically correlated stochastic sequences with missing observations were investi-
gated by L. I. Golichenko and M. P. Moklyachuk in [14], [15], by I. I. Golichenko,
O. Yu. Masyutka and M. P. Moklyachuk in [16].

In this paper we study the problem of mean square optimal linear estimation
of the functional A, = 37— ]\J/\[{’JFNM a(t)((t)dt which depends on the unknown
values of a periodically correlated stochastic process ((¢). The estimation is based
on observations of the process ((t) + 6(t) at points t € R\ S, S = (J_4[M;, M; +
Ni1), My = ZZ:O(Nk + K}), Ny = Ko = 0. We obtain formulas for calculation the
mean square error and the spectral characteristic of the optimal linear estimate of
A4C in the case of spectral certainty. The least favorable spectral density and the
minimax (robust) spectral characteristic of the optimal linear estimate of As( are
found in the case when the spectral density is not known, but the class of admissible
densities is given.

2. Periodically correlated processes and generated vector stationary
sequences.

Definition 1. [3/ Mean square continuous stochastic process ( : R — H =
Ly(Q2,F,P), EC(t) = 0, is called periodically correlated (PC) with period T, if its
correlation function K(t + u,u) = EC(t +u)((u) for all t,u € R and some fized
T > 0 15 such that

Kit+uu)=K{t+u+T,u+T).
Let {¢(t),t € R} and {6(t),t € R} be mutually uncorrelated PC processes. We
construct two sequences of stochastic functions

{Gi(w) =¢(u+4T),uel0,T),j € Z}, (1)

{0;(u) =0(u+ jT),u € [0,T),j € Z}. (2)

Sequences (1) and (2) form the Ly([0,T); H)-valued stationary sequences {(;, j € Z}
and {0;,j € Z}, respectively, with the correlation functions

Be(l, ) = (G b = / Ko(u+ (1 — )T, u)du = Be(l - ),

T
&@ﬁzﬂ%@ﬁpi/}QW+U—ﬁTmMu:BN—j%
0
where Kc(t,s) = EC(t)C(s), Ko(t,s) = EB(t)8(s) are correlation functions of PC
processes ((t), 0(t).
Let us define in Ly([0,7");R) the orthonormal basis

(& = il DT =12 Y, (88 = Ok

1
—e
VT
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30 I. I. GOLICHENKO, M. P. MOKLYACHUK
Stationary sequences {(;,j € Z} and {6;,j € Z} can be represented in the form

G =Y it Crj = () = / Gv)e 2D 8T gy, (3)
k=1
0; = Okjer, iy = (0, ). (4)
K1

Let us name sequences

{Cjaj € Z}7 {ejaj € Z}>

or corresponding vector sequences
(&= (G k=1,2,...)", 5 € Z}, {0; = Ok, k =1,2,..)",j € Z}

generated vector stationary sequences, that means that vector sequences {5] =
(G k= 1,2,..07,5 € Z}, {93 = (Or;,k = 1,2,...)7,j € Z} are generated by
processes {((t),t € R}, {6(t),t € R}, respectively.

Components {(;, k = 1,2,...} and {6k;,k = 1,2,...} of stationary sequences
{¢j,7 € Z} and {0;,j € Z} are such that, [17],

EGey =0, [GlH = Z E| ¢ |* = B(0) < 00, ECuCnj = (Re(l — j)er, en),
0wy =0, [10;]1% = Z E[6);1* = Py = By(0) < 00, EOub,; = (Ro(l — j)ex, en).
where {ex,k = 1,2,.. } is a basis of the space (5. Correlation functions Re(j)

and Ry(j) of generated vector stationary sequences {(;,j € Z} and {0;,j € Z} are
correlation operator functions in f5. Correlation operators R:(0) = R, Ry(0) = Ry
are kernel operators and their kernel norms satisfy the following restrictions:

> (Reer,ex) = 11Gl5 = P, > _(Roex, ex) = 116;1[3 = Po,
K1 o

Generated vector stationary sequences {(;,j € Z}, {0;,7 € Z} have spectral density

functions f(A) = {fin(M)}inz1,  9(A) = {gk(A)}i,—; that are positive operator
valued functions of variable A € [—m,7) in /s, if their correlation functions R.(j)

and Ry(j) can be represented in the form

(Relilersen) = 5= [ e Wersen)ir

1

<R9( )ek7€n> = _/ eij)\<g()‘)€k>6n>d)‘> kan - 17 27 s

2T

Spectral densities f(\), g(\) a.e. on [—m, ) are kernel operators with integrable
kernel norms:

Z 27?/ Nex, ex)d = |Gl = P, Z / Nexs ex)dA = |6,z = Fo-
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INTERPOLATION PROBLEM FOR PC PROCESSES WITH MISSING OBSERVATIONS 31

Hilbert space projection method of linear interpolation.
Let consider the problem of mean square optimal linear estimation of the func-
tional

s—1 MitNipa

Ac=3 [ et
=0y

which depends on the unknown values of a periodically correlated stochastic process

((t). The estimation is based on observations of the process ((t) 4+ 6(t) at points ¢ €

R\ S, S = UMy, My + Niji], My = S _(Ni + K3.), Ny = Ko = 0. Process 8(t)

is uncorrelated with ((t) periodically correlated process. The function a(t),t € R,
satisfies the condition S5~} f]\]/\glJrN’“ la(t)|dt < oo.

We assume that length of each interval of observations is a multiple of the period

T and the length of each interval of missed observations is a multiple of 7', what

means that
Ki=T KI'Kiy=T-K], .., K.1=T-K"

s—1»
N =T-NI Ny=T-NJ,...,.N,=T-NZ,

respectively. The set which corresponds to the set S is of the form
_ s—1
1=0

The functional A, can be written as

T T
s—1 M +Nz+1_

ac=> [ awcwa=Y Y [ et i+ T

—0 Y M ;

where M; =T - M 1=0,...,5s — 1.

Denoting by a(u + jT) = a;(u), ((u + jT) = ((u), j € S,u € [0,T), and
taking into account the decomposition (3) of generated vector stationary sequence
{¢;,7 € Z}, [18], the functional A,( can be written as

T NT
s—1 M +Ng -1

A = ; > /0 a(u+ jT)C(u+ jT)du =

AT
= J_Ml

1 M1T+N£-1_1 lT+NlE—1_1

o0 s—1 M,
Z (alelj + Z Apt(—1)m,5 an> = Z EL’J-T(_;-,
n=2 =0

—
1=

0 =Ml j=MF
where vectors @; have the special form
~ _ T _ T -3
aj = (akj, k= 1, 2, .. ) = (a1j7 CL3j, CLQJ', .. ’a2k+1’j, agm, .. ) , ] c S,

~ —oni{(=1Dk[E] g .
where ax; = (a;,€,) = \/iffoTaj(v)e 2mi{(—1)*[5]} Mdv, & = (G k=1,2,..)7, j €

S, is generated vector stationary sequence.
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32 I. I. GOLICHENKO, M. P. MOKLYACHUK

Let us assume that coefficients {d;,j € S } satisfy conditions
i ~
lajl| < oo, a@1* =D lal®, j€S. (5)
k=1

On condition (5) functional A,¢ has finite second moment.
Let the spectral densities f¢()\) and f?(\) satisfy the minimality condition

/7r Tr(fS(N) + f/(N)'dA < +oc. (6)

Condition (6) is necessary and sufficient in order that the error-free interpolation of
the unknown values of the sequence (; + 6; is impossible, [19].

Denote by Ly(f) the Hilbert space of vector valued functions b(\) = {b,(N)}2,
that are square integrable With respect to a measure with the density f(\) =

{Fn Yyt ST 0T ) F )R BA)dA = [7 >t o (N) foe Wb (V)X < oo
Denote by L5(f) the subspace in LQ( f) generated by the functions €“*§,, 4, =
{5yu}le,j €Z\S, v=1,..., where 5W:1,5ﬂ\:0fory7é,u.
Every mean-square optimal linear estimate A,¢ of the functional A,¢ from ob-
servations of the sequence (; + 6, at points j € Z \ S has the form

A= / TRT(EN)(Z5(N) + Z°(dN) = / ST R (M) (ZN) + 22N, (7)

where Z¢(A) = {Z5(A)}" | and Z%(A) = {Z9 )} -, are orthogonal random
measures of the sequences CJ and 0}, and h {h }u=1 is the spectral

characteristic of the estimate A,( 5C- The function h( ) e Ls(fC + f9).

The mean square error A(h 1<, f%) of the estimate A sC is calculated by the
formula

A(h; 6, 1°) = E|AC — AL =

1 r , o T - — 1 . _
= % |:As(67’>‘) _ ]’L(e”‘)i| f<<)\) |:As(€Z)\) _ h(ezk)] d)\‘i‘%/hT(ezA>f9()\)h<el/\)d/\7
(8)

where A (e™) = f (}Zy]\;TNM ajezj)\

The spectral characteristic ﬁ( f¢, f%) of the optimal linear estimate of A,¢ mini-
mizes the mean square error

A 0 = AR O £ ) = min AR f¢, f°) = min E[A,C— A% (9)
AsC

heLs(fS+19)

Optimal estimate ZR is a solution of optimization problem (9). With the help
of the Hilbert space projection method proposed by A. N. Kolmogorov, |7], we can

find a solution of the optimization problem (9). The optimal linear estimate A is
a projection of the functional A, on the subspace H[( 4+ 0] = H [(x; + Ok;, J €
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INTERPOLATION PROBLEM FOR PC PROCESSES WITH MISSING OBSERVATIONS 33
Z\g, k=1,2,...] of the Hilbert space H = {£ : E€ = 0, E|¢]? < oo}. The projection
is characterized by the following conditions: 1) A, € H[( + 0], 2) A — A L
H=[¢+4].

From condition 2) it follows that

—/ eNFEN) = hTENFN) + FFN) e Pdh =0, j € Z\ 5. (10)

From (10) we can derive the formula for the spectral characteristic of the optimal
estimate

BT(SS0) = (AT fC) = CT (™) [0+ /)] =

=A] <e“> — (AT V) + T ) [F0 + 1] (11)
where C,(e?) = Zi\j ;;7“”1 ™A column-vectors of unknown coefficients
acl:<Ckkl7k21>—(clklac2kl;---> ,ZIO,.. 1 kl Ml,...,MlT—i—Nlj_;_l—l.

Condition 1) is satisfied when the system of equahtles
[ e =0, jes, (12)
holds true.
Let us define operators D, B, that are determined by matrices
Dy Do ... Dos-1 B By ... Boys-1
D, — Drg Dy ... Disa B, = Big B ... Bisa ’
Dsfl,O Dsfl,l s Dsfl,sfl Bsfl,O Bsfl,l s Bsfl,sfl

constructed from block-matrices

MZ4+NT 1 MT4+NT, —1 MZ4+NT -1 MT4+NT
mn - {Dmn(k ])}k MT m j=MT +1 ) {an<k j)}k MZ m j=MT e ’
m,n=20,...,s—1,

with elements

Dok, )= 5 / NG + )]0,

Bun(k, j) = %/_W [(FSO) + £ T e Pran,

k=ML, . .. . ML+NL -1, =M ... M +NL, -1, mn=0,...,s—1.

With the help of the defined operators, relation (12) can be written in the form
of the equation
D.d, = B.é, (13)

where dy, ¢, are column-vectors

T
- =T =T =T =T =T =T
g = <a07"‘7aN1T—17aM1T" aMT+NT 100 CLMT . CLMT 1+NT 1) s
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34 I. I. GOLICHENKO, M. P. MOKLYACHUK

=
S (T ST ST ST ST ST
Cg — (CO,...,CNIQ“_l,CMlq".. CMT+NT 177 CMT AP CMT1+NT 1) .
If the inverse matrix for the block-matrix B, exists, the unknown components ¢;,, | =
0,....,s =1,k = MI,..., M + N/, — 1, of vector & are determined from the

equation (13).
The mean-square error of the optimal estimate A,( is calculated by the formula
(8) and is of the form

A(fS, f7) = (@, Rads) + (G, BoGs), (14)

where (a,b) denotes the scalar product, Ry is the linear operator determined by
matrix R, = { Ry}, composed with block-matrices

{Rmn( )]kw]\;;‘\f m 1;”]\;‘1{Vn+1 ,m,n:(),...,s—l,
with elements
. 1 [7 - o
Ron(k.3) = 5 [ [FEONFEO) + 7700 /0] e Pa,

k=M. ... ME+NE 1, j=M +1,...., M+ N, —
The following statement holds true.

Theorem 1. Let {((t),t € R} and {0(t),t € R} be mutually uncorrelated PC
processes such that stationary sequences {(;,j € Z} and {0;,j € Z}, which are
built by relations (1), (2), respectively, have spectral density matrices fS(\) and
fP(N\). Assume that the matrices fS(\) and f°(\) satisfy the minimality condition
(6). Let coefficients {d;,j = 0,1,...} that determine the functional As( satisfy

conditions (5). Then the spectral characteristic E(fc, f%) and the mean square error
A(fS, f9) of the optimal estimate of the functional A,( from observations of the
process ((t) +0(t) at points t € R\ S are given by (11), (14). The optimal estimate
ZE of the functional AsC is calculated by the formula (7).

In the case of observations without noise we have the following corollary.

Corollary 1. Let {((t),t € R} be a PC process such that stationary sequence
{¢;,7 € Z}, which is built by relations (1), has spectral density matriz f¢(X\). Assume
that the matriz f¢(\) satisfies the minimality condition

/_ﬂ Tr[(fS(O0) Y] dA < +oo. (15)

Let coefficients {d;, j = 0,1,...} that determine the functional AsC satisfy conditions

(5). The spectral characteristic h(f¢) and the mean square error A(f¢) of the optimal
linear estimate of the functional AsC based on observations of the process ((t) at
points t € R\ S, are calculated by formulas

() = AL(e™) = T (e [ )] (16)
A(f¢) = (@, d.), (17)
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INTERPOLATION PROBLEM FOR PC PROCESSES WITH MISSING OBSERVATIONS 35

where dg, Cs are column-vectors, components of vector ¢, are determined from the
equation B,Cs = ds, if the inverse matrix for B, exists. Operator By is constructed

T NT T, NT
from block-matrices B, = {an(k,j)}Mm+N tMn ol

m T m,n =0,...,5—1,
with elements which are the Fourier coefficients of the matriz function [(f¢(X))™] i

k=ML j=MT

Bun(bd) = 5= [ [(FE0) 1] €07,
2 J_.
k=M ... o ML+NL =1, 5=M ... M '+N.,—1,mn=0,...,s—1

Minimax (robust) method of linear interpolation.

Let f(A\) and g(\) be the spectral density matrices of generated stationary se-
quences (; and 6;, which are built by relations (1), (2), respectively.

Formulas (11), (14) and (16), (17) may be applied for finding the spectral char-
acteristic and the mean square error of the optimal linear estimate of the functional
A,C only under the condition that the spectral density matrices f(A) and g(\) are
exactly known. But when the density matrices are not known exactly while a set
D = D; x D, of admissible spectral densities is given, the minimax (robust) ap-
proach to estimation of functionals from unknown values of stationary sequences is
used. In this case we find the estimate which minimizes the mean square error for
all spectral densities from the given set simultaneously.

Definition 2. For a given class of pairs of spectral densities D = Dy x D, the
spectral density matrices f°(\) € Dy, g°(\) € D, are called the least favorable in D
for the optimal linear estimation of the functional AsC if

A(f%,9°) = AR(f°,6°); 1%, 9°) = max A(h(f,9); f,9)-
(f.9)€D
Definition 3. For a given class of pairs of spectral densities D = Dy x D, the

spectral characteristic ﬁo()\) of the optimal linear estimate of the functional A, is
called minimaz (robust) if

W) €Hp= ) Li(f+29).
(f.9)eD
min maXAE; ,J) = max AEO; ,q).
heHp (f,9)€D (h:1.9) (f.9)€D (755 1,9)
Taking into consideration these definitions and the obtained relations we can
verify that the following lemmas hold true.

Lemma 1. The spectral density matrices f°(\) € Dy, ¢°(\) € D, that satisfy
condition (6), are the least favorable in D for the optimal linear estimation of As(,
if the Fourier coefficients of the matriz functions (fO(A)+¢°(\)~L,  fOO)(fO(N) +
PO PO + ¢° (V)Y (M) define matrices B, DY) R, that deter-
mine a solution of the constrained optimization problem

(]ICH?XD(@TS, R.d.) + ((B.) "' Dyds, Dyd.)) = (s, R, d.) + ((B.") "' D,°d,, D,’d).

79 e
The minimax spectral characteristic RO = E(fo,go) is given by (11), if E(fo,go) €
Hp.
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36 I. I. GOLICHENKO, M. P. MOKLYACHUK

Lemma 2. The spectral density matriz fO(X\) € Dy, that satisfies condition
(15), is the least favorable in Dy for the optimal linear estimation of AsC based on
observations of the process ((t) at points t € R\ S, if the Fourier coefficients of the
matriz function (fO(\))~! define the matriz B,°, that determine a solution of the
constrained optimization problem

Bs 71_‘3 _‘s = BSO 71_’8 _‘s .
;Ié%if(( )" ds, ds) = ((Bs") ™ ds, ds)

The minimaz spectral characteristic h° = h(f°) is given by (16), if h(f°) € Hp.

The least favorable spectral densities fO(\) € Dy, ¢°(\) € D, and the minimax

spectral characteristic 2% = h(f°, ¢°) form a saddle point of the function A(k; f, g)
on the set Hp x D. The saddle point inequalities

AR £,9) < AR °, %) < A f°,¢°), Vh € Hp,Vf € Dy, Vg € D,

hold when A0 = h(f°, ¢°), h(f°, ¢°) € Hp and (f°, ¢°) is a solution of the constrained
optimization problem

sup A (.67 £.9) = A (R(.67: 1. 6") - (18)

(f7g)eDf><Dg

The linear functional A(ﬁ( 12,g%); f, g) is calculated by the formula

AR, %) f19) = o /Tr (As(e™M)g" () + C2UE™) " (£20) + g"() T F (V) %

2 J_,

() + 8° ) TLEFO + e + - [ (AN () - o)

(FN) +g" () g (N) + 6" (V) (Au(e?) fO(A) — CUe))dA.

In the case of estimation of the functional based on observations without noise
we have the following statement.

Lemma 3. Let f°(\) satisfies the condition (15) and be a solution of the con-
strained optimization problem

A(R(f); f) — sup, f(\) € Dy, (19)
1

A1) = 5 [ (€M) 0 F () T

Then fO(X\) is the least favorable spectral density matrix for the optimal linear es-
timation of AsC based on observations of the process ((t) at pointst € R\ S. The
minimaz spectral characteristic h® = h(f°) is given by (16), if h(f°) € Hp.

The least favorable spectral densities in Dy .

Let {((t),t € R} be a PC process such that stationary sequence {(;,j € Z},

which is built by relations (1), has spectral density matrix f¢()\). Assume that
the length of each interval of observations is a multiple of the period T: K; =

Poszain 1: Maremaruka i craTrucTuka



INTERPOLATION PROBLEM FOR PC PROCESSES WITH MISSING OBSERVATIONS 37

T -KI,Ky=T-KJ,..., K,y =T-K! |, and the length of each interval of missed

observations is a multiple of T: Ny =T - NI N, =T-NJ, ... N,=T-NT.
Consider the problem of minimax estimation of the functional A, from obser-

vations of the process ((t) at points ¢ € R \ S without noise, under the condition

that the spectral density matrix f(\) of generated stationary sequence (; belongs

to the set L
Dy = {505 [ rwan=rl,

where P = {pw} | is a given positive definite matrix and detP # 0.

With the help of Lemma 3 and the method of Lagrange multipliers we can
find that a solution f°(\) of the constrained optimization problem (19) satisfy the
following relation:

[N e = [reon T a, (20)
where a@ = {ozk}zol — a vector of Lagrange multipliers, C?(e®) =

s—1 M N -1 g 0eiA @0 =
1=0 Z] MT ¢ ={(&""} jeg — column-vector of unknown coefficients

¢l j € S, which are determined from relation B® 02,0 = d,, the matrix B? is con-
structed from the Fourier coefficients of the matrix function [(f°()\))~ ] ;

Bkd) = BTk =) = 5= [ [°00) ] et Phan, ke 8

The Fourier coefficients R(k) = R*(—k), k € S, found from the equation B%@, =
d,, for d, = (a,0,...,0,...)", satisfy relation (20) and BG,° = @,. From equations
above we obtain that

P(@y)'al, ke S,
R(k) = 0 Tk . , N
0, ke{0,...,. ML, + NI'—1}\S,

where [(@)7!]" - @ = 1. The equality R(0) = P follows as a consequence of the
restriction on the spectral densities from the class D .

Let the vector-valued sequence @y, k € S, be such that the matrix function
T T _ .
(o)) = 224:3:1(;:;:4:1\[5_1) R(k)e™ is positive definite and has nonzero deter-
minant. Then (f°(\))~! can be represented in the form, [20],

*

MT  +NT-1 MT  +NT-1
LT =1 D Qe || D). Qe ™,
k=0 k=0

where Q(k) = 0 — zero matrix for k € {0,...,MT , + NI —1}\ S. Thus fO(\)
is the spectral density of the vector autoregression stochastic sequence of order
MT | + NI —1 generated by the equation

MT  +NT-1

> QU)Gk =2, (21)

k=0
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38 I. I. GOLICHENKO, M. P. MOKLYACHUK

where &, is a vector “white noise” sequence. The minimax spectral characteristic
h(f°) is given by

MI  +NT—1

==Y RE(P) de (22)

k=1
Hence the following theorem holds true.

Theorem 2. Let the sequence dj, j € §, which determine the linear functional
AC from observations of the process ((t) at points t € R\ S without noise, be such

. . MI  +NT -1 i
that the matriz function 3~ (MT +NT-1) R(k)e™, where
- s—1 s

P(@)'al, ke S
ROk = ey = A RO S

0, ke{0,...,M; ; + N —1}\S,
18 positive definite and has nonzero determinant. Then the least favorable in the class
Dy spectral density for the optimal linear estimate of AsC is given by the formula

-1
MT  +NT-1

') = > R(k)e™ | . (23)

k=—(MI_,+NT-1)

The minimaz spectral characteristic h(f°) is given by (22).

The least favorable spectral densities in D).

Let {((t),t € R} be a PC process such that stationary sequence {(;,j € Z},
which is built by relations (1), has spectral density matrix f¢(\). Assume that
the length of each interval of observations is a multiple of the period T: K; =
T -KIKy=T-KJ,... K,y =T-K! | and the length of each interval of missed
observations is a multiple of T: Ny =T - NI N, =T-NJI, ... N,=T-NT.

Consider the problem of minimax estimation of the functional A, from obser-
vations of the process ((t) at points ¢ € R\ S without noise, under the condition
that the spectral density matrix f(\) of generated stationary sequence (; belongs

to the set
. Lo
Dr — {f()\)|%/ £ cos(mA)dA = P(m), sz,l,...,M},

where the sequence of matrices P(m) = {P,,M(m)}iouzl, P(m) = P*(—m), m =
0,..., M, is such that the matrix function Z%z_ o P(m)e™ is positive definite and
has the determinant that does not equal zero.

With the help of Lemma 3 and the method of Lagrange multipliers we can find
that solution f°()\) of the constrained optimization problem (19) satisfy the following

relation:

(24)

Poszain 1: Maremaruka i crarucTuka



INTERPOLATION PROBLEM FOR PC PROCESSES WITH MISSING OBSERVATIONS 39
where d@,, m =0,1,..., M are Lagrange multipliers. Relation (24) holds true if

E :—»0 g § ame

jes

Consider two cases: 1) M > MI ;| + NI —1 and 2) M < ML | + NI — 1.
Let 1) M > MZI, + NI — 1. Then the Fourier coefﬁments of the function

T : : . . . -
(f°(N)™1) " determine the matrix B? and Ayt 4NT = Oyt NT4y = ..o = dy = 0.
Thus, extremum problem (19) is degenerate.

Let dpyr yr=---=dy=0and d,=0,m¢S, and dy,...,dyr yr_ find
T
from the equation B%a? = @, where a° = (&0, ooy QT 1+NT,1> . Then the least

favorable density satisfies the relation

o) = ( > P(m)eim> = ((Z Q(m)e—m> (Z Q(m)e—m> )

(25)
This spectral density f°(\) is the density of the vector stochastic autoregression

sequence of the order M
M

ZQ =l (26)

Let 2) M < MI, + NI — 1. Then the matrix B, is defined by the Fourier

coefficients of the function ~(f(>\)_1)T. Among them P(m),m € {0,...,M} NS,
are known and P(m),m € S\ {0,..., M}, are unknown. The unknown coefficients
Am, m € {0,...,M}NS and P(m),m € S\ {0,..., M} we find from the equation

BSO_Z?V[ = d,, (27)

where a4, = (do, - .., anr, 0,..., 6)T, M’ is defined from the relation {0,..., M} N
S =A{0,...,M'}.

The equation (27) can be represented as a system of the following equations
> mefo...ayng Bs(dym)am = @, j € S. From the first M’ equations we can find
coefficients dy, . . ., @y and from the next equations we can find matrices P(m), m €
S\ {0,...,M}.

If the sequence of matrices P( ),m € S, is such that P(m) = P*(m),m € S,

s— 1+N zm/\ . oy . .
(i, +NST—1) P(m)e"™* is positive-definite and has the
determinant which does not equal zero identically, then the least favorable spectral

density f°()) is defined by the formula

the matrix function Z

-1
MT +NT-1

o) = > P(m)e™ (28)
=—(MT | +NT-1)
and fO(\) = (( ,,Afin)ﬁNsT_l Q(m)e‘im)‘> ( ,]\:;'Tf)lJrNsT_l Q(m)e‘im’\> *> B . This spec-

tral density fY()) is the density of the vector stochastic autoregression sequence of
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the order M | + NI —1

MT  +NT-1

> QM) =4 (29)

m=0

Thus, the following theorem holds true.

Theorem 3. [f M > MT | + NI —1 then the least favorable spectral density in
the class Dy, for the optimal estimation of the functional AsC is defined by (25). It
is spectral density of the vector stochastic autoregression sequence (26) of order M,
that is determined by matrices P(m),m € {0,1,..., M}.

If M < MT | + NT — 1 and solutions P(m),m € SnN{0,1,..., M}, of the
equation B,d%, = @, with coefficients P(m),m € S\{0,1,..., M}, form a positive-

. ‘ . MI  +NT- ; . . :
definite matrixz function st_‘le; iNT 1) P(m)e™*, with the determinant which
- s—1 s

does not equal zero identically, then the spectral density (28) of the vector stochastic
autoregression sequence (29) of order ML | + NI — 1 is the least favorable in the
class Dy;. The minimaz spectral characteristic h(fY) is calculated by the formula

(16).

3. Conclusions and prospects for further research. We propose formulas
for calculating the mean square error and the spectral characteristic of the optimal
linear estimate of the functional A, = 377, A%ZJFN“’I a(t)((t)dt which depends
on the unknown values of a periodically correlated stochastic process ((¢). The
estimation is based on observations of the process ((t) + 0(t) at points t € R\ 5,
S = UZ [Mi, My + Ny, M, = Z;ZO(N]C + Ky), No = Ko = 0. Process 0(t) is
uncorrelated with ((¢) periodically correlated process.

The problem is considered under conditions of spectral certainty and spectral
uncertainty. In the first case the spectral density matrices f¢(\) and f?(\) of the
generated vector stationary sequences are known exactly. In this case we derived
formulas for calculating the spectral characteristic and the mean-square error of the
optimal estimate of the functional. In the second case the spectral density matrices
are not exactly known, but a class D = Dy x D, of admissible spectral densities
is specified. Formulas that determine the least favorable spectral densities and the
minimax spectral characteristic of the optimal estimate of the functional A,( are
proposed. The problem is investigated in details for classes D, D;, of admissible
spectral densities.
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