@article{Бак_2021, title={Стоячі хвилі в дискретних рівняннях типу Клейна-Ґордона зі степеневими нелінійностями}, volume={39}, url={http://visnyk-math.uzhnu.edu.ua/article/view/240182}, DOI={10.24144/2616-7700.2021.39(2).7-21}, abstractNote={<pre>Дана стаття присвячена вивченню дискретних рівнянь типу Клейна-Ґордона, які описують динаміку нескінченного ланцюга лінійно зв’язаних нелінійних осциляторів. Ці рівняння представляють собою зчисленну систему звичайних диференціальних рівнянь. Такі системи є нескінченновимірними гамільтоновими системами. Розглядаються рівняння типу Клейна-Ґордона зі степеневими нелінійностями непарного степеня. При підстановці анзаца у вигляді стоячої хвилі одержується система алгебраїчних рівнянь для амплітуди стоячої хвилі. Далі розглядається система з більш загальним оператором L лінійної взаємодії осциляторів, який є обмеженим і самоспряженим у гільбертовому просторі дійсних двохсторонніх послідовностей l<sup>2</sup>. Розглядається задача про існування періодичних і локалізованих (збігаються до нуля на нескінченності) розв’язків для таких систем. Основними умовами існування цих розв’язків є просторова періодичність коефіцієнтів оператора лінійної взаємодії осциляторів та належність частоти стоячої хвилі спектральному проміжку оператора L. Якщо правий кінець спектрального проміжка скінченний, то система має нетривіальні розв’язки. У цій статті показано, що періодичні і локалізовані розв’язки цієї системи можна побудувати як критичні точки відповідних функціоналів J<sub>k</sub> та J. Існування періодичних розв’язків встановлено за допомогою теореми про зачеплення. Зокрема, показано, що функціонал J<sub>k</sub> задовольняє так звану умову Пале-Смейла та геометрію зачеплення, а отже, має нетривіальні критичні точки. Останні і є періодичними розв’язками системи. У випадку локалізованих розв’язків використати теорему про зачеплення не можна, оскільки для функціоналу J не виконується умова Пале-Смейла. Тому у цьому випадку використано метод періодичних апроксимацій, тобто критичні точки функціоналу J будуються за допомогою граничного переходу при <span dir="ltr" role="presentation">k</span><span dir="ltr" role="presentation">→∞</span> в критичних точках функціоналу J<sub>k</sub>. В силу відомих властивостей дискретного оператора Лапласа одержано наслідок, в якому встановлено умови існування локалізованих розв’язків для вихідної системи.</pre> <pre> </pre>}, number={2}, journal={Науковий вісник Ужгородського університету. Серія «Математика і інформатика»}, author={Бак, С. М.}, year={2021}, month={Лис}, pages={7–21} }