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НАБЛИЖЕНА ПОБУДОВА ОПТИМАЛЬНОГО КЕРУВАННЯ
СТОХАСТИЧНИМИ ДИНАМIЧНИМИ СИСТЕМАМИ

IТО-СКОРОХОДА З МАЛИМ ПАРАМЕТРОМ I
МАРКОВСЬКИМИ ЗБУРЕННЯМИ

Одержана методика побудови синтезу оптимального керування для стохастичних
динамiчних систем зi всiєю передiсторiєю з малим параметром з марковськими збурен-
нями. Доведено, що шукане керування можна знайти як оптимальне керування деякої
допомiжної задачi оптимального керування вiдповiдної стохастичної диференцiально-
функцiональної системи. Побудовано алгоритм послiдовного наближення iтерацiй до
оптимального керування.

Ключовi слова: стохастичнi динамiчнi системи Iто-Скорохода, Марковськi збурення,
оптимальне керування.

1. Вступ. Розглянемо задачу оптимального керування {𝑥𝑢 (𝑡, 𝜔) , 𝐽 (𝑢) ,U}
з керовним випадковим процесом 𝑥𝑢 (𝑡, 𝜔), узгодженим з потоком 𝜎-алгебр
{𝐹𝑡, 𝑡 ≥ 0}, 𝐽 (𝑢) — функцiонал якостi, U — множина допустимих керувань
[1].

Означення 1. 𝐹𝑡 — вимiрнi функцiї 𝑢(𝑡) ∈ R, для яких визначена трає-
кторiя руху 𝑥 (𝑡, 𝜔) i скiнченний функцiонал 𝐽 (𝑢), називаються допустимими
керуваннями.

Позначимо
𝑣𝐽 = inf 𝐽 (𝑢) , 𝑢 ∈ U.

Задача оптимального керування якраз i полягає в знаходженнi такого допу-
стимого керування 𝑢0 ∈ U, для якого

𝐽
(︀
𝑢0
)︀
= 𝑣𝐽 . (1)

При цьому, 𝑢0(𝑡) називається оптимальним керуванням задачi
{𝑥𝑢 (𝑡, 𝜔) , 𝐽 (𝑢) ,U}.

Якщо оптимальне керування не iснує або iснує, але одержати його складно,
виникає питання про побудову оптимального керування iз заданою точнiстю.

Нехай, наприклад, задача керування мiстить малий параметр 𝜀 > 0 i задано
точнiсть керування 𝜏(𝜀) > 0.

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



10 С. В. АНТОНЮК, О. Л. КИРИЧЕНКО

Означення 2. Допустиме керування ̃︀𝑢0, що задовольняє

0 ≤ 𝐽
(︁ ̃︀𝑢0)︁− 𝑣𝐽 ≤ 𝜏(𝜀),

назвемо 𝜏 (𝜀) — оптимальним керуванням задачi {𝑥𝑢 (𝑡, 𝜔) , 𝐽 (𝑢) ,U}.

У монографiї [1] розглянуто проблему синтезу оптимального керування сто-
хастичними динамiчними системами зi скiнченною пiслядiєю i дифузiйними
збуреннями. В [2] розв’язується подiбна задача для стохастичних динамiчних
систем Iто-Скорохода з пуассоновими збуреннями i нескiнченною пiслядiєю. В
данiй роботi розв’язується проблема синтезу оптимального керування для сто-
хастичних динамiчних систем випадкової структури iз зовнiшнiми збуреннями,
пуассоновими перемиканнями i всiєю передiсторiєю.

Нехай R𝑛 — 𝑛-вимiрний дiйсний евклiдовий простiр i 1 ≤ 𝑝 <∞. 𝑋 є просто-
ром iсторiї, тобто простiр R𝑛×𝐷𝑝

𝜌, де 𝐷𝑝
𝜌 — простiр Скорохода локально обмеже-

них неперервних справа, що мають лiвостороннi границi, функцiй 𝜙 : R+ → R𝑛

таких, що
∞∫︁
0

|𝜙(𝑠)|𝑝 𝜌(𝑠)𝑑𝑠 <∞.

Норма в просторi 𝑋 вводиться наступним чином

‖𝜙‖𝑋 ≡

⎛⎝|𝜙(0)|𝑝 +
∞∫︁
0

|𝜙(𝑠)|𝑝 𝜌(𝑠)𝑑𝑠

⎞⎠1/𝑝

≡
(︁
|𝜙(0)|𝑝 + ‖𝜙‖𝑝𝜌

)︁1/𝑝
,

‖𝜙‖𝑝𝜌 <∞, 1 ≤ 𝑝 <∞.

Функцiя 𝜌 : R+ → R+ називаєтья функцiєю зi згладжуючою властивiстю,
якщо вона задовольняє таким умовам:

1. 𝜌 — сумовна в R+;
2. для ∀𝑧 ≥ 0 справедливi нерiвностi

𝐾(𝑧) ≡ 𝑒𝑠𝑠 sup
𝑠∈R+

𝜌(𝑠+ 𝑧)

𝜌(𝑠)
≤ 𝐾 <∞;

𝐾(𝑧) ≡ 𝑒𝑠𝑠 sup
𝑠∈R+

𝜌(𝑠)

𝜌(𝑠+ 𝑧)
<∞;

3. 𝜌 — обмежена в R+;
4. 𝜌 > 0 — строго додатня на 𝑠 ∈ (0,∞);
5. 𝑠𝜌(𝑠) → 0 коли 𝑠→ ∞.

Нехай (Ω,F,F ≡ {F𝑡 ⊂ F, 𝑡 ≥ 0} ,P) — ймовiрнiсний базис [1]; {𝜉(𝑡), 𝑡 ≥ 0}
— марковський процес iз значеннями в метричному просторi Y = {𝑦1, . . . , 𝑦𝑛}
з перехiдною ймовiрнiстю P(𝑠, 𝑦, 𝐴), 𝐴 ⊂ B𝑌 ; {𝜂𝑘, 𝑘 ≥ 0} — ланцюг Марко-
ва в метричному просторi H з перехiдною ймовiрнiстю на 𝑘-му кроцi P𝑘(ℎ,𝐺);
{𝑤(𝑡), 𝑡 ≥ 0} — R𝑛-значний вiнерiв процес, узгоджений з потоком 𝜎-алгебр
{𝐹𝑡, 𝑡 ≥ 0}, а {𝜈(𝑑𝜃, 𝑑𝑡) ≡ 𝜈(𝑑𝜃, 𝑑𝑡)− 𝑡Π(𝑑𝜃)} незалежна вiд нього центрована

Роздiл 1: Математика i статистика
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пуассонова мiра на (Θ×R+,Z×B+), для якої E {𝜈2(𝑑𝜃 × 𝑑𝑡)} = Π(𝑑𝜃)𝑑𝑡, де Π —
деяка 𝜎-скiнченна мiра на Z.

Розглянемо задачу керування для стохастичної динамiчної системи випад-
кової структури iз зовнiшнiми збуреннями та усiєю передiсторiєю

𝑑𝑥 (𝑡) = 𝑓1 (𝛾1)𝑎 (𝑡, 𝑥
𝑢
𝑡 , 𝜉 (𝑡) , 𝑢, 𝜀) 𝑑𝑡+ 𝑓2 (𝛾2) 𝑏 (𝑡, 𝑥

𝑢
𝑡 , 𝜉 (𝑡) , 𝑢, 𝜀) 𝑑𝑤 (𝑡)+

+𝑓3 (𝛾3)

∫︁
Θ

𝑐 (𝑡, 𝑥𝑢𝑡 , 𝜃, 𝜉 (𝑡) , 𝑢, 𝜀) 𝜈 (𝑑𝜃, 𝑑𝑡) , ∀𝑡 ≥ 0, (2)

з марковськими перемиканнями

∆𝑥
⃒⃒⃒
𝑡=𝑡𝑘

= 𝑥(𝑡𝑘)− 𝑥(𝑡𝑘−) = 𝑔
(︀
𝑡𝑘−, 𝑥𝑡𝑘−, 𝜉(𝑡𝑘), 𝜂𝑘

)︀
,

𝑡𝑘 ∈ 𝑆 ≡ {𝑡𝑛 ↑, 𝑛 ∈ N} , lim
𝑛→∞

𝑡𝑛 = +∞.
(3)

i початковими умовами

𝜉 (𝑡0) = 𝑦 ∈ Y, 𝑥𝑡0 = 𝜙, 𝜂𝑡0 = ℎ. (4)

Тут 𝛾1, 𝛾2 — випадковi величини, з функцiями розподiлу 𝐹𝛾1(·), 𝐹𝛾2(·) вiдпо-
вiдно, незалежнi вiд 𝜉(𝑡) i приростiв вiнерового процесу {𝑤 (𝑠)−𝑤 (𝑡), 𝑠 ≥ 𝑡 ≥ 𝑡0}
та центрованої пуассонової мiри {𝜈 (𝑠, 𝐴)− 𝜈 (𝑡0, 𝐴), 𝑠 ≥ 𝑡0}, 𝑓1(·), 𝑓2(·) — деякi
борелевi функцiї; векторнозначний функцiонал 𝑎 : R × 𝑋 × 𝑌 × U → R𝑛, ма-
тричнозначний функцiонал 𝑏 : R ×𝑋 × 𝑌 ×U → 𝑀𝑛

𝑛 (R𝑛) та векторнозначний
функцiонал 𝑐 : R × 𝑋 × Θ × 𝑌 × U → R𝑛 — вимiрнi за сукупнiстю змiнних i
локально обмеженi по 𝑡 за другим аргументом, а процес 𝑥𝑡 = (𝑥 (𝑡) , 𝑥𝑡(𝑠))

𝑥𝑡 (𝑠) =

{︃
𝑥 (𝑡− 𝑠) , 𝑡0 ≤ 𝑠 ≤ 𝑡,

𝜙 (𝑠− 𝑡) , 𝑠 > 𝑡.

Крiм того, 𝜙𝑡0 ∈ 𝑋 з ймовiрнiстю 1 i 𝜙(𝑡) не залежить вiд приростiв вi-
нерового процесу {𝑤 (𝑠) − 𝑤 (𝑡), 𝑠 ≥ 𝑡 ≥ 𝑡0} та центрованої пуассонової мiри
{𝜈 (𝑠, 𝐴)− 𝜈 (𝑡0, 𝐴), 𝑠 ≥ 𝑡0} при кожному 𝑡.

В [3] встановленi умови iснування i єдиностi сильного розв’язку 𝑥(𝑡) задачi
(2)–(4).

Введемо в розгляд функцiонал якостi 𝐽 (𝑢) = 𝐽(0, 𝜙0), де

𝐽𝑢 (𝑡, 𝜙) = 𝐸𝑡,𝜙

⎧⎨⎩𝐹 (𝑥𝑢𝑇 , 𝜀) +

𝑇∫︁
𝑡

𝐺 (𝑠, 𝑥𝑢𝑠 , 𝑢 (𝑠, 𝑥
𝑢
𝑠 ) , 𝜀) 𝑑𝑠

⎫⎬⎭ , (5)

𝐹 (𝜙, 𝜀) ≥ 0, 𝐺 (𝑡, 𝜙, 𝜀) ≥ 0.

Розглянемо допомiжну задачу керування для {𝑥𝑢 (𝑡, 𝜔) , 𝐽 (𝑢) ,U} i позначи-
мо її

{𝑦𝑢 (𝑡, 𝜔) , 𝐼 (𝑢) ,U}. (6)

Нехай керування ̃︀𝑢0(𝑡) — оптимальне керування задачi {𝑦𝑢 (𝑡, 𝜔) , 𝐼 (𝑢) ,U},
тобто

𝐼
(︁ ̃︀𝑢0)︁ = inf 𝐼(𝑢) ≡ 𝑣𝐼 .

Позначимо через

𝜌 (𝐽, 𝐼) ≡ sup |𝐽 (𝑢)− 𝐼 (𝑢)| , ∀𝑢 ∈ U. (7)

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)
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Лема 1. Для задачi керування (3)–(5) мають мiсце наступнi нерiвностi

0 ≤
⃒⃒⃒
𝐽
(︁ ̃︀𝑢0)︁− 𝑣𝐼

⃒⃒⃒
≤ 𝜌 (𝐽, 𝐼) . (8)

Доведення. З (7) випливає

|𝐽 (𝑢)− 𝐼 (𝑢)| ≤ 𝜌 (𝐽, 𝐼) .

Звiдси одержимо

−𝜌 (𝐽, 𝐼) ≤ 𝐽 (𝑢)− 𝐼 (𝑢) ≤ 𝜌 (𝐽, 𝐼) ,

що еквiвалентно
𝐽 (𝑢) ≤ 𝐼 (𝑢) + 𝜌 (𝐽, 𝐼) ,

𝐼 (𝑢) ≤ 𝐽 (𝑢) + 𝜌 (𝐽, 𝐼) .

За означенням 𝑣𝐼 i 𝑣𝐽 , маємо

𝑣𝐽 ≤ 𝑣𝐼 + 𝜌 (𝐽, 𝐼) ,

𝑣𝐼 ≤ 𝑣𝐽 + 𝜌 (𝐽, 𝐼) ,

тобто |𝑣𝐽 − 𝑣𝐼 | ≤ 𝜌 (𝐽, 𝐼).
Отже, 0 ≤

⃒⃒⃒
𝐽
(︁ ̃︀𝑢0)︁− 𝑣𝐼

⃒⃒⃒
≤ 𝜌 (𝐽, 𝐼), що i доводить твердження.

Наслiдок 1. Нехай задача керування {𝑥𝑢 (𝑡, 𝜔) , 𝐽 (𝑢) ,U} мiстить малий
параметр, а допомiжна задача керування {𝑦𝑢 (𝑡, 𝜔) , 𝐼 (𝑢) ,U} має оптимальне
керування ̃︀𝑢0, таке, що

𝜌 (𝐽, 𝐼) ≤ 𝜏(𝜀), (9)

де 𝜏(𝜀) — точнiсть.
Тодi керування ̃︀𝑢0 є 𝜏(𝜀)-оптимальним керуванням задачi {𝑥𝑢 (𝑡, 𝜔) , 𝐽 (𝑢) ,

U}.
Доведення. З нерiвностей (8) i (9) випливає, що

𝐽
(︁ ̃︀𝑢0)︁− 𝑣𝐼 ≤ 2𝜌 (𝐽, 𝐼) ≤ 2𝜏(𝜀).

Наслiдок дає алгоритм наближеного синтезу оптимального керування для
динамiчних систем (2)–(4), якi мiстять малий параметр 𝜀.

Зазвичай, в ролi допомiжної задачi керування обираємо лiнiйну задачу ке-
рування типу (2)–(5) з 𝜀 = 0. В результатi одержимо нульове наближення до
оптимального керування.

Розглянемо алгоритм побудови послiдовностi допомiжних задач керування,
що дозволить реалiзувати наближений синтез з заданою точнiстю 𝜏(𝜀).

2. Рiвняння Беллмана. Наближена побудова оптимального керува-
ння. Оптимальне керування ̃︀𝑢0(𝑡, 𝜙) i вартiсть керування задачi (2)–(5) визна-
чається з рiвняння Беллмана [2]

inf [𝐿 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) 𝑣 (𝑡, 𝜙) +𝐺 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀)] = 0, ∀𝑢 ∈ U, (10)

Роздiл 1: Математика i статистика
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де 𝐿𝑣 — слабкий iнфiнiтезимальний оператор на розв’язках задачi Кошi (2)–(4).

𝐿 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) 𝑣 (𝑡, 𝜙) =
𝜕

𝜕𝑡
𝑣𝜙 (𝑡, 𝑥) +

(︀
∇𝑣 (𝑡, 𝑥) , 𝑎(𝑡, 𝜙, 𝑦, 𝑢, 𝜀)

)︀
+

+
1

2
Sp
[︁
∇2𝑣𝜙 (𝑡, 𝑥) 𝑏 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) 𝑏

′
(𝑡, 𝜙, 𝑦, 𝑢, 𝜀)

]︁
+

+

∫︁
Θ

[︁
𝑣𝜙
(︀
𝑡, 𝑥+ 𝑎 (𝑡, 𝜙, 𝑦, 𝜃, 𝑢, 𝜀)

)︀
− 𝑣 (𝑡, 𝑥)−

(︀
∇𝑣 (𝑡, 𝑥) , 𝑐 (𝑡, 𝜙, 𝑦, 𝜃, 𝑢, 𝜀)

)︀]︁
Π(𝑑𝜃) .

Тут « ′ » — операцiя транспонування вектора або матрицi;

∇𝑣 ≡
(︂
𝜕𝑣

𝜕𝑥1
,
𝜕𝑣

𝜕𝑥2
, . . . ,

𝜕𝑣

𝜕𝑥𝑛

)︂′

; ∇2𝑣 ≡
(︂

𝜕2𝑣

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
, 𝑖, 𝑗 = 1, 𝑛;

Sp𝐴 — слiд матрицi 𝐴; (·, ·) — скалярний добуток.
Припустимо, що iснує така множина 𝑉0 ⊂ V, що для довiльного 𝑣 ∈ 𝑉0 iснує

керування ̃︀𝑢0 ∈ U, для якого досягається точна нижня межа в (10)

inf [𝐿 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) 𝑣 (𝑡, 𝜙) +𝐺 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀)] = 𝐿
(︁
𝑡, 𝜙, 𝑦, ̃︀𝑢0, 𝜀)︁ 𝑣 (𝑡, 𝜙)+

+𝐺
(︁
𝑡, 𝜙, 𝑦, ̃︀𝑢0, 𝜀)︁ . (11)

Розв’язок крайової задачi

𝐿 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) 𝑣 (𝑡, 𝜙) +𝐺 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) = 0,

𝑣 (𝑡, 𝜙) = 𝐹 (𝜙, 𝜀), (12)

спiвпадає з вартiстю задачi керування (2)-(5), а оптимальне керування задає-
ться спiввiдношенням (11).

У (12) розкладемо в ряд по величини

𝑣 (𝑡, 𝜙) = 𝑣0 (𝑡, 𝜙) + 𝜀𝑣1 (𝑡, 𝜙) . . . (131)

𝐿
(︁
𝑡, 𝜙, 𝑦, ̃︀𝑢0, 𝜀)︁ = 𝐿0(𝑡, 𝜙, 𝑦) + 𝜀𝐿1 (𝑡, 𝜙, 𝑦) . . . (132)

𝐺
(︁
𝑡, 𝜙, 𝑦, ̃︀𝑢0, 𝜀)︁ = 𝐺0(𝑡, 𝜙, 𝑦) + 𝜀𝐺1 (𝑡, 𝜙, 𝑦) . . . (133)

Пiдставимо (131)–(133) у (12), прирiвняємо до нуля вiдповiднi коефiцiєнти
при однакових степенях 𝜀. Одержимо

𝑖∑︁
𝑗=0

𝐿𝑖−𝑗(𝑡, 𝜙, 𝑦)𝑣𝑗(𝑡, 𝜙) +𝐺𝑖 (𝑡, 𝜙, 𝑦) = 0; 𝑖 = 0, 1, 2, . . . (141)

𝑣0 (𝑇, 𝜙) = 𝐹 (𝜙, 𝜀) ; 𝑣𝑖 (𝑇, 𝜙) = 0; 𝑖 = 1, 2, . . . (142)

Оскiльки керування 𝑢0 залежить вiд усiх функцiоналiв 𝑣𝑖, 𝑖 = 0, 1, 2, . . . , то
в рiвностях (131)–(133) кожний з операторiв 𝐿𝑖 (𝑡, 𝜙, 𝑦) i функцiоналiв 𝐺𝑖 (𝑡, 𝜙, 𝑦)
також можуть залежати вiд 𝑣𝑖, 𝑖 = 0, 1, 2, . . .
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Теорема 1. Нехай оператор 𝐿𝑖 (𝑡, 𝜙, 𝑦) i функцiонал 𝐺𝑖 (𝑡, 𝜙, 𝑦) залежать
лише вiд скiнченної кiлькостi функцiоналiв 𝑣𝑗 з номерами 𝑗 ≤ 𝑖.

Тодi спiввiдношення (141)–(142) слiд розглядати як систему рiвнянь для
послiдовного знаходження функцiоналiв 𝑣0, 𝑣1, . . . , 𝑣𝑘.

Доведення. Якщо фунцiонал 𝑣0 визначається з рiвняння 𝐿0𝑣0 +𝐺0 = 0, то
функцiонал 𝑣1 визначаємо з (141), при 𝑖 = 1: 𝐿0𝑣1 + 𝐿1𝑣0 +𝐺1 = 0. Функцiонал
𝑣2 визначаємо з (141), при 𝑖 = 2: 𝐿0𝑣1+𝐿1𝑣0+𝐿0𝑣2+𝐺2 = 0; . . . ; функцiонал 𝑣𝑘
визначаємо з (141), при 𝑖 = 𝑘:

∑︀𝑘
𝑗=0 𝐿𝑖−𝑗𝑣𝑗 +𝐺𝑘 = 0, що i доводить твердження.

Введемо величину 𝛿𝑘(𝑡, 𝜙), яка визначається за знайденими 𝑣0, 𝑣1, . . . , 𝑣𝑘:

𝛿𝑘 (𝑡, 𝜙, 𝑦) =
𝑘∑︁
𝑖=0

𝜀𝑖

[︃
𝑖∑︁

𝑗=0

𝐿𝑖−𝑗 (𝑡, 𝜙, 𝑦) 𝑣𝑗 (𝑡, 𝜙) +𝐺𝑖 (𝑡, 𝜙, 𝑦)

]︃
−

−𝐿 (𝑡, 𝜙, 𝑦, 𝑢𝑘, 𝜀)𝑄𝑘 (𝑡, 𝜙)−𝐺 (𝑡, 𝜙, 𝑦, 𝑢𝑘, 𝜀) , (15)

𝑢𝑘 ≡ 𝑢0(𝑡, 𝜙, 𝑦,𝑄𝑘, 𝜀);

𝑄𝑘 ≡ 𝑣0 + 𝜀𝑣1 + . . .+ 𝜀𝑘𝑣𝑘. (16)

З (141), (142), (15), (16) випливає, що

𝐿 (𝑡, 𝜙, 𝑦, 𝑢𝑘, 𝜀)𝑄𝑘 (𝑡, 𝜙) +𝐺 (𝑡, 𝜙, 𝑦, 𝑢𝑘, 𝜀) + 𝛿𝑘 (𝑡, 𝜙, 𝑦) = 0, (17)

𝑄𝑘 (𝑇, 𝜙) = 𝐹 (𝜙, 𝜀) . (18)

Порiвнюючи (17), (18) з (12), одержимо, що 𝑢𝑘 — оптимальне керування, а
𝑄𝑘 — функцiонал Беллмана допомiжної задачi керування {𝑥𝑢 (𝑡, 𝜔) , 𝐼𝑘 (𝑢) ,U},
де

𝐼𝑘 (𝑢) ≡ 𝐽 (𝑢) + 𝐸0,𝜙0

𝑇∫︁
0

𝛿𝑘(𝑠, 𝑥
𝑢
𝑠 , 𝑦)𝑑𝑠.

Теорема 2. Якщо 𝛿𝑘 (𝑡, 𝜙, 𝑦) ≡ 𝑜
(︀
𝜀𝑘+1

)︀
, то керування 𝑢𝑘 за формулою (17)

буде 𝑘-им наближенням до оптимального керування {𝑥𝑢 (𝑡) , 𝐽 (𝑢) ,U}, тодi

𝑣 (𝜙0) = 𝐽(𝑢𝑘) + 𝑜
(︀
𝜀𝑘+1

)︀
.

Доведення випливає з наслiдку 1.
Алгоритм послiдовного наближення до оптимального керування задачi

{𝑥𝑢 (𝑡) , 𝐽 (𝑢) ,U}:
1. З рiвнянь (141), (142) визначаємо функцiонали 𝑣0, 𝑣1, . . . , 𝑣𝑘.
2. За формулами (16) визначаємо оптимальне керування 𝑢𝑘.

Зауважимо, що п. 1, п. 2 не вимагають iснування оптимального керування,
не вимагаємо iснування вiдповiдного функцiонала Беллмана.

Теорема 3. Нехай функцiонал

𝛾𝑘 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) = 𝐿 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀)𝑄𝑘 (𝑡, 𝜙) +𝐺 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) ,

рiвномiрно по 𝑡 ∈ [0, 𝑇 ], 𝜀 ≤ 𝜀0 i ‖𝜙‖ ≤ 𝐾 задовольняє

|𝛾𝑘 (𝑡, 𝜙, 𝑦, 𝑢1, 𝜀)− 𝛾𝑘 (𝑡, 𝜙, 𝑦, 𝑢2, 𝜀)| ≤ 𝐾 |𝑢1 − 𝑢2| .
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Тодi в якостi 𝑘-го наближення до оптимального керування можна обрати
довiльне допустиме керування таке, що

𝑢 = 𝑢𝑘 + 𝑜
(︀
𝜀𝑘+1

)︀
.

Доведення. Нехай 𝑢1𝑘 (𝑡, 𝜙) — деяке допустиме керування для якого

𝑢1𝑘 (𝑡, 𝜙)− 𝑢𝑘 (𝑡, 𝜙) = 𝑜
(︀
𝜀𝑘+1

)︀
.

Тодi для довiльного керування 𝑢 ∈ U маємо

𝐿 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀)𝑄𝑘 (𝑡, 𝜙) +𝐺 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) + 𝛿𝑘 (𝑡, 𝜙, 𝑦)+

+𝛾𝑘 (𝑡, 𝜙, 𝑦, 𝑢1𝑘, 𝜀)− 𝛾𝑘 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) = 0.

Покладемо

𝛿𝑘 ≡ 𝛿𝑘 (𝑡, 𝜙, 𝑦) +𝑘 (𝑡, 𝜙, 𝑦, 𝑢1𝑘, 𝜀)−𝑘 (𝑡, 𝜙, 𝑦, 𝑢, 𝜀) = 0,

𝑄𝑘 (𝑇, 𝜙) = 𝐹 (𝜙, 𝜀).

Отже, одержуємо керування 𝑢1𝑘 в якостi оптимального керування
{𝑥𝑢 (𝑡, 𝜔) , 𝐼𝑘 (𝑢) ,U}, з функцiоналом якостi у формi (18) iз замiною 𝛿𝑘 на 𝛿𝑘.

Якщо 𝛿𝑘 (𝑡, 𝜙, 𝑦) ≡ 𝑜
(︀
𝜀𝑘+1

)︀
, то i 𝛿𝑘 (𝑡, 𝜙, 𝑦) ≡ 𝑜

(︀
𝜀𝑘+1

)︀
. Таким чином,

0 ≤ 𝐽 (𝑢1𝑘)− 𝑣 (𝜙0) = 𝑜
(︀
𝜀𝑘+1

)︀
.

3. Висновки. Дослiджуючи реальнi динамiчнi системи, наприклад, енер-
гетичнi системи, фiнансовi ринки, автоматизованi системи управлiння, доводи-
ться дослiджувати поведiнку розв’язкiв систем нелiнiйних стохастичних дифе-
ренцiально-функцiональних рiвнянь з пiслядiєю при наявностi постiйно дiючих
випадкових збурень. У багатьох випадках неможливо обґрунтовано вiдмови-
тись вiд врахування пiслядiї в математичнiй моделi, оскiльки це призведе до
погiршення точностi прогнозування i планування. На жаль, математичнi мо-
делi, що враховують ефект пiслядiї i постiйно дiючi випадковi збурення, дуже
погано пiддаються як якiсному так i кiлькiсному аналiзу.

Керування стохастичними системами з пiслядiєю необхiдне для ефективного
функцiонування складних динамiчних систем в умовах невизначеностi. А по-
будова оптимального керування дозволить досягти стабiльностi, надiйностi та
економiчної ефективностi. Визначення достатнiх умов iснування оптимального
керування i побудова оптимального керування залишаються актуальними. На
жаль, для складних стохастичних динамiчних систем оптимальне керування не
iснує або iснує, але одержати його складно. Тому виникає питання про побудову
оптимального керування iз заданою точнiстю.

В данiй роботi одержана методика побудови синтезу оптимального керуван-
ня для стохастичних динамiчних систем зi всiєю передiсторiєю з малим параме-
тром i марковськими збуреннями. А також, побудовано алгоритм послiдовного
наближення iтерацiй до оптимального керування.
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УСЕРЕДНЕННЯ В ЗАДАЧI ДИФЕРЕНЦIАЛЬНОЇ ГРИ
ПЕРЕСЛIДУВАННЯ ЗА НАЯВНОСТI БАГАТОЧАСТОТНИХ

ЗБУРЕНЬ

У роботi розглядається задача диференцiальної гри переслiдування, коли на рух
переслiдувача i втiкача накладенi зовнiшнi малi збурення. Застосовано та обґрунто-
вано метод усереднення за швидкими змiнними для побудови спрощеної системи рiв-
нянь. Дослiджено вплив багаточастотних збурень на конфлiктно-керований процес.
Доведено iснування та єдинiсть розв’язку початкової задачi i побудовано оцiнку вiд-
хилення розв’язкiв точної усередненої системи з однаковими початковими умовами
на довiльному скiнченному часовому вiдрiзку [0, 𝐿]. Розглянуто випадки, коли матри-
ця лiнiйної частини залежить як вiд часу, так i вiд амплiтудних змiнних. Наведено
приклад диференцiальної гри «Простий рух», який модифiковано через накладення
збурень, та знайдено час завершення переслiдування для точної задачi та у випадку
зi збуренням. Проаналiзовано вплив збурень на iснування розв’язку та на час завер-
шення переслiдування диференцiальної гри.

Ключовi слова: диференцiальна гра переслiдування, багаточастостне збурення, ме-
тод усереднення, осциляцiйний iнтеграл, резонанс.

1. Вступ. Одним з важливих та актуальних напрямкiв дослiджень у при-
кладнiй математицi є теорiя диференцiальних iгор, започаткована американ-
ським вченим Р. Айзексом [1] у серединi XX столiття. Її початок та розвиток
стимулював численнi дослiдження з керування процесами, якi функцiонують в
умовах конфлiкту та невизначеностi.

Значного прогресу в розвитку теорiї диференцiальних iгор досягли україн-
ськi вченi. Одними з перших були працi Б. М. Пшеничного [2], якi присвяченi
методам розв’язування iгрових задач зближення-вiдхилення керованих об’єктiв.
У дослiдженнях А. О. Чикрiя, викладених у монографiї [3] та багатьох iнших йо-
го працях, розроблено та впроваджено метод розв’язуючих функцiй для дослi-
дження широких класiв iгрових задач, а саме для стацiонарних i нестацiонарних
конфлiктно-керованих процесiв, якi описуються звичайними i диференцiально-
рiзницевими рiвняннями, стохастичними рiвняннями та рiвняннями з частин-
ними похiдними [4–6].

У диференцiальних iграх кожен iз гравцiв обирає керування, аналiзуючи вi-
дому йому iнформацiю про суперникiв. Вiдповiдно, дiї одного з гравцiв можуть
вплинути на можливi дiї iнших гравцiв. Проте у процесi переслiдування, як на
переслiдувачiв, так i на втiкачiв можуть накладатися збурення, якi породженi
метеорологiчними факторами, спричиненi внаслiдок воєнних дiй або iншими,
незалежними вiд гравцiв чинниками. У багатьох таких задачах збурення є ба-
гаточастотними i в процесi еволюцiї може досягатися резонанс частот, умова
якого

(𝑘, 𝜔) := 𝑘1𝜔1 + . . .+ 𝑘𝑚𝜔𝑚 = 0,
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де 𝜔𝑖 — частоти, 𝑘𝑖 ∈ Z, |𝑘| = |𝑘1|+ . . .+ |𝑘𝑚| ≠ 0,𝑚 ≥ 2.
У данiй працi за допомогою методу усереднення [7] дослiджується вплив

багаточастотних збурень на конфлiктно-керований процес.
2. Постановка задачi. Нехай керування переслiдувача задано рiвнянням

𝑥̇ = 𝐴1𝑥+ 𝜙1(𝑢), (1)

де 𝑥 — фазовий вектор, 𝑥 ∈ R𝑛1 ∈ 𝐷1, який складається з геометричних коор-
динат, швидкостей i прискорень переслiдувача, 𝐷1, — обмежена область, 𝐴1 —
квадратна матриця порядку 𝑛1, 𝜙1(𝑢) — функцiя керування, 𝑢 — параметр ке-
рування переслiдувача, 𝑢 ∈ 𝑈 , 𝑈 — область керування.

Вiдповiдно керування втiкача задається рiвнянням

𝑦̇ = 𝐴2𝑦 + 𝜙2(𝑣), (2)

де 𝑦 — фазовий вектор втiкача, 𝑦 ∈ R𝑛2 ∈ 𝐷2, 𝐷2 — обмежена область, 𝐴2 —
квадратна матриця порядку 𝑛2, 𝜙2(𝑣) — функцiя керування втiкача, 𝑣 — пара-
метр керування втiкача вiдповiдно, 𝑣 ∈ 𝑉 , 𝑉 — область керування. Областi 𝑈
та 𝑉 — непорожнi компакти в R𝑛1 та R𝑛2 вiдповiдно.

Запишемо рiвняння (1), (2) у виглядi одного рiвняння

𝑧̇ = 𝐴𝑧 + 𝜙(𝑢, 𝑣), (3)

де 𝑧 = 𝑐𝑜𝑙(𝑥, 𝑦) — фазовий вектор, 𝐴 = (𝐴1, 𝐴2) — блочна матриця порядку
𝑛 = 𝑛1 + 𝑛2, 𝜙(𝑢, 𝑣) = 𝑐𝑜𝑙(𝜙1(𝑢), 𝜙2(𝑣)) — блок керування.

Нехай задана термiнальна множина [3]

𝑀* =𝑀0 + 𝜀𝑆, (4)

де 𝑀0 – лiнiйний пiдпростiр в R𝑛, 𝑆 — сфера з ортогонального доповнення до
𝑀0 в просторi R𝑛, параметр 𝜀 ≥ 0 визначає радiус цiєї сфери.

Кожен з гравцiв обирає керування у виглядi деяких функцiй та впливає на
процес (3). Переслiдувач намагається вивести траєкторiю процесу (3) на термi-
нальну множину (4). У свою чергу, мета втiкача — уникнути зустрiчi траєкторiї
процесу (3) з термiнальною множиною (4), або якомога довше вiдтягнути мо-
мент зустрiчi.

У лiнiйному стацiонарному випадку керування для переслiдувача i втiкача
задається так:

𝑥̇ = 𝐵𝑥+ 𝑢, 𝑥 ∈ R𝑛1 ,

𝑦̇ = 𝐶𝑦 + 𝑣, 𝑦 ∈ R𝑛2 ,

де 𝐵 i 𝐶 – квадратнi матрицi iз сталими елементами порядку 𝑛1 i 𝑛2 вiдповiдно.
Подiбнi системи закладенi в основу бiльшостi практичних методiв переслi-

дування, таких як погонна крива, паралельне переслiдування, переслiдування
iз випередженням [1].

Розглянемо задачу (3) у випадку, коли на рух переслiдувача i втiкача на-
кладенi зовнiшнi малi збурення. Тодi система рiвнянь (3) набуває вигляду

𝑑𝑧

𝑑𝑡
= 𝐴(𝑡, 𝑎, 𝜓)𝑧 + 𝜙(𝑢, 𝑣) + 𝜇𝑍(𝜏, 𝑎, 𝜓), (5)
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𝑑𝑎

𝑑𝜏
= 𝑋(𝜏, 𝑎, 𝜓), (6)

𝑑𝜓

𝑑𝜏
=
𝜔(𝜏)

𝜇
+ 𝑌 (𝜏, 𝑎, 𝜓), (7)

де 𝑎 ∈ 𝐷 — вектор амплiтудних змiнних, 𝐷 — обмежена область в R𝑛𝑘 , 𝜓 ∈
R𝑚,𝑚 ≥ 1 — вектор фазових змiнних, 𝜏 = 𝜇𝑡 — повiльний час, 𝜇 — малий
параметр, 𝜇 ∈ (0, 𝜇0], вектор-функцiї 𝑋, 𝑌, 𝑍 — 2𝜋-перiодичнi за компонентами
вектора 𝜓.

Якщо 𝑚 = 1, то система рiвнянь (6), (7) називається одночастотною, для
𝑚 > 1 — багаточастотною. У багаточастотному випадку дослiдження i побудо-
ва розв’язку системи рiвнянь (6), (7) значно ускладнюється внаслiдок можли-
вого резонансу частот. Ефективна оцiнка похибки методу усереднення, поря-
док якої 𝑂(𝜇𝛼), 0 < 𝛼 ≤ 𝑚−1, для повiльних i швидких змiнних одержується,
якщо 𝜔 = 𝜔(𝜏). Якщо ж 𝜔 = 𝜔(𝜏, 𝑎) то ефективна оцiнка одержується тiльки
для амплiтудних змiнних. Дослiдження на скiнченному i нескiнченному часо-
вих iнтервалах, якщо задано початковi, багатоточковi або iнтегральнi умови,
викладено в монографiї А. М. Самойленка i Р. М. Петришина [7].

Збурення можуть впливати на матрицi 𝐵 i 𝐶, якими визначається рух пе-
реслiдувача i втiкача. Тому, в загальному випадку, цi матрицi також можуть
повiльно змiнюватись або залежати вiд амплiтудних 𝑎 i фазових 𝜙 змiнних.

Для спрощення системи рiвнянь (5), (6), (7) побудуємо усереднену за швид-
кими змiнними 𝜓𝑣, 𝑣 = 1,𝑚 задачу, в якiй керування залишається без змiн.
Одержимо значно простiшу задачу вигляду

𝑑𝑧

𝑑𝑡
= 𝐴0(𝑡, 𝑎̄)𝑧 + 𝜙(𝑢, 𝑣) + 𝜇𝑍0(𝜏, 𝑎̄), (8)

𝑑𝑎̄

𝑑𝜏
= 𝑋0(𝜏, 𝑎̄), (9)

𝑑𝜓

𝑑𝜏
=
𝜔(𝜏)

𝜇
+ 𝑌0(𝜏, 𝑎̄), (10)

де 𝑧(0) = 𝑧0, 𝑎̄(0) = 𝑎0, 𝜓(0) = 𝜓0.
Вектор-функцiя 𝐴0 набуває такого вигляду

𝐴0(𝑡, 𝑎̄) =
1

(2𝜋)𝑚

∫︁ 2𝜋

0

· · ·
∫︁ 2𝜋

0

𝐴(𝑡, 𝑎, 𝜓) 𝑑𝜓1 . . . 𝑑𝜓𝑚, 𝜓𝑘 ∈ R𝑚.

Аналогiчний вигляд мають вектор-функцiї 𝑍0, 𝑋0 та 𝑌0.
Розв’язавши задачу Кошi для рiвняння (9), знаходимо розв’язок 𝑎̄(𝜏) =

= 𝑎̄(𝜏 ; 𝑎0), що суттєво спрощує рiвняння (8). Зi знайденим розв’язком 𝑎̄(𝜏) =
= 𝑎̄(𝜏 ; 𝑎0), знаходження розв’язку 𝜓(𝜏, 𝑎0, 𝜓0, 𝜇), для випадку повiльно змiнних
частот 𝜔 = 𝜔(𝜏), зводиться до задачi iнтегрування

𝜓(𝜏, 𝑎0, 𝜓0, 𝜇) = 𝜓0 +

∫︁ 𝜏

0

(︂
𝜔(𝑠)

𝜇
+ 𝑌0(𝑠, 𝑎̄(𝑠, 𝑎0))

)︂
𝑑𝑠.

Також значно спрощується рiвняння (5), оскiльки вектор-функцiя 𝐴0 i 𝑍0

не залежить вiд вектора швидких змiнних 𝜓.

Роздiл 1: Математика i статистика
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Обґрунтуємо метод усереднення для системи рiвнянь (5), (8) для випадку по-
вiльно змiнних частот 𝜔𝑣(𝜏). Для цього доведемо iснування i єдинiсть розв’язку
початкової задачi i побудуємо оцiнку розв’язкiв точної усередненої системи на
довiльному скiнченному часовому вiдрiзку 𝑡 ∈ [0, 𝐿], якщо початковi умови збi-
гаються. Для цього застосуємо оцiнку похибки методу усереднення для системи
(6), (7) на асимптотично великому промiжку [0, 𝐿𝜇−1], яка явно залежить вiд
малого параметра 𝜇 [7].

Наведемо вiдповiдну теорему, для цього скористаємось такими позначен-
нями: 𝑊𝑝(𝜏) − 𝑝 × 𝑚 матриця, елементи якої мають вигляд (𝜔

(𝑗−1)
𝜈 (𝜏))𝑝,𝑚𝑗,𝜈=1,

𝑝 ≥ 𝑚, де 𝜔𝜈 ∈ 𝐶[0, 𝜏 ], 𝑙 ≥ 𝑝. 𝑊 𝑇
𝑝 (𝜏) − транспонована до матрицi 𝑊𝑝(𝜏).

Вектор-функцiя 𝑐(𝑡, 𝑎, 𝜓) := (𝑋(𝜏, 𝑎, 𝜓);𝑌 (𝜏, 𝑎, 𝜓)).Якщо 𝑝 = 𝑚, то 𝑑𝑒𝑡 𝑊𝑚(𝜏)
— визначник Вронського.

Теорема 1. [7] Нехай виконуються умови:
1) вектор-функцiї 𝑐(𝑡, 𝑎, 𝜓) ∈ 𝐶 𝑙1

𝜓 (𝐷, 𝜎1),
𝜕
𝜕𝜏
𝑐(𝑡, 𝑎, 𝜓) ∈ 𝐶 𝑙2

𝜓 (𝐷, 𝜎1),
𝜕
𝜕𝑥
𝑐(𝑡, 𝑎, 𝜓) ∈

𝐶 𝑙3
𝜓 (𝐷, 𝜎1), min{𝑙1 − 1, 𝑙2, 𝑙3} ≥ 𝑚, 𝜔𝜈 ∈ 𝐶 𝑙[0, 𝐿], де 𝐶 𝑙𝑖

𝜓 (𝐷, 𝜎1) — множина
функцiй, якi при кожному фiксованому 𝜇 мають неперервнi по 𝜏, 𝑎, 𝜓 i
рiвномiрно обмеженi сталою 𝜎1 на множинi (𝑡, 𝑎, 𝜓) ∈ 𝐷 × 𝑅𝑚 × [0, 𝐿] ×
× (0, 𝜇0] ≡ 𝐷, частиннi похiднi до порядку 𝑙 включно;

2) det
(︀
𝑊 𝑇
𝑝 (𝜏)𝑊𝑝(𝜏)

)︀
̸= 0 при 𝜏 ∈ [0, 𝐿] i деякому мiнiмальному 𝑚 ≤ 𝑝 ≤ 𝑙+1;

3) для всiх 𝜏 ∈ [0, 𝐿], 𝑦 ∈ 𝐷1 i 𝜇 ∈ (0, 𝜇0] iснує єдиний розв’язок рiвняння (9)
iз початковою умовою 𝑎(0, 𝑎0) = 𝑎0 i крива 𝑎̄ = 𝑎̄(𝜏, 𝑎̄0) лежить в областi
𝐷 разом iз своїм 𝜌 — околом.

Тодi можна вказати таку незалежну вiд 𝜇 сталу 𝜎2, що при досить ма-
лому 𝜇0 > 0 для кожних 𝜏 ∈ [0, 𝐿], 𝑎0 ∈ 𝐷1, 𝜓0 ∈ R𝑚 i 𝜇 ∈ (0, 𝜇0) правильна
оцiнка

‖𝑎(𝜏, 𝑎0, 𝜓0, 𝜇)− 𝑎̄(𝜏, 𝑎0, 𝜇)‖+ ‖𝜓(𝜏, 𝑎0, 𝜓0, 𝜇)− 𝜓(𝜏, 𝑎0, 𝜓0, 𝜇)‖ ≤ 𝜎2𝜇
1
𝑝 . (11)

3. Випадок залежностi матрицi А вiд t. Розглянемо спочатку випадок,
коли матриця 𝐴 залежить вiд часу 𝑡, тодi рiвняння (5) матиме вигляд

𝑑𝑧

𝑑𝑡
= 𝐴(𝑡)𝑧 + 𝜙(𝑢, 𝑣) + 𝜇𝑍(𝜏, 𝑎, 𝜓). (12)

Вiдповiдно усереднене за швидкими змiнними рiвняння набуває вигляду

𝑑𝑧

𝑑𝑡
= 𝐴(𝑡)𝑧 + 𝜙(𝑢, 𝑣) + 𝜇𝑍0(𝜏, 𝑎̄). (13)

Теорема 2. Нехай:
1) виконуються умови теореми 1 для системи рiвнянь (6), (7);
2) вектор-функцiї 𝑍(𝜏, 𝑎, 𝜓) iз рiвняння (12) задовольняє умови 1-3 теореми

1;
3) iснує єдиний розв’язок рiвняння (13) iз початковою умовою 𝑧(0, 𝜇) = 𝑧0 i

крива 𝑧(𝑡, 𝜇) — лежить в областi 𝐷1 × 𝐷2 разом iз деяким 𝜌2 — околом,
𝜌2 > 0, для (𝑡, 𝜇) ∈ [0, 𝐿]× (0, 𝜇0].

4) функцiя 𝜙 — неперервна за сукупнiстю змiнних на компактi 𝑈 × 𝑉 ;
5) матриця 𝐴(𝑡) — неперервна i

∫︀ 𝐿
0
||𝐴(𝑡)||𝑑𝑡 <∞.
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Тодi можна вказати таку не залежну вiд 𝜇, сталу 𝑐3, що при досить
малому 𝜇0 > 0 для кожних 𝑡 ∈ [0, 𝐿], 𝑧0 ∈ 𝐷1, де 𝐷1 — це множина точок
областi 𝐺, якi входять в цю область iз 𝜌 — околом, i 𝜇 ∈ (0, 𝜇0], правильна
оцiнка

‖𝑧(𝑡, 𝑧0, 𝑎0, 𝜓0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ 𝑐3𝜇
1
𝑝 .

Доведення. Введемо наступне позначення 𝑏0 := (𝑎0, 𝜓0). Iз гладкостi правих
частин системи рiвнянь (5), (6), (7) випливає iснування єдиного розв’язку задачi
Кошi на деякому iнтервалi (0, 𝑡1), 𝑡1 ≤ 𝐿. Тодi iз рiвнянь (12) i (13) для 𝑡 ∈ (0, 𝑡1)
одержимо

𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇) =

∫︁ 𝑡

0

(𝐴(𝑠)(𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇))) 𝑑𝑠+

+𝜇

∫︁ 𝑡

0

(𝑍(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇), 𝜓)− 𝑍0(𝜇𝑠, 𝑎̄(𝜇𝑠, 𝑎0))) 𝑑𝑠 = 𝑆1 + 𝑆2.

Для доданку 𝑆2 виконаємо такi перетворення

𝑆2 = 𝜇

∫︁ 𝑡

0

(𝑍(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇), 𝜓)− 𝑍0(𝜇𝑠, 𝑎̄(𝜇𝑠, 𝑎0))) 𝑑𝑠+

+𝜇

∫︁ 𝑡

0

(𝑍0(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇))− 𝑍0(𝜇𝑠, 𝑎̄(𝜇𝑠, 𝑎0))) 𝑑𝑠+

+𝜇
∑︁
𝑘 ̸=0

∫︁ 𝑡

0

(𝑍𝑘(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇)) exp(𝑖(𝑘, 𝜓(𝜇𝑠, 𝑏0, 𝜇)))) 𝑑𝑠 = 𝑆3 + 𝑆4.

Тодi
𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇) = 𝑆1 + 𝑆3 + 𝑆4.

Побудуємо оцiнки норми кожного iз доданкiв 𝑆𝑣, 𝑣 = 1, 3, 4. Для 𝑆1 маємо

‖𝑆1‖ ≤
∫︁ 𝑡

0

‖𝐴(𝑠)‖ · ‖𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖𝑑𝑠.

На пiдставi умови 1 iз теореми 1 та оцiнки (11) одержимо

‖𝑆3‖ ≤ 𝜇

∫︁ 𝑡

0

‖𝑎(𝜇𝑠, 𝑏0, 𝜇)− 𝑎̄(𝜇𝑠, 𝑎0)‖𝑑𝑠 ≤ 𝜎3𝜎2𝜇𝑡𝜇
1
𝑝 ≤ 𝜎2𝜎3𝐿𝜇

1
𝑝 ≤ 𝜎4𝜇

1
𝑝 ,

де 𝜎4 = 𝜎2𝜎3𝐿.
Для оцiнки норми 𝑆4 застосуємо оцiнку осциляцiйного iнтеграла, одержану

в [7]. А саме, якщо виконуються умови теореми 1 i 𝑓 ∈ 𝐶1[0, 𝐿], то для досить
малого 𝜇0 > 0 i 𝑘 ̸= 0⃦⃦⃦⃦∫︁ 𝜏

0

(︂
𝑓(𝑠) exp

(︂
𝑖

𝜇

∫︁ 𝑠

0

(𝑘, 𝜔(𝑧)) 𝑑𝑧

)︂)︂
𝑑𝑠

⃦⃦⃦⃦
≤

≤ 𝜎5𝜇
1
𝑝

(︂
max
𝑠∈[0,𝐿]

‖𝑓(𝑠)‖ +
1

‖𝑘‖
max
𝑠∈[0,𝐿]

⃦⃦⃦⃦
𝑑𝑓

𝑑𝑠

⃦⃦⃦⃦)︂
.

(14)

для всiх 𝜏 ∈ [0, 𝐿] i 𝜇 ∈ (0, 𝜇0], де 𝜎5 > 0 i не залежить вiд 𝜇 i 𝑘.
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Скориставшись iнтегральним зображенням рiвняння (10), запишемо пiдiн-
тегральну функцiю iз 𝑆4 у виглядi

𝑆4 = 𝑍𝑘(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇)) exp

(︂
𝑖

(︂
𝑘, 𝜓0(𝜇𝑠, 𝑏0, 𝜇) +

∫︁ 𝑠

0

(︂
𝜔(𝑧)

𝜇
+ 𝜓(𝜇𝑠, 𝑏0, 𝜇)

)︂
𝑑𝑧

)︂)︂
=

= 𝑍𝑘(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇)) exp (𝑖 (𝑘, 𝜓0(𝜇𝑠, 𝑏0, 𝜇))) exp

(︂
𝑖

∫︁ 𝑠

0

𝑘, 𝜓(𝜇𝑠, 𝑏0, 𝜇)𝑑𝑧

)︂
×

× exp

(︂
𝑖

𝜇

∫︁ 𝑠

0

𝑘, 𝜔(𝑧)𝑑𝑧

)︂
.

Для норми 𝑆4 одержимо:

‖𝑆4‖ ≤
∑︁
𝑘 ̸=0

⃦⃦⃦⃦∫︁ 𝜏

0

(︂
𝑓𝑘(𝑠, 𝜇) exp

(︂
𝑖

𝜇

∫︁ 𝑠

0

(𝑘, 𝜔(𝑧)) 𝑑𝑧

)︂)︂
𝑑𝑠

⃦⃦⃦⃦
,

де

𝑓𝑘(𝑠, 𝜇) = 𝑍𝑘(𝜇𝑠, 𝑎(𝜇𝑠, 𝑏0, 𝜇)) exp (𝑖 (𝑘, 𝜓0(𝜇𝑠, 𝑏0, 𝜇))) exp

(︂
𝑖

∫︁ 𝑠

0

(𝑘, 𝜓(𝜇𝑠, 𝑏0, 𝜇)) 𝑑𝑧

)︂
≡

≡ 𝑍𝑘(𝑠, 𝑎) exp(𝑖𝜉).

Для норми 𝑓𝑘 маємо
‖𝑓𝑘(𝑠, 𝜇)‖ ≤ ‖𝑍𝑘(𝑠, 𝑎)‖.

Далi знаходимо

𝑑𝑓𝑘
𝑑𝑠

=

(︂
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑠
+
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑎
𝑋(𝑠, 𝑎, 𝜓)

)︂
exp(𝑖𝜉) + 𝑖𝑍𝑘(𝑠, 𝑎) (𝑘, 𝑌 (𝑠, 𝑎, 𝜓)) exp(𝑖𝜉),

i вiдповiдну оцiнку⃦⃦⃦⃦
𝑑𝑓𝑘
𝑑𝑠

⃦⃦⃦⃦
≤
⃦⃦⃦⃦
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑠

⃦⃦⃦⃦
+ 𝜎6

⃦⃦⃦⃦
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑎

⃦⃦⃦⃦
+ 𝜎6‖𝑘‖ · ‖𝑍𝑘‖.

Нехай 𝑐1 = 𝜎5(1 + 𝜎6). Застосувавши оцiнку (14) одержимо

‖𝑆4‖ ≤ 𝑐1𝜇
1
𝑝

∑︁
𝑘 ̸=0

(︂
sup
𝐺1

‖𝑍𝑘(𝑠, 𝑎)‖+
1

‖𝑘‖

(︂
sup
𝐺1

⃦⃦⃦⃦
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑠

⃦⃦⃦⃦
+ sup

𝐺1

⃦⃦⃦⃦
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑎

⃦⃦⃦⃦)︂)︂
≤ 𝑐2𝜇

1
𝑝 .

де 𝜇 ∈ (0, 𝜇0], 𝑠 ∈ (0, 𝑡1), 𝑎 ∈ 𝐷,

𝑐2 = 𝑐1
∑︁
𝑘 ̸=0

(︂
sup
𝐺1

‖𝑍𝑘(𝑠, 𝑎)‖+
1

‖𝑘‖

(︂
sup
𝐺1

⃦⃦⃦⃦
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑠

⃦⃦⃦⃦
+ sup

𝐺1

⃦⃦⃦⃦
𝜕𝑍𝑘(𝑠, 𝑎)

𝜕𝑎

⃦⃦⃦⃦)︂)︂
.

Врахувавши оцiнки норм 𝑆𝑣, 𝑣 = 1, 3, 4 на пiдставi iнтегральну нерiвностi
Белмана [8], отримаємо

‖𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ (𝑐2 + 𝜎4)𝜇
1
𝑝 exp

(︂∫︁ 𝐿

0

‖𝐴(𝑠)‖𝑑𝑠
)︂

≤ 𝑐3𝜇
1
𝑝 , (15)
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де 𝑐3 = (𝑐2 + 𝜎4) exp
(︁∫︀ 𝐿

0
‖𝐴(𝑠)‖𝑑𝑠

)︁
.

Одержана оцiнка виконується для всiх 𝑠 ∈ [0, 𝑡1] i 𝜇 ∈ (0, 𝜇1]. Нехай

𝜇1 = min

(︂
𝜌

2𝑐3

)︂𝑝
,

тодi розв’язок системи (12) лежить в околi усередненої системи 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇) для
всiх 𝑡 ∈ [0, 𝐿], 𝜇 ∈ (0, 𝜇*] i для цих значень виконується оцiнка (15).

4. Випадок залежностi матрицi А вiд t i a. Розглянемо ще один бiльш
загальний випадок, коли збурення впливають на керування, але матриця 𝐴
залежить не тiльки вiд часу 𝜏 , а також вiд вектора амплiтудних змiнних 𝑎. Тодi
рiвняння (5) набуває вигляду

𝑑𝑧

𝑑𝑡
= 𝐴(𝑡, 𝑎)𝑧 + 𝜙(𝑢, 𝑣) + 𝜇𝑍(𝜏, 𝑎, 𝜓). (16)

Вiдповiдно усереднене за швидкими змiнними рiвняння

𝑑𝑧

𝑑𝑡
= 𝐴(𝑡, 𝑎̄)𝑧 + 𝜙(𝑢, 𝑣) + 𝜇𝑍0(𝜏, 𝑎̄). (17)

Обґрунтування методу усереднення задається такою теоремою.

Теорема 3. Нехай:
1) виконуються умови теореми 1 для системи рiвнянь (6),(7);
2) вектор-функцiї 𝑍(𝜏, 𝑎, 𝜓) iз рiвняння (16) задовольняє умови 1-3 теореми

1;
3) iснує єдиний розв’язок рiвняння (17) iз початковою умовою 𝑧(0, 𝜇) = 𝑧0 i

крива 𝑧(𝑡, 𝜇) — лежить в областi 𝐷1 × 𝐷2 разом iз деяким 𝜌2 — околом,
𝜌2 > 0, для (𝑡, 𝜇) ∈ [0, 𝐿]× (0, 𝜇0].

4) функцiя 𝜙 – неперервна за сукупнiстю змiнних на компактi 𝑈 × 𝑉 ;
5) матрична функцiя 𝐴(𝑡, 𝑎) ∈ 𝐶(𝐺), 𝐺 = [0, 𝐿]×𝐷 i 𝐴(𝑡, 𝑎) ≤𝑀(𝑡), скалярна

функцiя 𝑀(𝜏) неперервна при 𝜏 ∈ [0, 𝐿] i 𝑀(𝜏) ≥ 0.
Тодi можна вказати таку не залежну вiд 𝜇, сталу 𝑐9, що при досить

малому 𝜇0 > 0 для кожних 𝑡 ∈ [0, 𝐿], 𝑧0 ∈ 𝐷1𝜇 ∈ (0, 𝜇0], виконуватиметься
оцiнка

‖𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ 𝑐9𝜇
1
𝑝 .

де 𝐷1 — це множина точок областi 𝐷, якi входять в цю область iз 𝜌 —
околом, 𝑏0 := (𝑎0, 𝜓0) — стала, 𝑐9 > 0 i не залежить вiд 𝜇.

Доведення. Iз гладкостi правої частини рiвняння (16) випливає iснування
єдиного розв’язку 𝑧(𝑡, 𝑧0, 𝑏0, 𝜇) початкової задачi на деякому iнтервалi 𝑡 ∈ (0, 𝑡1),
для кожного 𝜇 ∈ (0, 𝜇0]. Тодi одержимо

𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇) =

∫︁ 𝑡

0

(𝐴(𝑠, 𝑎)𝑧 − 𝐴(𝑠, 𝑎̄)𝑧) 𝑑𝑠+

+𝜇

∫︁ 𝑡

0

(𝑍0(𝜇, 𝑎(𝜇𝑠, 𝑏0, 𝜇))− 𝑍0(𝜇, 𝑎̄(𝜇𝑠, 𝑎0))) 𝑑𝑠+

+𝜇
∑︁
𝑘 ̸=0

∫︁ 𝑡

0

(𝑍𝑘(𝜇, 𝑎(𝜇𝑠, 𝑏0, 𝜇)) exp (𝑖 (𝑘, 𝜓(𝜇𝑠, 𝑏0, 𝜇)))) 𝑑𝑠 = 𝑆1 + 𝑆2 + 𝑆3.
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Оцiнки норм доданкiв 𝑆2 та 𝑆3 вiдомi iз теореми 2:

‖𝑆2‖ ≤ 𝜇

∫︁ 𝜏

0

‖𝑎(𝜇𝑠, 𝑏0, 𝜇)− 𝑎̄(𝜇𝑠, 𝑎0)‖𝑑𝑠 ≤ 𝜎4𝜇
1
𝑝 ,

‖𝑆3‖ ≤ 𝑐2𝜇
1
𝑝 .

Для оцiнки доданку 𝑆1 виконаємо такi перетворення

𝑆1 =

∫︁ 𝑡

0

(𝐴(𝑠, 𝑎)𝑧 − 𝐴(𝑠, 𝑎̄)𝑧) 𝑑𝑠 =

∫︁ 𝑡

0

(𝐴(𝑠, 𝑎)𝑧 − 𝐴(𝑠, 𝑎)𝑧) 𝑑𝑠+

+

∫︁ 𝑡

0

(𝐴(𝑠, 𝑎)𝑧 − 𝐴(𝑠, 𝑎̄)𝑧) 𝑑𝑠 =

∫︁ 𝑡

0

(𝐴(𝑠, 𝑎) (𝑧 − 𝑧)) 𝑑𝑠+

+

∫︁ 𝑡

0

((𝐴(𝑠, 𝑎)− 𝐴(𝑠, 𝑎̄)) 𝑧) 𝑑𝑠 = 𝑆4 + 𝑆5.

Побудуємо оцiнку доданку 𝑆4. Згiдно з умовою 3

‖𝑆4‖ ≤
∫︁ 𝑡

0

‖𝐴(𝑠, 𝑎)‖ · ‖𝑧 − 𝑧‖ 𝑑𝑠 ≤
∫︁ 𝑡

0

𝑀(𝑠)‖𝑧 − 𝑧‖ 𝑑𝑠.

Оскiльки функцiя 𝜙 — неперервна на компактi 𝑈 ×𝑉 , то max
𝑈×𝑉

‖𝜙(𝑢, 𝑣)‖ ≤ 𝑐4.

Враховуючи обмеження норми вектор-функцiї 𝑧 i 𝑧0 ≤ 𝑐5 одержимо iз (17)

‖𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ ‖𝑧0‖+
∫︁ 𝑡

0

(‖𝐴(𝑠, 𝑎̄(𝜇𝑠, 𝑎0))‖ · ‖𝑧(𝑠, 𝜇)‖) 𝑑𝑠+ 𝑐4𝑡+

+𝜇

∫︁ 𝑡

0

‖𝑧(𝑠, 𝑎̄(𝜇𝑠, 𝑎0))‖𝑑𝑠 ≤ 𝑐5 +

∫︁ 𝑡

0

(𝑀(𝑠)‖𝑧(𝑠, 𝜇)‖) 𝑑𝑠+ (𝑐4 + 𝜎7𝜇)𝑡,

де ‖𝑍(𝑠, 𝑎̄(𝜇𝑠, 𝑎0))‖ ≤ 𝜎7.
Застосувавши iнтегральну нерiвнiсть [8], одержимо

‖𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ (𝑐5 + (𝑐4 + 𝜎7𝜇)𝑡+ 𝑐6) exp

(︂∫︁ 𝑡

0

𝑀(𝑠) 𝑑𝑠

)︂
≤

≤ (𝑐6 + (𝑐5 + 𝜎7𝜇0)𝐿+ 𝑐6) exp

(︂∫︁ 𝑡

0

𝑀(𝑠) 𝑑𝑠

)︂
= 𝑐7.

Тодi оцiнка норми 𝑆5 набуває вигляду

‖𝑆5‖ ≤ 𝑛

(︃
𝑛∑︁
𝑣=1

sup

⃦⃦⃦⃦
𝜕𝐴(𝑣)(𝑠, 𝑎)

𝜕𝑎

⃦⃦⃦⃦)︃
𝑐7𝑡 𝑐2𝜇

1
𝑝 ≤ 𝑐8𝑡 𝜇

1
𝑝 ,

де 𝑐8 = 𝑛𝑐7𝑡𝑐2

(︁∑︀𝑛
𝑣=1 sup

⃦⃦⃦
𝜕𝐴(𝑣)(𝑠,𝑎)

𝜕𝑎

⃦⃦⃦)︁
, 𝐴(𝑣) — стовпець матрицi 𝐴.

Отже, iз оцiнок норм 𝑆𝑣, 𝑣 = 1, 5 випливає

‖𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)−𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤
∫︁ 𝑡

0

𝑀(𝑠)‖𝑧(𝑠, 𝜇)−𝑧(𝑠, 𝜇)‖𝑑𝑠+𝑐2𝜇
1
𝑝 +𝜎4𝜇

1
𝑝 +𝑐8𝑡𝜇

1
𝑝 .
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Застосувавши iнтегральну нерiвнiсть [8], матимемо

‖𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ (𝑐2 + 𝜎4 + 𝑐8𝑡)𝜇
1
𝑝 exp

(︂∫︁ 𝑡

0

𝑀(𝑠) 𝑑𝑠

)︂
.

Нехай 𝜇* > 0 таке, що при 𝜇 < 𝜇* ≤ 𝜇0 виконується нерiвнiсть

(𝑐2 + 𝜎4 + 𝑐8𝐿)𝜇
1
𝑝 exp

(︂∫︁ 𝐿

0

𝑀(𝑠) 𝑑𝑠

)︂
≤ 𝜌

2
.

Тодi розв’язок 𝑧(𝑡, 𝑧0, 𝑏0, 𝜇) iснує для 𝑡 ∈ [0, 𝐿] i 𝜇 ∈ (0, 𝜇*] та виконується
оцiнка

‖𝑧(𝑡, 𝑧0, 𝑏0, 𝜇)− 𝑧(𝑡, 𝑧0, 𝑎0, 𝜇)‖ ≤ 𝑐9𝜇
1
𝑝 ,

де 𝑐9 — стала, (𝑐2 + 𝜎4 + 𝑐8𝐿)𝜇
1
𝑝 exp

(︁∫︀ 𝐿
0
𝑀(𝑠) 𝑑𝑠

)︁
.

5. Приклад. Розглянемо один з прикладiв диференцiальної гри, вiдомий як
«Простий рух» [3]. У цьому випадку система диференцiальних рiвнянь набуває
вигляду

𝑥̇ = 𝑢, 𝑥 ∈ R𝑠, ‖𝑢‖ ≤ 𝜌,

𝑦̇ = 𝑣, 𝑦 ∈ R𝑠, ‖𝑣‖ ≤ 𝜎.
(18)

Термiнальна множина замкнена i має наступний вигляд 𝑀* : ||𝑥 − 𝑦|| ≤ 𝜀.
Цiль переслiдувача звести траєкторiю процесу на цю термiнальну множину.
Цiль втiкача уникнути зустрiчi з термiнальною множиною, або якомога довше
вiдтягнути момент зустрiчi.

Умова Л. С. Понтрягiна [3] виконується якщо 𝜌 ≥ 𝜎. Тодi час переслiдування
можна визначити з рiвняння

‖𝑥01 − 𝑦01‖ =

∫︁ 𝑡

0

(𝜌− 𝜎) 𝑑𝜏 + 𝜀,

де 𝑥01 i 𝑦01 — початковий стан переслiдувача та втiкача вiдповiдно.
Розв’язавши це рiвняння, отримаємо час завершення переслiдування для

задачi (18)

𝑡 =
‖𝑥01 − 𝑦01‖ − 𝜀

𝜌− 𝜎
. (19)

З вигляду розв’язку (19) можна зробити очевидний висновок, що час пере-
слiдування досягається тодi та тiльки тодi, коли 𝜌 − 𝜎 > 0, тобто швидкiсть
переслiдувача 𝜌 є бiльшою за швидкiсть втiкача 𝜎.

Розглянемо модифiкацiю диференцiальної гри «Простий рух» iз накладени-
ми деякими збуреннями

𝑥̇ = 𝑢+ 𝜇(𝛼 + cos𝜓), 𝑥 ∈ R𝑠,

𝑦̇ = 𝑣 + 𝜇(𝛽 + sin𝜓), 𝑦 ∈ R𝑠.
(20)

Тодi усереднена за швидкими змiнними система диференцiальних рiвнянь

𝑥̇ = 𝑢+ 𝛼𝜇, 𝑥 ∈ R𝑠, ‖𝑢+ 𝛼𝜇‖ ≤ 𝜌,

𝑦̇ = 𝑣 + 𝛽𝜇, 𝑦 ∈ R𝑠, ‖𝑣 + 𝛽𝜇‖ ≤ 𝜎.
(21)

Роздiл 1: Математика i статистика



УСЕРЕДНЕННЯ В ЗАДАЧI ДИФЕРЕНЦIАЛЬНОЇ ГРИ ПЕРЕСЛIДУВАННЯ ЗА . . . 27

термiнальна множина залишається незмiнною 𝑀* : ||𝑥− 𝑦|| ≤ 𝜀.
В цьому випадку час переслiдування для системи (21) одержується з рiвня-

ння

‖𝑥01 − 𝑦01‖ =

∫︁ 𝑡

0

((𝜌+ 𝛼𝜇)− (𝜎 + 𝛽𝜇)) 𝑑𝜏 + 𝜀.

Проiнтегрувавши, одержимо час завершення переслiдування

𝑡 =
‖𝑥01 − 𝑦01‖ − 𝜀

𝜌− 𝜎 + 𝜇(𝛼− 𝛽)
. (22)

З розв’язку (22), випливає, що час переслiдування за наявностi збурення 𝑡
iснує лише у випадку, коли 𝜌− 𝜎 + 𝜇(𝛼− 𝛽) > 0.

Проаналiзувавши розв’язки (19) i (22) можна зробити висновок, що в зале-
жностi вiд значень коефiцiєнта збурення 𝜇, та коефiцiєнтiв впливу на гравцiв
𝛼 i 𝛽, час завершення переслiдування 𝑡 для задачi зi збуренням може набувати
рiзних значень порiвняно з часом t аналогiчної задачi без збурень (18).

Розглянемо два випадки:
1) 𝜌 − 𝜎 > 0, коефiцiєнт збурення 𝜇 > 0, а коефiцiєнт впливу збурення на

втiкача бiльший за вiдповiдний коефiцiєнт для переслiдувача 𝛼 > 𝛽. Тодi
час переслiдування зi збуренням буде меншим за час переслiдування без
збурення, 𝑡 < 𝑡.

2) 𝜌 − 𝜎 < 0, тобто швидкiсть втiкача бiльша швидкостi переслiдувача. У та-
кому випадку розв’язку для задачi (18) не iснує. Проте модифiкацiя задачi
зi збуреннями (21) дозволяє отримати результат (впiймати втiкача). Зокре-
ма, якщо 𝛼 > 𝛽, то втiкач буде пiйманим, якщо виконується така оцiнка
𝜇 < (𝜎 − 𝜌)/(𝛼− 𝛽).
6. Висновок. У статтi розглянуто диференцiальну гру переслiдування за

наявностi впливу багаточастотних збурень на переслiдувача i втiкача. Величина
збурення характеризується малим параметром 𝜇 > 0. Методом усереднення по-
будовано спрощену задачу i одержано оцiнку похибки, порядок якої 𝑝

√
𝜇, 𝑝 ≥ 𝑚.

Проаналiзовано результати переслiдування в залежностi вiд величини збурень
для диференцiальної гри «Простий рух».
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Bardan A. O. Averaging in the differential pursuit game problem in the presence
of multifrequency disturbances.

The paper considers the problem of the differential game of pursuit, when small external
disturbances are imposed on the movement of the pursuer and the escaper. The method of
averaging by fast variables was applied and substantiated for creating a simplified system
of equations. During the investigation the impact of multi-frequency disturbances on the
conflict-driven process was analyzed. The existence and uniqueness of the solution to the
initial problem was proved. Furthermore, an estimate of the deviation of the solutions
of the exact averaged system with the same initial conditions on an arbitrary finite time
interval [0, 𝐿] was constructed. Both cases when the matrix of the linear part depends on
the slow time and when it depends on the time as well as on the amplitude variables were
considered. The differential game "Simple motion" was given as an example, in which it
was modified through the imposition of perturbations. The pursuit completion time was
found for the origin problem and in the perturbation case. As a result, the influence of
perturbations on the existence of a solution and on the completion time of the pursuit in
the differential game was analyzed.

Keywords: differential game of pursuit, multi-frequency disturbance, averaging method,
oscillatory integral, resonance.
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СТРУКТУРА sl2-МОДУЛIВ НА ДIАГРАМАХ ЮНГА

В роботi встановлено явний вигляд трiйки лiнiйних операторiв ( ̂︀𝐷−, ̂︀𝐷0, ̂︀𝐷+), якi
визначають дiю алгебри Лi sl2 на векторному просторi QY𝑛 дiаграм Юнга, що вiдпо-
вiдають розбиттям 𝜆 довжини 𝑛:

̂︀𝐷−(𝜆) = −(𝑛𝜉−(𝜆) +∇−(𝜆)),̂︀𝐷0(𝜆) = 2|𝜆|𝜆,̂︀𝐷+(𝜆) = ∇+(𝜆),

де 𝜉−(𝜆) та ∇±(𝜆) є сумами за всiма можливими дiаграмами Юнга, отриманими до-
даванням або вилученням клiтинки □ з вiдповiдної дiаграми Юнга. Iдея доведення
полягала у введенi на QY𝑛 структури алгебри, iзоморфнiй алгебрi симетричних мно-
гочленiв вiд 𝑛 змiнних; визначення дiї sl2 на многочленах Шура i в перенесеннi цiєї
дiї на QY𝑛.

Ключовi слова: алгебра Лi sl2, зображення алгебри sl2, симетричнi многочлени,
многочлени Шура, дiаграми Юнга.

1. Вступ. Нехай Y — множина всiх фiнiтних неспадних наборiв невiд’ємних
чисел 𝜆 = (𝜆1, 𝜆2, . . .), де 𝜆1 ≥ 𝜆2 ≥ . . ., а Y𝑛 — її пiдмножина яка утворена
такими наборами фiксованої довжини 𝑛. Такi набори 𝜆 називаються розбиттями
i геометрично зображуються дiаграмами Юнга, див. [1]– [3].

Розглянемо нескiнченно вимiрний векторний простiр QY, який складається
з формальних скiнченних сум елементiв Y з рацiональними коефiцiєнтами. На
QY можна ввести структуру нескiнченно-вимiрного зображення комплексної
алгебри Лi sl2 яке, у дещо спрощеному виглядi, визначається (див. [4]) такими
операторами Керова:

𝑈 𝜆 =
∑︁

𝜇=𝜆+□∈Y

𝑐(□)𝜇,

𝐿𝜆 = 2|𝜆| 𝛿𝜆,

𝐷 𝜆 =
∑︁

𝜇=𝜆−□∈Y

𝑐(□)𝜇,

тобто виконуються такi тотожностi

[𝐷,𝑈 ] = 𝐿 , [𝐿,𝑈 ] = 2𝑈 , [𝐿,𝐷] = −2𝐷 .

Сумування вiдбувається за всiма дiаграмами Юнга, якi отримуються з розби-
ття 𝜆 шляхом додавання, або, вiдповiдно, вилучення клiтинки □ = (𝑖, 𝑗). Тут
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𝑖 i 𝑗 є координатами клiтинки, тобто номерами рядка i стовпчика в якому зна-
ходиться □, a 𝑐(□) позначає контент цiєї клiтинки: 𝑐(□) = 𝑗 − 𝑖. Бiльше про
оператори Керова та їхнє застосування в [5]. Схожi оператори на диференцi-
альних частково впорядкованих множинах розглядалися в [6].

Позначимо через QY𝑛 пiдпростiр в QY, породжений дiаграмами Юнга в яких
не бiльше 𝑛 рядкiв. Неважко бачити, що оператор 𝑈 збiльшує кiлькiсть рядкiв
дiаграми, тому вищезгаданi оператори 𝑈,𝐿,𝐷 уже не визначають sl2-дiю на Y𝑛.

Метою даної роботи є знаходження трiйки операторiв, якi визначають sl2-дiю
на QY𝑛. Головна iдея роботи полягає в тому, щоб iз простору QY𝑛 перейти до
iзоморфного йому простору симетричних многочленiв вiд 𝑛 змiнних, з якими
працювати технiчно простiше.

Нехай Λ𝑛 — алгебра симетричних многочленiв вiд 𝑛 змiнних з рацiональними
коефiцiєнтами. Алгебра Λ𝑛 також є нескiнченновимiрним векторним простором,
базисом якого є многочлени Шура 𝑠𝜆 iндексованi розбиттями 𝜆 ∈ Y𝑛. Структур-
нi константи 𝑐𝜈𝜆𝜇 алгебри Λ𝑛 називаються коефiцiєнтами Лiтвулда-Рiчардсона
i визначають розклад добутку двох многочленiв Шура за цим базисом:

𝑠𝜆𝑠𝜇 =
∑︁
𝜈

𝑐𝜈𝜆𝜇𝑠𝜈 ,

тут 𝜈 пробiгає всi розбиття числа |𝜆|+ |𝜇|, |𝜆| =
𝑛∑︀
𝑖=1

𝜆𝑖.

Якщо ми визначимо операцiю множення на QY𝑛 за таким правилом

𝜆 · 𝜇 =
∑︁
𝜈

𝑐𝜈𝜆,𝜈𝑣, 𝜆, 𝜇, 𝜈 ∈ Y𝑛,

то QY𝑛 надiляється структурою комутативної асоцiативної алгебри над Q, яка
буде iзоморфна алгебрi Λ𝑛. Образом розбиття 𝜆 при цьому iзоморфiзмi буде
многочлен Шура 𝑠𝜆.

Головним результатом статтi є наступне твердження

Теорема 1. Трiйка лiнiйних операторiв ( ̂︀𝐷−, ̂︀𝐷0, 𝐷+) на QY𝑛, яка так дiє
на розбиття 𝜆 ∈ Y𝑛 ̂︀𝐷−(𝜆) = −(𝑛𝜉−(𝜆) +∇−(𝜆)),̂︀𝐷0(𝜆) = 2|𝜆|𝜆,̂︀𝐷+(𝜆) = ∇+(𝜆)

де

𝜉−(𝜆) =
∑︁

𝜇=𝜆−□∈Y𝑛

𝜇,

∇±(𝜆) =
∑︁

𝜇=𝜆±□∈Y𝑛

𝑐(□)𝜇,

визначає дiю алгебри Лi на QY𝑛.

Iдея доведення полягає в тому, що спочатку розглядається sl2-дiя на Λ𝑛
наступними диференцiальними операторами
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𝐷+ = 𝑥21𝜕1 + 𝑥22𝜕2 + · · ·+ 𝑥2𝑛𝜕𝑛,

𝐷0 = 2(𝑥1𝜕1 + 𝑥2𝜕2 + · · ·+ 𝑥𝑛𝜕𝑛),

𝐷− = −(𝜕1 + 𝜕2 + · · ·+ 𝜕𝑛),

де 𝜕𝑖 =
𝜕

𝜕𝑥𝑖
. Далi встановлюється дiя цих операторiв на многочлени Шура, а

саме

𝐷−(𝑠𝜆) = −
∑︁

𝜇=𝜆−□∈Y𝑛

(𝑛+ 𝑐(□))𝑠𝜇,

𝐷0(𝑠𝜆) = 2|𝜆|𝑠𝜆,

𝐷+(𝑠𝜆) =
∑︁

𝜇=𝜆+□∈Y𝑛

𝑐(□)𝑠𝜇.

Використовуючи згаданий iзоморфiзм, ця дiя переноситься на алгебру QY𝑛,
що i дає нам твердження теореми. При цьому на дiаграмах Юнга природно
виникають редукованi аналоги вже вiдомих з [5], [6], [7] операторiв 𝜉 та ∆ на Y.

Зауважимо, що дiя оператора 𝐷− на многочлени Шура недавно розгляда-
лася в [8], а в [9] дiя 𝐷− узагальнена на косi многочлени Шура.

В роздiлi 1 дано означення дiаграм Юнга та операцiй на них. В роздiлi 2
дано означення алгебри симетричних многочленiв Λ𝑛 та наведено стандартнi
базиси в нiй. В роздiлi 3 розглянута дiя алгебри Лi на Λ𝑛 i встановлена дiя на
базиснi елементи та породжуючi функцiї. В роздiлi 4 дiя з Λ𝑛 з переноситься
на QY𝑛 та встановленi деякi властивостi цiєї дiї. В роздiлi 5 представлено новi
реалiзацiї sl2-дiї на Q[𝑥1, 𝑥2, . . . , 𝑥𝑛], якi iндукуються sl2-дiями на QY𝑛.

2. Дiаграми Юнга. Дамо означення необхiдних понять.
Розбиттям 𝜆 числа𝑚 ∈ N довжини 𝑛 називається послiдовнiсть невiд’ємних

чисел 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) таких, що 𝜆𝑖 ≥ 𝜆𝑖+1 i |𝜆| = 𝜆1 + 𝜆2 + · · · + 𝜆𝑛 = 𝑚.
Множину всiх розбиттiв довжини не бiльше 𝑛 позначимо через Y𝑛.

Дiаграмою Юнга називається набiр клiтинок на площинi, якi розмiщенi в ви-
рiвняних за лiвим краєм рядках, причому кiлькiсть клiтинок в кожному рядку
нестрого спадає. Всяке розбиття 𝜆 ∈ Y𝑛 геометрично зображується у виглядi дi-
аграм Юнга, де 𝜆𝑖 кiлькiсть клiтинок в 𝑖-му рядку. Наприклад, дiаграми Юнга
для розбиттiв (4, 4, 3, 2, 2, 1), (16) i (6) мають такий вигляд

, , .

Кожна клiтинка □ має координати (𝑖, 𝑗) на площинi, число 𝑐(□) = 𝑗 − 𝑖 на-
зивається контентом клiтинки. Для розбиття (3, 2, 1) координати вiдповiдних
клiтин та їх вмiст показано на дiаграмах

0 (1,2) (1,3)

(2,1) (2,2)

(3,1)

0 1 2

-1 0

-2
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Внутрiшнiм кутом дiаграми Юнга називається така клiтина дiаграми, пi-
сля видалення якої, отриманий набiр клiток, залишиться дiаграмою Юнга.
Якщо клiтина є внутрiшнiм кутом, то нижче неї i праворуч вiд неї немає клiтин
дiаграми.

Нижче зеленим кольором зображено внутрiшнi кути дiаграми (4, 4, 3, 2, 2, 1):

Зрозумiло, що остання клiтинка в 𝑖-му рядку дiаграми буде внутрiшнiм ку-
том, якщо 𝜆𝑖 > 𝜆𝑖+1. Зокрема клiтинка (1, 𝜆𝑛) завжди буде внутрiшнiм кутом.

Розглянемо два оператори 𝜉− i ∇− на дiаграмах Юнга, якi ”знiмають” вну-
трiшнi кути:

𝜉−(𝜆) =
∑︁

𝜇=𝜆−□∈Y𝑛

𝜇,

∇−(𝜆) =
∑︁

𝜇=𝜆−□∈Y𝑛

𝑐(□)𝜇,

наприклад

𝜉−

⎛⎝ ⎞⎠ = + + ,

∇−

⎛⎝ ⎞⎠ = 3 · + − .

Зовнiшнiм кутом дiаграми називається така клiтинка, що при додаваннi її до
дiаграми Юнга знову отримується дiаграма Юнга. Нижче червоним кольором
зображено внутрiшнi кути дiаграми Юнга (4, 4, 3, 2, 2, 1) ∈ Y6:

Позначимо через QY𝑛 векторний простiр, який утворений скiнченними фор-
мальними сумами елементiв з Y𝑛 з рацiональними коефiцiєнтами:

QY𝑛 =
{︀
𝛼1𝜆

(1) + 𝛼2𝜆
(2) + · · ·+ 𝛼𝑘𝜆

(𝑘), 𝑘 ∈ N, 𝛼𝑖 ∈ Q, 𝜆(𝑖) ∈ Y𝑛
}︀
.

Визначимо оператори 𝜉+ i ∇+ на QY𝑛 якi ”додають” внутрiшнi кути до дiа-
грами, не збiльшуючи кiлькiсть рядкiв:

𝜉+(𝜆) =
∑︁

𝜇=𝜆+□∈Y𝑛

𝜇,

∇+(𝜆) =
∑︁

𝜇=𝜆+□∈Y𝑛

𝑐(□)𝜇.
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Тепер розглянемо наступнi два оператори̂︀𝐷− = −(𝑛𝜉− +∇−),̂︀𝐷+ = ̂︀∇.
Наша мета — довести що цi два оператори, разом з їхнiм комутатором

[ ̂︀𝐷+, ̂︀𝐷−], визначають дiю алгебри Лi sl2 на QY𝑛.
3. Симетричнi многочлени. Тепер розглянемо алгебру многочленiв

Q[𝑥1, 𝑥2, . . . , 𝑥𝑛] вiд 𝑛 змiнних з рацiональними коефiцiєнтами. Симетрична гру-
па 𝑆𝑛 дiє на цiй алгебрi перестановками змiнних:

𝜔 ∘ 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓(𝑥𝜔(1), 𝑥𝜔(2), . . . , 𝑥𝜔(𝑛)), 𝜔 ∈ 𝑆𝑛.

Многочлени, якi не змiнюються при цiй дiї, називаються симетричними
многочленами i, оскiльки, добуток двох симетричних многочленiв, знову є симе-
тричним многочленом, то вони утворюють пiдалгебру Λ𝑛 = Q[𝑥1, 𝑥2, . . . , 𝑥𝑛]

𝑆𝑛 ,
яке називається алгеброю симетричних многочленiв. В Λ𝑛 розглядають кiлька
традицiйних базисiв, встановлення та вивчення спiввiдношень мiж якими i є, в
значнiй мiрi, предметом теорiї симетричних многочленiв, див. [1], [2].

3.1. Базиси в Λn. Найпростiшим прикладом симетричних многочленiв є
суми всiх можливих добуткiв змiнних фiксованої довжини

𝑒𝑟 =
∑︁

1≤𝑖1<𝑖2<···<𝑖𝑟≤𝑛

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑟 , 0 ≤ 𝑟 ≤ 𝑛, 𝑒0 = 1,

якi називаються елементарними симетричними многочленами. Вони мають
породжуючу функцiю

𝐸(𝑡) =
𝑛∑︁
𝑟=0

𝑒𝑟𝑡
𝑟 =

𝑛∏︁
𝑖=1

(1 + 𝑥𝑖𝑡),

i є базисом алгебри Λ𝑛. Твердження про алгебраїчну незалежнiсть елемен-
тарних симетричних функцiй називається основною теоремою про симетричнi
функцiї.

Повний симетричний многочлен ℎ𝑟 визначається як сума всiх рiзних моно-
мiв степеня 𝑟:

ℎ𝑟 =
∑︁

1≤𝑖1≤𝑖2≤···≤𝑖𝑟≤𝑛

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑟 , 0 ≤ 𝑟 ≤ 𝑛, ℎ0 = 𝑒0 = 1,

Наприклад для трьох змiнних ℎ1 = 𝑥1 + 𝑥2 + 𝑥3 i ℎ2 = 𝑥1
2 + 𝑥2𝑥1 + 𝑥1𝑥3 + 𝑥2

2 +
+ 𝑥2𝑥3 + 𝑥3

2.
Породжуюча функцiя

𝐻(𝑡) =
∞∑︁
𝑟=0

ℎ𝑟𝑡
𝑟 =

1
𝑛∏︀
𝑖=1

(1− 𝑥𝑖𝑡)
.

Степеневим симетричним многочленом 𝑝𝑟 називається сума 𝑟-тих степенiв
змiнних:

𝑝𝑟 = 𝑥𝑟1 + 𝑥𝑟2 + · · ·+ 𝑥𝑟𝑛, 𝑟 ≥ 1.

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



34 Л. П. БЕДРАТЮК

Породжуюча функцiя

𝑃 (𝑡) =
∞∑︁
𝑟=1

𝑝𝑟𝑡
𝑟 =

𝐻 ′(𝑡)

𝐻(𝑡)
.

Нарештi дамо означення многочленiв Шура, яке є дещо складнiшим технi-
чно. Многочлени 𝑓 , якi при дiї перестановки змiнюються за правилом 𝜔 ∘ 𝑓 =
= (−1)|𝜔|𝑓 , де |𝜔| — парнiсть перестановки 𝜔, називаються кососиметричними
многочленами. Кососиметричнi многочлени утворюють модуль над Λ𝑛 оскiльки
добуток симетричного многочлена на кососиметричний буде знову кососиметри-
чним многочленом.

Антисиметризатори мономiв 𝑥𝜇 = 𝑥𝜇11 𝑥
𝜇2
2 · · ·𝑥𝜇𝑛𝑛 :

𝑎𝜇 =
∑︁
𝜔∈𝑆𝑛

(−1)|𝜔|𝜔(𝑥𝜇) =
∑︁
𝜔∈𝑆𝑛

(−1)|𝜔|𝑥𝜇1𝜔(1)𝑥
𝜇2
𝜔(2) · · ·𝑥

𝜇𝑛
𝜔(𝑛),

утворюють базис модуля кососиметричних многочленiв. Многочлен 𝑎𝜇 можна
записати у виглядi визначника

𝑎𝜇 = det(𝑥
𝜇𝑗
𝑖 )1≤𝑖,𝑗≤𝑛 =

⃒⃒⃒⃒
⃒⃒⃒⃒𝑥

𝜇1
1 𝑥𝜇12 . . . 𝑥𝜇1𝑛
𝑥𝜇21 𝑥𝜇22 . . . 𝑥𝜇2𝑛

. . . . . . . . .
𝑥𝜇𝑛1 𝑥𝜇𝑛2 . . . 𝑥𝜇𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒ .

Зокрема, при 𝛿 = (𝑛− 1, 𝑛− 2, . . . , 1, 0) отримуємо визначник Вандермонда

𝑎𝛿 = det(𝑥𝑛−𝑗𝑖 )1≤𝑖,𝑗≤𝑛 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

. . . . . . . . . .
𝑥1 𝑥2 . . . 𝑥𝑛
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ =

∏︁
𝑖<𝑗≤𝑛

(𝑥𝑖 − 𝑥𝑗).

Якщо в наборi 𝜇 присутнi двi однакових компоненти, то тодi многочлен 𝑎𝜇
рiвний нулю. Тому для ненульових многочленiв можна вважати що, 𝜇1 > 𝜇2 >
> · · · > 𝜇𝑛 ≥ 0. Отже, набiр 𝜇 можна подати у виглядi суми 𝜇 = 𝜆+ 𝛿, де набiр
𝜆 вже буде розбиттям.

Симетричний многочлен Шура 𝑠𝜆 = 𝑠𝜆(𝑥1, 𝑥2, . . . , 𝑥𝑛), який вiдповiдає роз-
биттю 𝜆 ∈ Y𝑛, визначається як вiдношення двох кососиметричних многочленiв

𝑠𝜆(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑎𝜆+𝛿
𝑎𝛿

.

Наведемо приклади многочленiв Шура:

𝑠(1,1,0)(𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 𝑥2 + 𝑥3,

𝑠(1,1,1)(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3,

𝑠(2,1,0)(𝑥1, 𝑥2, 𝑥3) = (𝑥2 + 𝑥3) (𝑥1 + 𝑥3) (𝑥1 + 𝑥2) .

Якщо 𝜆 пробiгає всi розбиття довжини не бiльше 𝑛, то вiдповiднi многочлени
Шура утворюють базис Λ𝑛 як нескiнченновимiрного векторного Q-простору.
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Многочлени Шура є узагальненням всiх iнших вiдомих базисiв Λ𝑛, напри-
клад у випадку розбиття довжини 𝑘 𝜆 = (1𝑘) у якого кожна ненульова частина
рiвна 1, отримуються елементарнi симетричнi многочлени 𝑠((1𝑘)) = 𝑒𝑘. Для роз-
биття 𝜆 = (𝑟) = (𝑟, 0, 0, . . . , 0) можна показати, що 𝑠(𝑟) = ℎ𝑟.

3.2. Базиси в QYn. Нехай 𝜙 : Λ𝑛 → QY𝑛 iзоморфiзм, для якого 𝜙(𝑠𝜆) = 𝜆.
Зрозумiло, що 𝜙 переводить базиси в Λ𝑛 у базиси в QY𝑛. Для елементарних
симетричних многочленiв i повних симетричних многочленiв маємо

𝜙(ℎ𝑘) = (𝑘) = · · ·⏟  ⏞  
𝑘 клiтин

,

i

𝜙(𝑒𝑘) = (1𝑘) = ...

⎫⎪⎬⎪⎭𝑘 клiтин.

Випадок iз симетричними степеневими сумами трохи складнiший. Розгля-
немо такi лiнiйнi комбiнацiї дiаграм Юнга

𝜋1 = ,

𝜋2 = − ,

𝜋3 = − + ,

...
𝜋𝑛 = · · ·⏟  ⏞  

𝑛 клiтин

− ... + ... + · · ·+ (−1)𝑛−1

...
𝑛 клiтин

,

де в елементi 𝜋𝑖 всi дiаграми мiстять по 𝑖 клiтин.
Виразимо степеневi суми через многочлени Шура

𝑝1 = 𝑠(1),

𝑝2 = 𝑠(2) − 𝑠1,1,

𝑝3 = 𝑠(3) − 𝑠2,1 + 𝑠1,1,1,

𝑝4 = 𝑠(4) − 𝑠3,1 + 𝑠2,1,1 − 𝑠1,1,1,1.

З [1, Теорема 7.17.1] випливає, що степеневi симетричнi многочлени так ви-
ражаються через многочлени Шура:

𝑝𝑘 = 𝑠(𝑘) − 𝑠𝑘−1,1 + 𝑠𝑘−2,1,1 − 𝑠𝑘−3,1,1,1 + · · ·+ (−1)𝑘−1𝑠1,1,...,1⏟  ⏞  
𝑘

, 𝑘 ≤ 𝑛.

Отже 𝜙(𝑝𝑘) = 𝜋𝑘.
4. sl2-дiя Λn i на QYn. Розглянемо стандартний базис комплексної матри-

чної алгебри Лi sl2:
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e+ =

(︂
0 1
0 0

)︂
, h =

(︂
1 0
0 −1

)︂
, e− =

(︂
0 0
1 0

)︂
,

з такими комутацiйними спiввiдношеннями

[ℎ, e+] = 2e+, [ℎ, e−] = −2e−, [e+, e−] = h.

Лiнiйним зображенням (𝜌, 𝑉 ) алгебри sl2 у векторному просторi 𝑉 називає-
ться гомоморфiзм 𝜌 : sl2 → End(𝑉 ) який зберiгає комутатори. В термiноло-
гiї модулiв, векторний простiр 𝑉 (можливо нескiнченновимiрний) називається
sl2-модулем, а гомоморфiзм 𝜌 називається sl2-дiєю.

Безпосередня та пряма перевiрка показує, що наступнi диференцiальнi опе-
ратори (𝐷−, 𝐷0, 𝐷+) в Q[𝑥1, . . . , 𝑥𝑛]:

𝜌(e+) = 𝐷+ = 𝑥21𝜕1 + 𝑥22𝜕2 + · · ·+ 𝑥2𝑛𝜕𝑛,

𝜌(h) = 𝐷0 = 2(𝑥1𝜕1 + 𝑥2𝜕2 + · · ·+ 𝑥𝑛𝜕𝑛),

𝜌(e−) = 𝐷− = −(𝜕1 + 𝜕2 + · · ·+ 𝜕𝑛),

де 𝜕𝑖 =
𝜕

𝜕𝑥𝑖
, задовольняють комутацiйним спiввiдношенням

[𝐷+, 𝐷−] = 𝐷0, [𝐷0, 𝐷+] = 2𝐷+, [𝐷0, 𝐷−] = −2𝐷−.

Отже, вони визначають sl2-дiю на алгебрi Q[𝑥1, . . . , 𝑥𝑛], яка розглядається як
нескiнченновимiрний векторний простiр з мономiальним базисом 𝑥𝛼 = 𝑥𝛼1

1 𝑥
𝛼2
2 · · ·

𝑥𝛼𝑛
𝑛 , 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ N𝑛. Частиннi похiднi 𝜕1, 𝜕2, . . . , 𝜕𝑛 входять симетри-

чно у вирази для операторiв 𝐷+, 𝐷0, 𝐷−, тому цi оператори є ендоморфiзмами
i алгебри Λ𝑛. Отже, звуження 𝜌 на Λ𝑛 також буде sl2-дiєю.

Можна показати, що елемент Казимiра, тобто єдиний породжуючий еле-
мент центру унiверсальної огортуючої алгебри для алгебри sl2, цiєї дiї в коор-
динатах має такий вигляд:

𝐷2
0 + 2(𝐷−𝐷+ +𝐷+𝐷−) = −4

∑︁
1≤𝑖<𝑗≤𝑛

(𝑥𝑖 − 𝑥𝑗)
2𝜕𝑖𝜕𝑗.

4.1. Дiя на многочлени Шура. Оскiльки многочлени Шура

𝑠𝜆 =
𝑎𝜆+𝛿
𝑎𝛿

=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝜆1+𝑛−1
1 𝑥𝜆1+𝑛−1

2 . . . 𝑥𝜆1+𝑛−1
𝑛

𝑥𝜆2+𝑛−2
1 𝑥𝜆2+𝑛−2

2 . . . 𝑥𝜆2+𝑛−2
𝑛

...
... . . .

...
𝑥𝜆𝑛1 𝑥𝜆𝑛2 . . . 𝑥𝜆𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒⃒

⃒⃒⃒⃒
⃒
𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

,

утворюють базис в Λ𝑛 ( як нескiнченновимiрного векторного Q-простору), то
sl2-дiя на многочлени Шура є лiнiйною комбiнацiєю многочленiв Шура.

В наступнiй теоремi дiя операторiв 𝐷−, 𝐷0, 𝐷+ на многочлени Шура вира-
жена в цьому базисi.
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Теорема 2. Справедливi наступнi спiввiдношення:

(𝑖) 𝐷−(𝑠𝜆) = −
∑︀

𝜇=𝜆−□∈Y𝑛

(𝑛+ 𝑐(□))𝑠𝜇,

(𝑖𝑖) 𝐷0(𝑠𝜆) = 2|𝜆|𝑠𝜆,
(𝑖𝑖𝑖) 𝐷+(𝑠𝜆) =

∑︀
𝜇=𝜆+□∈Y𝑛

𝑐(□)𝑠𝜇.

Доведення. (𝑖) Оскiльки оператор 𝐷− є диференцiюванням алгебри мно-
гочленiв, то ми маємо

𝐷−(𝑠𝜆) = 𝐷−

(︂
𝑎𝜆+𝛿
𝑎𝛿

)︂
=
𝐷−(𝑎𝜆+𝛿)𝑎𝛿 − 𝑎𝜆+𝛿𝐷−(𝑎𝛿)

𝑎2𝛿
.

За правилом диференцiювання визначника знаходимо дiю 𝐷− на визначник
Вандермонда:

𝐷−(𝑎𝛿) =

=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝐷−(𝑥

𝑛−1
1 ) 𝐷−(𝑥

𝑛−1
2 ) . . . 𝐷−(𝑥

𝑛−1
𝑛 )

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝐷−(𝑥
𝑛−2
1 ) 𝐷−(𝑥

𝑛−2
2 ) . . . 𝐷−(𝑥

𝑛−2
𝑛 )

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒+

+ · · ·+

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
0 0 . . . 0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ .

Оскiльки 𝐷−(𝑥
𝑘
𝑖 ) = −𝜕𝑖(𝑥𝑘𝑖 ) = −𝑘 𝑥𝑘−1

𝑖 , то в кожному з цих визначникiв,
крiм останнього, є два пропорцiйних рядки, а в останньому визначнику є ну-
льовий рядок. Тому диференцiювання 𝐷− зануляє визначник Вандермонда i ми
отримуємо простiший вираз для дiї оператора 𝐷−:

𝐷−(𝑠𝜆) =

𝐷−

⎛⎜⎜⎜⎝
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝜆1+𝑛−1
1 𝑥𝜆1+𝑛−1

2 . . . 𝑥𝜆1+𝑛−1
𝑛

𝑥𝜆2+𝑛−2
1 𝑥𝜆2+𝑛−2

2 . . . 𝑥𝜆2+𝑛−2
𝑛

...
... . . .

...
𝑥𝜆𝑛1 𝑥𝜆𝑛2 . . . 𝑥𝜆𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⎞⎟⎟⎟⎠
𝑎𝛿

.

Дiємо диференцiюванням на визначник у чисельнику i отримуємо, врахову-
ючи правило диференцiювання визначникiв, таку суму

𝐷− (𝑎𝜆+𝛿) = −
𝑛∑︁
𝑖=1

(𝑛+𝜆𝑖−𝑖)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑥𝜆1+𝑛−1
1 𝑥𝜆1+𝑛−1

2 . . . 𝑥𝜆1+𝑛−1
𝑛

...
... . . .

...
𝑥𝜆𝑖+𝑛−𝑖−1
1 𝑥𝜆𝑖+𝑛−𝑖−1

2 . . . 𝑥𝜆𝑖+𝑛−𝑖−1
𝑛

...
... . . .

...
𝑥𝜆𝑛1 𝑥𝜆𝑛2 . . . 𝑥𝜆𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒.
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Зрозумiло, що кожен iз визначникiв суми вiдмiнний вiд нуля лише тодi коли
у дiаграмi Юнга, яка вiдповiдає розбиттю 𝜆, клiтина (𝑖, 𝜆𝑖) буде внутрiшньою
клiтиною. В протилежному випадку отримується визначник з двома пропорцiй-
ними рядками. Зауважимо, що 𝜆𝑖− 𝑖 є контентом 𝑐(□) цiєї внутрiшньої клiтини.
Тому, подiливши цю суму на на визначник Вандермонда, отримаємо, що

𝐷−(𝑠𝜆) = −
∑︁

𝜇=𝜆−□∈Y𝑛

(𝑛+ 𝑐(□))𝑠𝜇.

(𝑖𝑖) Знайдемо тепер дiю диференцiювання 𝐷+ на визначник Вандермонда.
Оскiльки 𝐷+(𝑥

𝑘
𝑖 ) = 𝑘𝑥𝑘+1

𝑖 , то в кожному визначнику суми 𝐷+(𝑎𝛿), крiм того,
який вiдповiдає диференцiюванню першого рядка, будуть пропорцiйнi рядки.
Тому в результатi залишиться лише один визначник:

𝐷+

⎛⎜⎜⎜⎝
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⎞⎟⎟⎟⎠ = (𝑛− 1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑛
𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ .

Отриманий визначник є узагальненим визначником Вандермонда. Викори-
ставши формулу для його обчислення, див. [10, Лема 2.1], отримуємо⃒⃒⃒⃒

⃒⃒⃒⃒
⃒
𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑛
𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = (𝑥1 + 𝑥2 + · · ·+ 𝑥𝑛)𝑎𝜆+𝛿 = 𝑠(1)𝑎𝛿.

Дiючи диференцiюванням 𝐷+ на многочлени Шура отримуємо

𝐷+(𝑠𝜆) = 𝐷+

(︂
𝑎𝜆+𝛿
𝑎𝛿

)︂
=
𝐷+(𝑎𝜆+𝛿)𝑎𝛿 − 𝑎𝜆+𝛿𝐷+(𝑎𝛿)

𝑎2𝛿
=
𝐷+ (𝑎𝜆+𝛿)

𝑎𝛿
− (𝑛− 1)𝑠(1)𝑠𝜆.

Вираз 𝐷+ (𝑎𝜆+𝛿) є сумою визначникiв, якi вiдмiннi вiд нуля лише тодi коли
клiтина (𝑖, 𝜆𝑖 + 1) буде зовнiшнiм кутом дiаграми Юнга 𝜆. Маємо

𝐷+

(︀
det(𝑥𝜆𝑖+𝑛−𝑖𝑗 )

)︀
𝑎𝛿

=

𝑛∑︀
𝑗=1

(𝜆𝑖 + 𝑛− 𝑖) det(𝑥𝜆𝑖+𝑛−𝑖𝑗 )

𝑎𝛿
=

∑︁
𝜇=𝜆+□∈Y𝑛

(𝑛− 1 + 𝑐(□))𝑠𝜇.

Згiдно правила П’єрi знаходимо 𝑠(1)𝑠𝜆 =
∑︀

𝜇=𝜆+□∈Y𝑛

𝑠𝜇.

Отже, в пiдсумку, отримуємо

𝐷+(𝑠𝜆) =
∑︁

𝜇=𝜆+□∈Y𝑛

𝑐(□)𝑠𝜇.

(𝑖𝑖𝑖) Шукаємо дiю диференцiювання 𝐷0 на визначник Вандермонда

𝐷0

⎛⎜⎜⎜⎝
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⎞⎟⎟⎟⎠= 2((𝑛−1)+(𝑛−2)+ · · ·+1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑥𝑛−1
1 𝑥𝑛−1

2 . . . 𝑥𝑛−1
𝑛

𝑥𝑛−2
1 𝑥𝑛−2

2 . . . 𝑥𝑛−2
𝑛

...
... . . .

...
1 1 . . . 1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒=

= 𝑛(𝑛− 1)𝑎𝛿.
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Тодi

𝐷0(𝑠𝜆) = 𝐷0

(︃
det(𝑥𝜆𝑖+𝑛−𝑖𝑗 )

𝑎𝛿

)︃
=
𝐷(det(𝑥𝜆𝑖+𝑛−𝑖𝑗 ))𝑎𝛿 − det(𝑥𝜆𝑖+𝑛−𝑖𝑗 )𝐷0(𝑎𝛿)

𝑎2𝛿
=

=

𝑛∑︀
𝑖=1

2(𝜆𝑖 + 𝑛− 𝑖) det(𝑥𝜆𝑖+𝑛−𝑖𝑗 )𝑎𝛿 − det(𝑥𝜆𝑖+𝑛−𝑖𝑗 )𝑛(𝑛− 1)𝑎𝛿

𝑎2𝛿
= 2|𝜆|𝑠𝜆.

□
Тепер ми можемо довести Теорему 1.
Доведення. Розглянемо такi оператори на QY𝑛:

̂︀𝐷−(𝜆) = −
∑︁

𝜇=𝜆−□∈Y𝑛

(𝑛+ 𝑐(□))𝜇,

̂︀𝐷0(𝜆) = 2|𝜆|𝜆,̂︀𝐷+(𝜆) =
∑︁

𝜇=𝜆+□∈Y𝑛

𝑐(□)𝜇.

якi iндукованi iзоморфiзмом 𝜙 i вiдповiдають операторам 𝐷−, 𝐷0, 𝐷+ з Теоре-
ми 2. Виразимо їх через оператори 𝜉−,∇−,∇+ :

̂︀𝐷− = −(𝑛𝜉−(𝜆) +∇−(𝜆)),̂︀𝐷0(𝜆) = 2|𝜆|𝜆,̂︀𝐷+(𝜆) = ∇+(𝜆).

Оскiльки iснує iзоморфiзм алгебр Y𝑛 та Λ𝑛, який переводить многочлен 𝑠𝜆
в розбиття 𝜆, то цi оператори задають sl2-дiю на Y𝑛, що i вимагалося довести в
Теоремi 1.

□
4.2. Дiя на iншi базиси в Λn i на породжуючi функцiї. Як безпосе-

реднiй наслiдок Теореми 2 отримаємо явний вигляд дiї операторiв 𝐷−, 𝐷0, 𝐷+ i
операторiв ̂︀𝐷−, ̂︀𝐷0, ̂︀𝐷+ на рiзнi базиси в Λ𝑛 i QY𝑛.

Теорема 3. Дiя операторiв
1) на елементарнi симетричнi многочлени 𝑒𝑖 та на вiдповiднi розбиття (1𝑖) :

𝐷−(𝑒𝑖) = −(𝑛− (𝑖− 1))𝑒𝑖−1, ̂︀𝐷−((1
𝑖)) = −(𝑛− (𝑖− 1))(1𝑖−1)

𝐷0(𝑒𝑖) = 2𝑖𝑒𝑖, ̂︀𝐷0((1
𝑖)) = 2𝑖((1𝑖)),

𝐷+(𝑒𝑖) = 𝑒1𝑒𝑖 − (𝑖+ 1)𝑒𝑖+1, ̂︀𝐷+((1
𝑖)) = (1) · (1𝑖)− (𝑖+ 1)(1𝑖+1)

𝐷+(𝑒𝑛) = 𝑒1𝑒𝑛, ̂︀𝐷+((1
𝑛)) = (1) · (1𝑛).

2) На повнi симетричнi многочлени ℎ𝑖 та на вiдповiднi розбиття (𝑖) :

𝐷−(ℎ𝑖) = −(𝑛+ 𝑖− 1)ℎ𝑖−1, ̂︀𝐷−((𝑛)) = −(𝑛+ 𝑖− 1)(𝑛),

𝐷0(ℎ𝑖) = 2𝑖ℎ𝑖, ̂︀𝐷0((𝑖)) = 2𝑖(𝑖)

𝐷+(ℎ𝑖) = (𝑖+ 1)ℎ𝑖+1 − ℎ1ℎ𝑖, ̂︀𝐷+((𝑖)) = (𝑖+ 1)(𝑖+ 1)− (1) · (𝑖).
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3) На степеневi симетричнi многочлени 𝑝𝑖 та на вiдповiднi розбиття 𝜋𝑖 :

𝐷−(𝑝𝑖) = 𝑖𝑝𝑖−1, 𝐷−(𝑝1) = 𝑛, ̂︀𝐷−(𝜋𝑖) = 𝑖𝜋𝑖−1, 𝐷−(𝜋1) = 𝑛,

𝐷0(𝑝𝑖) = 2𝑖𝑝𝑖, ̂︀𝐷0(𝜋𝑖) = 2𝑖𝜋𝑖,

𝐷+(𝑝𝑖) = 𝑖𝑝𝑖+1, ̂︀𝐷+(𝜋𝑖) = 𝑖𝜋𝑖+1,

для всiх 1 ≤ 𝑖 ≤ 𝑛.

Доведення. З Теореми 2, оскiльки симетричнi многочлени 𝑒𝑖 та ℎ𝑖 є мно-
гочленами Шура, якi вiдповiдають розбиттям (1𝑖) i (𝑖), ми зразу отримаємо,
що

𝐷−(𝑒𝑖) = −(𝑛− (𝑖− 1))𝑒𝑖−1 𝐷−(ℎ𝑖) = −(𝑛+ 𝑖− 1)ℎ𝑖−1

𝐷0(𝑒𝑖) = 2𝑖𝑒𝑖 𝐷(ℎ𝑖) = 2𝑖ℎ𝑖,
𝐷+(𝑒𝑖) = 𝑒1𝑒𝑖 − (𝑖+ 1)𝑒𝑖+1 𝐷+(ℎ𝑖) = (𝑖+ 1)ℎ𝑖+1 − ℎ1ℎ𝑖,
𝐷+(𝑒𝑛) = 𝑒1𝑒𝑛 𝐷+(ℎ𝑛) = (𝑛+ 1)ℎ𝑛+1 − ℎ1ℎ𝑛.

Результати дiї операторiв 𝐷−, 𝐷0 зрозумiлi, пояснимо отриманi вирази для
𝐷+. За Теоремою 2 маємо, що

𝐷+(𝑠𝜆) =
∑︁

𝜇=𝜆+□∈Y𝑛

𝑐(□)𝑠𝜇.

Для 𝜆 = (1𝑖), 𝑖 < 𝑛 отримуємо,

𝐷+(𝑠(1𝑖)) = 𝐷+(𝑒𝑖) =
∑︁

𝜇=(1𝑖)+□∈Y𝑛

𝑐(□)𝑠𝜇 = 𝑠2,1,...,1 − 𝑖𝑒𝑖+1.

За правилом П’єрi, маємо

𝑒1𝑒𝑖 = 𝑠2,1,...,1 + 𝑒𝑖+1.

Звiдси

𝐷+(𝑒𝑖) = 𝑒1𝑒𝑖 − (𝑖+ 1)𝑒𝑖+1.

Для випадку 𝑖 = 𝑛 маємо 𝐷+(𝑒𝑛) = 𝑒1𝑒𝑛.
Для повних симетричних многочленiв вираз для 𝐷+(ℎ𝑖) отримується ана-

логiчно. Дiя на степеневi симетричнi многочлени многочлени 𝑝𝑖 отримується
зразу iз означення цих многочленiв.

Теорему доведено.
□

Знайдемо дiю операторiв 𝐷−, 𝐷0, 𝐷+ на породжуючi функцiї цих сiмей си-
метричних многочленiв. Має мiсце наступна теорема

Теорема 4. Нехай 𝐸(𝑡), 𝐻(𝑡), 𝑃 (𝑡) – звичайнi породжуючi функцiї для сiмей
елементарних, повних та степеневих симетричних многочленiв, вiдповiдно.
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Тодi оператори 𝐷−, 𝐷0, 𝐷+ дiють на них у такий спосiб:

1) 𝐷−(𝐻(𝑡)) = −𝑡(𝑛𝐻(𝑡) + 𝑡𝐻 ′(𝑡)),
𝐷0(𝐻(𝑡)) = 2𝑡𝐻 ′(𝑡),
𝐷+(𝐻(𝑡)) = 𝐻 ′(𝑡)− ℎ1𝐻(𝑡).

2) 𝐷−(𝐸(𝑡)) = −𝑡(𝑛𝐸(𝑡)− 𝑡𝐸 ′(𝑡)),
𝐷0(𝐸(𝑡)) = 2𝑡𝐸 ′(𝑡),
𝐷+(𝐸(𝑡)) = 𝑒1𝐸(𝑡)− 𝐸 ′(𝑡).

3) 𝐷−(𝑃 (𝑡)) = −𝑛− 𝑡(2𝑃 (𝑡) + 𝑡𝑃 ′(𝑡)),
𝐷0(𝑃 (𝑡)) = 2𝑡𝑃 ′(𝑡),
𝐷+(𝑃 (𝑡)) = 𝑃 ′(𝑡).

Доведення. Для породжуючої функцiї повних симетричних многочленiв
𝐻(𝑡) маємо

𝐷−(𝐻(𝑡)) =
∞∑︁
𝑖=0

𝐷−(ℎ𝑖)𝑡
𝑖 = −

∞∑︁
𝑖=1

(𝑛+ 𝑖− 1)ℎ𝑖−1𝑡
𝑖 = −

∞∑︁
𝑖=1

𝑛ℎ𝑖−1𝑡
𝑖−

−
∞∑︁
𝑖=1

(𝑖− 1)ℎ𝑖−1𝑡
𝑖 = −𝑛𝑡

∞∑︁
𝑖=0

ℎ𝑖𝑡
𝑖 − 𝑡2

∞∑︁
𝑖=2

(𝑖− 1)ℎ𝑖−1𝑡
𝑖−2 = −𝑛𝑡𝐻(𝑡)− 𝑡2𝐻 ′(𝑡).

Далi знаходимо

𝐷0(𝐻(𝑡)) =
∞∑︁
𝑖=1

𝐷(ℎ𝑖)𝑡
𝑖 =

∞∑︁
𝑖=1

2 𝑖ℎ𝑖𝑡
𝑖 = 2𝑡

∞∑︁
𝑖=1

𝑖ℎ𝑖𝑡
𝑖−1 = 2𝑡𝐻 ′(𝑡),

i

𝐷+(𝐻(𝑡)) =
∞∑︁
𝑖=0

𝐷+(ℎ𝑖)𝑡
𝑖 =

∞∑︁
𝑖=0

((𝑖+ 1)ℎ𝑖+1 − ℎ1ℎ𝑖)) 𝑡
𝑖 =

∞∑︁
𝑖=0

(𝑖+ 1)ℎ𝑖+1𝑡
𝑖−

−ℎ1
∞∑︁
𝑖=0

ℎ𝑖𝑡
𝑖 = 𝐻 ′(𝑡)− ℎ1𝐻(𝑡).

Для породжуючих функцiй 𝐸(𝑡) i 𝑃 (𝑡) дiя на них операторiв зображення
знаходиться аналогiчними мiркуваннями.

□
Питання про дiю на породжуючу функцiю для многочленiв Шура зали-

шається вiдкритим, оскiльки аналiтичний вираз для цiєї функцiї невiдомий,
див. [11], [12].

5. Новi sl2-дiї на Q[𝑥1, 𝑥2, . . . , 𝑥𝑛] i на Λ𝑛. Ми хочемо отримати новi
реалiзацiї sl2-дiї в Q[𝑥1, 𝑥2, . . . , 𝑥𝑛], використовуючи знайденi sl2-дiю в Λ𝑛. В
загальному випадку, розширення диференцiювання з пiдалгебри на алгебру, не
завжди можливе. Проте, якщо кiлькiсть породжуючих в алгебрi така сама, як i
в пiдалгебрi, то ми можемо продовжити довiльне диференцiювання на алгебру
простим перепозначенням змiнних, при деяких умовах.

В наступнiй теоремi визначаються три новi sl2-дiї на Q[𝑥1, 𝑥2, . . . , 𝑥𝑛].
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Теорема 5. Наступнi вiдображення 𝜌𝑖 : sl2 ↦→ End(Q[𝑥1, 𝑥2, . . . , 𝑥𝑛]) є
sl2-дiями:

1) 𝜌1(e−) = − (𝑛𝜕1 + (𝑛− 1)𝑥1𝜕2 + · · ·+ 1 · 𝑥𝑛−1𝜕𝑛) ,
𝜌1(h) = 2 (𝑥1𝜕1 + 2𝑥2𝜕2 + · · ·+ 𝑛𝑥𝑛𝜕𝑛) ,
𝜌1(e+) = (𝑥21 − 2𝑥2)𝜕1 + (𝑥1𝑥2 − 3𝑥3)𝜕2 + (𝑥1𝑥3 − 4𝑥4)𝜕3 + · · ·+ 𝑥1𝑥𝑛𝜕𝑛.

2) 𝜌2(e−) = − (𝑛𝜕1 + (𝑛+ 1)𝑥1𝜕2 + · · ·+ (2𝑛− 1) · 𝑥𝑛−1𝜕𝑛) ,
𝜌2(h) = 2 (𝑥1𝜕1 + 2𝑥2𝜕2 + · · ·+ 𝑛𝑥𝑛𝜕𝑛) ,
𝜌2(e+) = (2𝑥2 − 𝑥21)𝜕1 + (3𝑥3 − 𝑥1𝑥2)𝜕2 + · · ·+ ((𝑛+ 1)𝐻𝑛 − 𝑥1𝑥𝑛)𝜕𝑛.

3) 𝜌3(e−) = − (𝑛𝜕1 + 2𝑥1𝜕2 + · · ·+ 𝑛 · 𝑥𝑛−1𝜕𝑛) ,
𝜌3(h) = 2 (𝑥1𝜕1 + 2𝑥2𝜕2 + · · ·+ 𝑛𝑥𝑛𝜕𝑛) ,
𝜌3(e+) = 𝑥2𝜕1 + 2𝑥3𝜕2 + · · ·+ 𝑛𝑃𝑛𝜕𝑛.

де 𝐻𝑛(ℎ1, ℎ2, . . . , ℎ𝑛) = ℎ𝑛+1 i 𝑃𝑛(𝑝1, 𝑝2, . . . , 𝑝𝑛) = 𝑝𝑛+1.

Доведення. Перепишемо в координатах, вiдому з Теореми 3 дiю на елемен-
тарнi симетричнi многочлени 𝑒𝑖:

𝜌1(e−) = −
(︂
𝑛
𝜕

𝜕𝑒1
+ (𝑛− 1)𝑒1

𝜕

𝜕𝑒2
+ · · ·+ 1 · 𝑒𝑛−1

𝜕

𝜕𝑒𝑛

)︂
,

𝜌1(h) = 2

(︂
𝑒1

𝜕

𝜕𝑒1
+ 2𝑒2

𝜕

𝜕𝑒2
+ · · ·+ 𝑛𝑒𝑛

𝜕

𝜕𝑒𝑛

)︂
,

𝜌1(e+) = (𝑒21 − 2𝑒2)
𝜕

𝜕𝑒1
+ (𝑒1𝑒2 − 3𝑒3)

𝜕

𝜕𝑒2
+ (𝑒1𝑒3 − 4𝑒4)

𝜕

𝜕𝑒3
+ · · ·+ 𝑒1𝑒𝑛

𝜕

𝜕𝑒𝑛
,

Виконавши формальну замiну змiнних 𝑒𝑖 ↦→ 𝑥𝑖, отримаємо твердження 1).
Теореми.

Для повних симетричних многочленiв ми маємо таку дiю або в координатах

𝜌2(e−) = −
(︂
𝑛
𝜕

𝜕ℎ1
+ (𝑛+ 1)ℎ1

𝜕

𝜕ℎ2
+ · · ·+ (2𝑛− 1) · ℎ𝑛−1

𝜕

𝜕ℎ𝑛

)︂
,

𝜌2(h) = 2

(︂
ℎ1

𝜕

𝜕ℎ1
+ 2ℎ2

𝜕

𝜕ℎ2
+ · · ·+ 𝑛ℎ𝑛

𝜕

𝜕ℎ𝑛

)︂
,

𝜌2(e+) = (2ℎ2 − ℎ21)
𝜕

𝜕ℎ1
+ (3ℎ3 − ℎ1ℎ2)

𝜕

𝜕ℎ2
+ · · ·+ ((𝑛+ 1)ℎ𝑛+1 − ℎ1ℎ𝑛)

𝜕

𝜕ℎ𝑛
.

Для того, щоб продовжити диференцiювання 𝜌2(e+) з Λ𝑛 на Q[𝑥1, 𝑥2, . . . , 𝑥𝑛]
потрiбно виразити ℎ𝑛+1 як деякий многочлен𝐻𝑛 вiд ℎ1, ℎ2, . . . , ℎ𝑛 i тодi виконати
замiну ℎ𝑖 ↦→ 𝑥𝑖.

Аналогiчно, для степеневих симетричних многочленiв маємо

𝜌3(e−) = −
(︂
𝑛
𝜕

𝜕𝑝1
+ 2𝑝1

𝜕

𝜕𝑝2
+ · · ·+ 𝑛 · 𝑝𝑛−1

𝜕

𝜕𝑝𝑛

)︂
,

𝜌3(h) = 2

(︂
𝑝1

𝜕

𝜕𝑝1
+ 2𝑝2

𝜕

𝜕𝑝2
+ · · ·+ 𝑛𝑝𝑛

𝜕

𝜕𝑝𝑛

)︂
,

𝜌3(e+) = 𝑝2
𝜕

𝜕𝑝1
+ 2𝑝3

𝜕

𝜕𝑝2
+ · · ·+ 𝑛𝑝𝑛+1

𝜕

𝜕𝑝𝑛
.
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Для того, щоб продовжити диференцiювання 𝜌3(e+) з Λ𝑛 на Q[(𝑥1, 𝑥2, . . . , 𝑥𝑛)]
потрiбно виразити 𝑝𝑛+1 як многочлен 𝑃𝑛 вiд 𝑝1, 𝑝2, . . . , 𝑝𝑛 i тодi виконати замiну
𝑝𝑖 ↦→ 𝑥𝑖.

Теорему доведено.
□

Для невеликих 𝑛 многочлени 𝐻𝑛 i 𝑃𝑛 мають вигляд:

𝐻2 = −ℎ13 + 2ℎ1ℎ2

𝐻3 = ℎ1
4 − 3ℎ1

2ℎ2 + 2ℎ1ℎ3 + ℎ2
2,

𝐻4 = −ℎ15 + 4ℎ1
3ℎ2 − 3ℎ1

2ℎ3 − 3ℎ1ℎ2
2 + 2ℎ1ℎ4 + 2ℎ2ℎ3,

𝐻5 = ℎ1
6 − 5ℎ1

4ℎ2 + 4ℎ1
3ℎ3 +

(︀
6ℎ2

2 − 3ℎ4
)︀
ℎ1

2 + (2ℎ5 − 6ℎ2ℎ3)ℎ1−
− ℎ2

3 + 2ℎ2ℎ4 + ℎ3
2,

i

𝑃2 = −1

2
𝑝1

3 +
3

2
𝑝2𝑝1,

𝑃3 =
1

6
𝑝1

4 − 𝑝2𝑝1
2 +

4

3
𝑝3𝑝1 +

1

2
𝑝2

2,

𝑃4 = −1

2
4 𝑝1

5 +
5

12
𝑝2𝑝1

3 − 5

6
𝑝3𝑝1

2 +

(︂
5

4
𝑝4 −

5

8
𝑝2

2

)︂
𝑝1 +

5

6
𝑝3𝑝2,

𝑃5 =
1

120
𝑝1

6−1

8
𝑝2𝑝1

4+
1

3
𝑝3𝑝1

3+

(︂
3

8
𝑝2

2−3

4
𝑝4

)︂
𝑝1

2+

(︂
6

5
𝑝5−𝑝3𝑝2

)︂
𝑝1−

−1

8
𝑝2

3+
1

3
𝑝3

2+
3

4
𝑝4𝑝2.

Зауважимо, що 𝜌1, 𝜌2, 𝜌3 вже не будуть sl2-дiями на Λ𝑛.
6. Висновки та перспективи подальших дослiджень. В роботi знайде-

но явний вигляд трiйки операторiв sl2-дiї на векторному просторi дiаграм Юнга
QY𝑛 та просторi симетричних многочленiв. Показано, що, використовуючи iзо-
морфiзм мiж QY𝑛 та алгеброю симетричних многочленiв Λ𝑛, можна перенести
дiю алгебри Лi sl2 з Λ𝑛 на QY𝑛.

В майбутньому планується застосувати запропонований пiдхiд i використати
iншi вiдомi симетричнi дiї sl2 на Q[𝑥1, 𝑥2, . . . , 𝑥𝑛] з метою перенесення їх на
простiр дiаграм Юнга QY𝑛. Основна технiчна проблема, яка тут виникатиме,
це знаходження дiї диференцiальних операторiв, якi реалiзовують вiдповiдне
зображення sl2, на многочлени Шура.

Основнi результати роботи мають застосування в теорiї зображень та комбi-
наторицi, зокрема в дослiдженнi структурних властивостей алгебр симетричних
функцiй та операторiв на диференцiальних частково впорядкованих множинах.
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Bedratyuk L. P. The structure of sl2-modules on the Young diagrams.
This paper establishes the explicit form of derivatives ( ̂︀𝐷−, ̂︀𝐷0, ̂︀𝐷+) that define the

action of the Lie algebra sl2 on the vector space QY𝑛 of Young diagrams corresponding to
partitions 𝜆 of length 𝑛: ̂︀𝐷−(𝜆) = −(𝑛𝜉−(𝜆) +∇−(𝜆)),̂︀𝐷0(𝜆) = 2|𝜆|𝜆,̂︀𝐷+(𝜆) = ∇+(𝜆),

where 𝜉−(𝜆) and ∇±(𝜆) are sums over all possible Young diagrams obtained by adding or
removing a cell □ from the corresponding Young diagram. The proof involves introducing
an algebra structure on QY𝑛 isomorphic to the algebra of symmetric polynomials in 𝑛
variables, defining the sl2 action on Schur polynomials, and transferring this action to
QY𝑛.
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ON MINIMAL MINIMAX SYSTEMS OF GENERATORS
FOR POSITIVE POSETS

The representations of partially ordered sets (abbreviated: posets), introduced by
L. A. Nazarova and A. V. Roiter (in matrix form) in 1972, play an important role in
the modern representation theory and its applications. Yu. A. Drozd proved in 1974 that
a poset 𝑆 has finite representation type over a field if and only if its Tits quadratic form

𝑞𝑆(𝑧) =: 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,

is weakly positive (i.e., positive on the set of non-negative vectors), but this statement is
not true, unlike the case of the quivers, when considering the positive quadratic forms.
Hence the posets with positive Tits quadratic forms aroused great interest from various
points of view as analogs of Dynkin diagrams. In 2005 the authors described up to iso-
morphism all posets with positive Tits quadratic form. The basic method for solving this
problem is so-called minimax equivalence method proposed by the first author. Recently
he introduced some concept (namely, minimax system of generations) with consideration
of the corresponding examples, which can be considered as the emergence of a new theory,
which study combinatorial properties of posets with respect to minimax equivalence.

In this paper we study from such new point of view the posets with positive Tits
quadratic form (which are called positive posets).

Keywords: positive quadratic form, Tits quadratic form, positive poset, minimax equiv-
alence and isomorphism, minimax system of generators.

1. Introduction. When studying the representations of quivers, P. Gabriel [1]
introduced a quadratic form of a (finite) quiver 𝑄. This form was called the Tits
quadratic form of the quiver 𝑄. P. Gabriel proved that the quiver 𝑄 is of finite
representation type over a field 𝑘 if and only if its Tits quadratic form is positive.
This Gabriel’s result laid the foundations of a new direction in the representation
theory dealing with the investigation of the relationships between the properties of
representations of various objects and the properties of quadratic forms associated
with these objects.

In [2], Yu. A. Drozd showed that a (finite) poset 𝑆 is of finite representation
type if and only if its Tits quadratic form

𝑞𝑆(𝑧) = 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,
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is weakly positive, i.e. positive on the non-zero vectors with non-negative coordinates
(representations of posets were introduced by L. A. Nazarova and A. V. Roiter in [3]).
In contrast to the quivers, the posets with weakly positive and with positive Tits
forms do not coincide. Since the connected quivers having positive Tits quadratic
form coincide with the quivers whose underlying graphs are (simply faced) Dynkin
diagrams [1], the posets with positive Tits form are analogs of the Dynkin diagrams.
Therefore investigation related to posets with positive Tits form are important.
In [4], [5] the authors classified the posets with positive Tits quadratic form and the
minimal posets with non-positive Tits form.

In solving the specified problems, a method based on the notion of minimax
equivalence of posets was used (see [6]). In [7] the first author introduced some
concept (namely, minimax system of generations) with consideration of the corres-
ponding examples, which can be considered as the emergence of a new theory, which
study combinatorial properties of posets with respect to minimax equivalence.

In this paper we study from the new point of view the posets with positive Tits
quadratic form. Such posets are called positive.

The first author is supported by a grant from the Simons Foundation (1030291,
1290607, V.M.B.).

2. Preliminaries.
2.1. Definitions on posets. Throughout the paper, all posets are finite of

order 𝑛 > 0 without an element 0. A poset 𝑇 is called dual to a poset 𝑆 and is
denoted by 𝑆op if 𝑇 = 𝑆 as usual sets and 𝑥 < 𝑦 in 𝑇 if and only if 𝑥 > 𝑦 in 𝑆.
If 𝑆 and 𝑆op are isomorphic, the poset 𝑆 is called self-dual. 𝑇 and 𝑆 are called
anti-isomorphic if 𝑇 and 𝑆op are isomorphic.

By a subposet we always mean a full one, and singletons are identified with
the elements themselves. Sometime (in definitions or statements) we admit empty
posets which are or may be later subposets of some posets.

A poset 𝑆 is called a sum of subposets 𝐴1, 𝐴2, . . . , 𝐴𝑚 and write 𝑆 = 𝐴1 + 𝐴2 +
· · ·+ 𝐴𝑚, if 𝑆 = ∪𝑖∈𝑆𝐴𝑖 and 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for each 𝑖 and 𝑗 ̸= 𝑖. If any two elements
of different summands are incomparable, the sum is called direct and is denoted in
this case also by

∐︀
instead of +.

A sum 𝑆 = 𝐴 + 𝐵 with 𝐴,𝐵 ̸= ∅ is said to be left (resp. right) if 𝑎 < 𝑏 (resp.
𝑏 < 𝑎) for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and there is no 𝑎′ ∈ 𝐴, 𝑏′ ∈ 𝐵 such that 𝑎′ > 𝑏′

(resp. 𝑏′ > 𝑎′). Both left and right sums are called one-sided. A sum 𝑆 = 𝐴+ 𝐵 is
called two-sided if 𝑎 < 𝑏 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝑏′ < 𝑎′ for some 𝑎′ ∈ 𝐴, 𝑏′ ∈ 𝐵.
Finally, a one-sided (left or right) or two-sided sum 𝑆 = 𝐴+𝐵 is called minimax if
𝑥 < 𝑦 with 𝑥 and 𝑦 belonging to different summands implies that 𝑥 is minimal and
𝑦 maximal in 𝑆.

2.2. Positive posets. Let 𝑆 be a poset. The Tits quadratic form of 𝑆 is by
definition the following quadratic form 𝑞 : Z|𝑆|+1 → Z:

𝑞 = 𝑞𝑆(𝑧) = 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,

(see [2]). Here Z denotes the set of integer numbers and Z|𝑆|+1 consists of the integer
vectors (𝑧𝑖) with 𝑖 ∈ 0 ∪ 𝑆. The poset 𝑆 is called positive if so is its Tits quadratic
form.
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The positive posets were first described in [4] (for posets of width two) and [5]
(in general case). They can be of two types: serial and non-serial.

A positive poset 𝑆 is called serial if for any 𝑚 ∈ N, there is a positive poset
𝑆(𝑚) ⊃ 𝑆 such that |𝑆(𝑚) ∖ 𝑆| = 𝑚, and non-serial otherwise. There are 108
non-serial positive posets up to isomorphism and duality [5, Table 1] (see also below
Section 5).

Now formulate two theorems on positive serial posets (see [4], [5] and also [7]).
A linear ordered set with 𝑛 ≥ 0 elements is called a chain of length 𝑛. A poset

of the foem 𝑎1 < . . . < 𝑎𝑝 < {𝑏, 𝑐} < 𝑑1 < . . . 𝑑𝑞 (𝑝, 𝑞 ≥ 0) with one pair of
incomparable elements is called an almost chain of length 𝑛 = 𝑝+ 𝑞 + 1.

Theorem 1. A poset 𝑇 is serial positive if and only if it is isomorphic to one
of the following poset 𝑆:

(1) 𝑆 is a direct sum of a chain of length 𝑘 ≥ 0 and a chain of length 𝑠 ≥ 1,
where 𝑘 ≤ 𝑠;

(2) 𝑆 is a left minimax sum of two chains of lengths 𝑘 ≥ 1 and 𝑠 ≥ 1, where
𝑘 + 𝑠 > 3;

(3) 𝑆 is a direct sum of a chain of length 𝑘 ≥ 0 and an almost chain of length
𝑠 ≥ 1, where 𝑘 + 𝑠 > 1.

Moreover, all these posets are pairwise non-isomorphic.

Theorem 2. Any positive poset of order 𝑛 < 5 or 𝑛 > 7 is serial.

3. Main results.
3.1. Minimax equivalence of posets. This concept was introduced by the

first author in [6] and studied in detail in [5].
For a poset 𝑆 and its minimal (resp. maximal) element 𝑎, let us 𝑇 = 𝑆↑

𝑎 (resp.
𝑇 = 𝑆↓

𝑎) denotes the following poset: 𝑇 = 𝑆 as usual sets, 𝑇 ∖ 𝑎 = 𝑆 ∖ 𝑎 as posets,
the element 𝑎 is maximal (resp. minimal) in 𝑇 , and 𝑎 is comparable with 𝑥 in 𝑇
if and only if they are incomparable in 𝑆. Two posets 𝑆 and 𝑇 are called (min,
max)-equivalent if there are posets 𝑆1, . . . , 𝑆𝑝 (𝑝 ≥ 0) such that, if we put 𝑆 = 𝑆0

and 𝑇 = 𝑆𝑝+1, then, for every 𝑖 = 0, 1, . . . , 𝑝, either 𝑆𝑖+1 = (𝑆𝑖)
↑
𝑥𝑖

or 𝑆𝑖+1 = (𝑆𝑖)
↓
𝑦𝑖

.
Obviously, any poset is (min, max)-equivalent to itself (if one put 𝑝 = 0). Since
some time we also use the term minimax equivalence.

The notion of minimax equivalence can be naturally continued to the notion of
minimax isomorphism: posets 𝑆 and 𝑆 ′ are minimax isomorphic if there exists a
poset 𝑇 which is minimax equivalent to 𝑆 and isomorphic to 𝑆 ′.

In the case when for every 𝑖 = 0, 1, . . . , 𝑝‘ one has 𝑆𝑖+1 = (𝑆𝑖)
↑
𝑥𝑖

, 𝑇 and 𝑆 are
called min-equivalent.

Proposition 1. The following conditions are equivalent:
(1) 𝑇 and 𝑆 are (min, max)-equivalent;
(2) 𝑇 and 𝑆 are min-equivalent.

In a similar way one can defines the notion of max-equivalence.
3.2. Minimax systems of generators. The concept of such systems of

generators was introduced by the first author in [7].
Let K be a class of finite posets closed under isomorphism and duality (or,

equivalently, isomorphism and anti-isomorphism), and let 𝑈 = {𝑈𝑖} be a set of
posets 𝑈𝑖 ∈ K with 𝑖 running through a (finite or infinite) set 𝐼. The set 𝑈 is called
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a minimax system of generators of K if any 𝑋 ∈ K is minimax isomorphic to a poset
𝑈𝑖 for some 𝑖 ∈ 𝐼. In the case when any proper subset of 𝑈 is not a minimax system
of generators, the system of generators 𝑈 is called minimal. The system 𝑈 is called
self-duaI is so are all 𝑈𝑖.

Example. From [5, Theorem 2] it follows that the minimal posets with non-
positive Tits quadratic form (which are called 𝑃 -critical) has a self-dual minimal
minimax system from 5 generators, consisting of the Kleiner posets [8].

3.3. Formulations of the maim theorems. Recall that the Hasse diagram
of a poset 𝑆 is a type of diagram that represents 𝑆 in the plane. Namely, for a poset
𝑆 one represents each element of 𝑆 as a vertex and each pair of elements 𝑥, 𝑦 of 𝑆,
such that 𝑦 covers 𝑥 (i. e. 𝑥 < 𝑦 and there is no 𝑧 satisfying 𝑥 < 𝑧 < 𝑦), as an
edge (a line segment or curve) that goes upward from 𝑥 to 𝑦. We call a poset 𝑆
quasi-chained if 𝐻(𝑆) is a chain.

Theorem 3. The classes of serial and non-serial positive posets have minimax
systems of quasi-chained generators. Moreover, one can assume that each generator
is is of width 2 or self-dual.

Theorem 4. The class of serial positive posets of even order has a self-dual
minimax system of quasi-chained generators, but the class of those of odd order does
not have.

Theorem 5. The class of non-serial positive posets does not have a self-dual
minimax system of quasi-chained generators.

Theorem 6. The class of non-serial positive posets has a minimax system of
quasi-chained generators of width 3, but the class of serial ones does not have.

Under proving these theorems, in each case when (by the formulation of some
theorem) the indicated system exists we even indicate such a minimal system.

4. Proofs of the theorems.
4.1. The case of serial posets. Let 𝑆 be a serial poset (see Theorem 1). From

the definition of 𝑆↑
𝑥 we have the following statements:

(4.1.1) if 𝑆 is of the form (1), 𝑆 := 𝑆1𝑘𝑠 = {𝑎 = 𝑎1 < . . . < 𝑎𝑘}
∐︀
{𝑏 = 𝑏1 <

. . . 𝑏𝑠}, then (when 𝑘 ̸= 0) 𝑆↑
𝑎
∼= 𝑆1,𝑘−1,𝑠+1 and 𝑆↑

𝑏
∼= 𝑆1,𝑘+1,𝑠−1;

(4.1.2) if 𝑆 is of the form (2), 𝑆 := 𝑆2𝑘𝑠 = {𝑎 = 𝑎1 < . . . < 𝑎𝑘}
∐︀
{𝑏 = 𝑏1 < . . . 𝑏𝑠}

with 𝑎1 < 𝑏𝑠, then 𝑆↑
𝑎 is isomorphic to the poset {𝑎2 < . . . < 𝑎𝑘}

∐︀
{𝑏1 < . . . 𝑏𝑠−1 <

(𝑏𝑠, 𝑎1)} of the form (3) (or to 𝑆(3, 𝑘 − 1, 𝑠, 𝑠 − 1) in the notation of (4.1.3)) and
(when 𝑠 > 1) 𝑆↑

𝑏
∼= 𝑆2,𝑘+1,𝑠−1;

(4.1.3) if 𝑆 is of the form (3), 𝑆 := 𝑆3𝑘𝑠𝑡 = {𝑎 = 𝑎1 < . . . < 𝑎𝑘}
∐︀
{𝑏 =

𝑏1 < . . . 𝑏𝑡 < (𝑐, 𝑑) < 𝑏𝑡+1 < . . . < 𝑏𝑠−1}, then (when 𝑘 ̸= 0) 𝑆↑
𝑎
∼= 𝑆3,𝑘−1,𝑠+1,𝑡,

𝑆↑
𝑏
∼= 𝑆3,𝑘+1,𝑠−1,𝑡−1 when 𝑡 ̸= 0 and 𝑆↑

𝑐
∼= 𝑆2,𝑠,𝑘+1 when 𝑡 = 0.

A simple analysis shows that these statements (with using the min-equivalence
by Proposition 1) emply that

(4.1.4) the posets 𝑆1,0,𝑛 with 𝑛 running through N and 𝑆2,1,𝑚 with 𝑚 running
through N ∖ 1 form a minimal minimax system of quasi-chained generators of the
class of serial positive posets;

(4.1.5) the posets 𝑆1,0,2𝑛 with 𝑛 running through N and 𝑆2,𝑛,𝑛 with 𝑛 running
through N ∖ 1 form a minimal self-dual minimax system of quasi-chained generators
of the class of serial positive posets of even order;
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(4.1.6) for any fixed 𝑛 > 0, the poset 𝑆2,1,2𝑛+1 is not minimax isomorphic to a
self-dual quasi-chained posets.

(4.1.7) for any fixed 𝑚 > 0, the poset 𝑆1,0,𝑚 is not minimax isomorphic to a
poset of width 3.

Obviously, the first part of Theorem 3 (for serial posets) follows from (4.1.4),
Theorem 4 follows from (4.1.5) and (4.1.6), the second part of Theorem 5 follows
from (4.1.6), and the second part of Theorem 6 follows from (4.1.7).

4.2. The case of non-serial posets. Consider now the case of non-serial
posets using the language of Hasse diagrams. Such posets were classified by the
authors in [5]; see below the corresponding table in Section 5. We will refer to this
table in following the following discussion, calling it Main table.

Proposition 2. All posets of Main table are divided on 8 classes with respect to
minimax isomorphism:

(I) 1, 2, 3, 4, 46, 47, 49;

(II) 5, 48, 50;

(III) 6, 7, 8, 9, 10, 11, 12, 13, 51, 52, 53, 54, 57, 60, 61;

(IV) 14, 15, 16, 17, 18, 19, 20, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67;

(V) 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 68, 69, 70, 71, 76, 77, 79,
87, 88, 89;

(VI) 31, 32, 36, 37, 40, 41, 43, 72, 74, 80, 81, 82, 86, 90, 92, 94, 96,
98, 99, 103, 108;

(VII) 33. 34, 35, 38, 39, 42, 44, 73, 75, 78, 83, 84, 91, 93, 95, 97, 100,
102, 104, 106, 107;

(VIII) 45, 85, 101, 105.
The upper underlined posets (and only they) are quisi-chained.

This statement follows from the result of the paper in [5], but some explanations
are required.

If one uses the terminology of Subsection 3.2, in [5] the authors show that the
set of posets of width two 𝑀 = {1, 5, 6, 14, 21, 31, 33, 45} together with the set 𝑀op

(consisting of their duals) form a minimal minimax system of generators for all non-
serial positive posets. Moreover, from the proofs in [5] it follows that each poset of
Main table and its dual are minimax isomorphic to the same poset of 𝑀 . In other
words, each class minimax isomorphism is closed under duality. Therefore, the set
𝑀 itself is a minimal minimax system of generators for the non-serial positive posets.

From all that has been said it follows that if one writes out all non-serial pos-
itive posets not only with accuracy up to isomorphism, but also with accuracy to
duality (Main table is exactly this), then it is correct to consider classes of minimax
isomorphism with accuracy to duality too.

But in the case when the classes are considered up to duality and we want to
make sure that some property is not satisfied for posets of some class, then this
property must be closed under duality. All property of non-serial positive posets
that will be considered below will satisfy this requirement by silence.

It is easy to see that the sets 𝑄𝐶(I) . . .QC(VIII) of quasi-chained posets of
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the classes (I) . . . (VIII) consist of, respectively, the following ones (the symbol 𝑠𝑑
denotes self-dual posets):

qq qq�
q4

q qq qq��

49

q qqq q
��
�

50 𝑠𝑑

qq qq�
�qq13

q qq qq�
�
q

�

61

q qqq qq
��
�

62

q qqq qq��
�

63

q qqq
q q
��

�
��

65 𝑠𝑑

q qq qq�
q
�

66 𝑠𝑑

qq qq�
�
��qqq

28

q qq qq�
�
��q

�

q88

q qqq qq
��
�

q90

q qqq qq�
�

�
�

q
92

q qqq
q q
��

�
�
�
q98 𝑠𝑑

q qqq
q

q��
�
�� q

95

q qq qq�
�q

�

q100

q qq qq
�

q�q102 𝑠𝑑

q qq qq�
q
�
�
q101 𝑠𝑑

From the description of the sets 𝑄𝐶(I), . . . ,QC(VIII) the next statements follow:
(4.2.1) for 𝑁 = I, IV,VI, the sets 𝑄𝐶(N) contain quasi-chained posets of width

2, and for the rest 𝑁 contain self-dual quasi-chained posets;
(4.2.2) there is not such 𝑁 that the set 𝑄𝐶(N) contains both a quasi-chained

poset of width 2 and a self-dual quasi-chained poset;
(4.2.3) every set 𝑄𝐶(N) contains a quasi-chained poset of width 3.
Obviously, the second part of Theorem 3 (for non-serial posets) follows from

(4.2.1), Theorem 5 follows from (4.2.2), and the first part of Theorem 6 follows from
(4.2.3).

Thus, Theorems 3–6 are proved in both serial and non-serial cases.
The method we proposed allows to establish other properties of positive and not

only positive posets.
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5. Table of all non-serial positive posets up to isomorphism and duality
from the paper [5]. For aesthetic reason, the posets 12 and 13 are arranged in
the below table in opposite order.

q qqq�
�

q1

qq q
�

q
�
�
q2=1′ 𝑠𝑑

qq qq�

q
3

qq qq�
q

4

qq qq�

q
�

5

q qqq�
�

qq6

qq q
�

q
�
�
qq7=6′

q qqq�
�
��
qq8

qq q
�

q
�
�
��qq9=8′ 𝑠𝑑

qq qq�

qq
10

qq qq�
�
qq

11

qq qq�
�qq

12

qq qq�

qq13

q qqq
�

q
�

q14

qq q
�

q
�

qq�15=14′ 𝑠𝑑

q qqq
�

q
�
�
q16

qq q
�

q
�

qq17=16′

q qqq
�
�
q

�
�
q18

qq q
�

q
�
�
qq

19=18′

qq qq�

q
�
q

20 𝑠𝑑

q qqq�
�

qqq
21

qq q
�

q
�
�
qqq

22=21′

qqq�q�
�qqq

23=21′′ 𝑠𝑑

q qqq�
�
�
�qqq

24

qq q
�

q
�
�
�
�qqq

25=24′ 𝑠𝑑

qq qq�

qqq
26

qq qq�
�
��qqq

27

qq qq�
�
��qqq

28

qq qq�
�
qq q

29

qq qq�
�qq q

30

qq qq�

q
�

qq31

qqq�q�
qqq

�

32=31′

qq qq�

q
�
�
qq33

qqq�q�
�qqq

�

34=33′

qqq�qq
�

qq35=33′′

qq qq�

q
�
�
��qq36

qqq qq
�
�

qq37=36′

qq qq�
�
q

�
�
��qq38

qqq qq
�
�
�
qq39=38′

qq qq�
�
��q

�
�
��qq40

qqq qq
�
�
�
��qq41=40′

qq qq�
�qq q
�

42

qq qq�
�qq q
�
�

43

qq qq�qq q
�
�

44

qq qq�
qq q

�

�

45

q qq qq
46 𝑠𝑑

q q qqq�
�

47

q qq qq�

48 𝑠𝑑

q qq qq��

49

q qqq q
��
�

50 𝑠𝑑

q qq qqq
51 𝑠𝑑

q q qqq�
�

q52

q qq q
�

q
�
�
q53=52′ 𝑠𝑑

q q qqq�
�
��
q54

q qq qq�

q55

q qq qq�
�
q56

q qq qq�
�
q57

q qq qq�
q58 𝑠𝑑

q qq qq�

q
�

59

q qq qq�

q
�

60
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q qq qq�
�
q

�

61

q qqq qq
��
�

62

q qqq qq��
�

63

q qqq
q q
��
�

64

q qqq
q q
��

�
��

65 𝑠𝑑

q qq qq�
q
�

66 𝑠𝑑

q qqq qq
��
��

67

q qq qqq
q68 𝑠𝑑

q q qqq�
�

qq69

q qq q
�

q
�
�
qq70=69′

q q qqq�
�
�
�qq71

q qq qq�

qq
72

q qq qq�
�
qq73

q qq qq�
�
��qq74

q qq qq�
�
qq75 𝑠𝑑

q qq qq�
�
qq76

q qq q
�

q
�
�
qq

77=76′ 𝑠𝑑

q qq qq�
q q78

q qq qq�
�q q79

q qq qq�
qq

80 𝑠𝑑

q qq qq�

q
�

q81

q qq q
�

q
�

qq�82=81′ 𝑠𝑑

q qq qq�

q
�
�
q83

q qq q
�

q
�

qq84=83′

q qq qq�

q
�
q85 𝑠𝑑

q qq qq�

q
�q

86

q qq qq�

q
�

q87

q qq qq�
�
��q

�

q88

q qq qq�
�
q

�

q89

q qqq qq
��

�

q90

q qqq qq��
�

q
91

q qqq qq�
�

�
�

q
92

q qqq
q q
��
� q

93

q qqq
q

q��
� q

94

q qqq
q
q��

�
�� q

95

q qqq
q q
��

�

q96

q qqq
q q
��

�
��

q97

q qqq
q q
��

�
�
�
q98

𝑠𝑑

q qq qq�
q
�

q
99

q qq qq�
�q

�

q
100

q qq qq�
q
�
�
q

101

𝑠𝑑

q qq qq
�

q�q
102

𝑠𝑑

q qqq qq
��
��

q103

q qqq qq
��
��
�
q104

q qqq qq
��

�
��
�

q105

q qqq
qq�

�
�
��
�

q106

q qqq qq
��

��q
107

q qqq qq
�

��q
108

Some remarks on the table.
In upper right corners the symbol 𝑠𝑑 means that the corresponding poset is

self-dual.
If a poset 𝑖 has width 2 and the table writes 𝑖 = 𝑗′, this means that 𝑖 can be

obtained from 𝑗 by replacing its only maximal point with its only new minimal
point. Note that these two posets are (min, max)-isomorphic. The same applies to
the case 𝑖 = 𝑗′′ = (𝑗′)′ (it is needed to compare the posets 𝑖 and 𝑗′). If the poset 𝑖
has width 3 and the table writes 𝑖 = 𝑗′, this means that the above applies not to the
posets 𝑖 and 𝑗 themselves, but to their connected components of width 2. Note that
here 𝑖 and 𝑗 are (min, max)-isomorphic too. The same applies to the case 𝑖 = 𝑗′′.

Arbitrary posets 𝑆 and 𝑇 , which are obtained from each other using similar
operations are called 0-isomorphic. And if we remove from the table the posets with
numbers 𝑖 = 𝑗′ and 𝑖 = 𝑗′′, we obtain a description of non-serial positive posets up
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to 0-isomorphism and duality.
6. Conclusions. Recently the first author introduced some concept with

consideration of the corresponding examples, which can be considered as the emer-
gence of a new theory on combinatorial properties of posets with respect to minimax
equivalence. In this paper we study from such new point of view the posets with
positive Tits quadratic form (which are called positive posets). The received results
can be generalized to other classes of posets.

References
1. Gabriel, P. (1972). Unzerlegbare Darstellungen I. Manuscripts Math., 6, 71–103.

https://doi.org/10.1007/BF01298413
2. Drozd, Yu. A. (1974). Coxeter transformations and representations of partially ordered sets.

Funkts. Anal. Prilozh., 8(3), 219–225. https://doi.org/10.1007/BF01075695 [in Russian].
3. Nazarova, L. A., & Roiter, A. V. (1972). Representations of partially ordered sets. Zap. Nauchn.

Sem. LOMI, 28, 5–31. [in Russian].
4. Bondarenko, V. M., & Styopochkina, M. V. (2005). On posets of width two with positive Tits

form. Algebra and Discr. Math., 12(2), 585–606.
5. Bondarenko, V. M., & Styopochkina, M. V. (2005). (Min, max)-equivalence of partially ordered

sets and the Tits quadratic form. Problems of Analysis and Algebra: Zb. Pr. Inst. Mat. NAN
Ukr., 2(3), 18–58 [in Russian].

6. Bondarenko, V. M. (2005). On (min, max)-equivalence of posets and applications to the Tits
forms. Bull. of Taras Shevchenko University of Kyiv. (series: Physics & Mathematics), (1),
24–25.

7. Bondarenko, V. M. (2024). Minimax equivalence method: initial ideas, first applications and
new concepts. Algebra and Discr. Math., 38(1), 1–22. https://doi.org/10.12958/adm2332

8. Kleiner, M. M. (1972). Partially ordered sets of finite type. Zap. Nauchn. Sem. LOMI, 28,
32–41. [in Russian].

Бондаренко В. М., Стьопочкiна М. В. Про мiнiмальнi мiнiмакснi системи
твiрних для додатних частково впорядкованих множин.

Зображення частково впорядкованих множин (скорочено ч. в. множин), введених
Л. А. Назаровою i А. В. Ройтером (у матричнiй формi) в 1972 р., вiдiграють важливу
роль у сучаснiй теорiї зображень та її застосуваннях. Ю. А. Дрозд у 1974 р. довiв,
що ч. в. множина 𝑆 має скiнченний зображувальний тип над полем тодi i лише тодi,
коли її квадратична форма Тiтса

𝑞𝑆(𝑧) =: 𝑧20 +
∑︁
𝑖∈𝑆

𝑧2𝑖 +
∑︁

𝑖<𝑗,𝑖,𝑗∈𝑆

𝑧𝑖𝑧𝑗 − 𝑧0
∑︁
𝑖∈𝑆

𝑧𝑖,

є слабко додатною (тобто додатною на множинi невiд’ємних векторiв), але це твердже-
ння не є правильним, на вiдмiну вiд випадку сагайдакiв, коли розглядаються додатнi
форми. Тому ч. в. множини з додатною квадратичною формою Тiтса викликали ве-
ликий iнтерес з рiзних точок зору як аналоги дiаграм Динкiна. У 2005 р. автори
описали з точнiстю до iзоморфiзму всi множини з додатною квадратичною формою
Тiтса. Основним методом вирiшення цiєї проблеми є так званий метод мiнiмаксної
еквiвалентностi, запропонований першим автором. Нещодавно вiн представив деяке
поняття (а саме, мiнiмаксної системи твiрних) з розглядом вiдповiдних прикладiв,
якi можна розглянути як появу нової теорiї, яка дослiджує комбiнаторнi властивостi
множин вiдносно мiнiмаксної еквiвалентностi.

У цiй статтi ми вивчаємо з такої нової точки зору ч. в. множини з додатною ква-
дратичною формою Тiтса (якi називаються додатними).

Ключовi слова: додатна квадратична форма, квадратична форма Тiтса, додатна
ч. в. множина, мiнiмаксна еквiвалентнiсть та iзоморфiзм, мiнiмаксна система твiрних.
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ДОСЛIДЖЕННЯ РОЗВ’ЯЗКIВ IНТЕГРАЛЬНОЇ КРАЙОВОЇ
ЗАДАЧI З ПАРАМЕТРОМ

Проведено дослiдження розв’язкiв нелiнiйних систем звичайних диференцiальних
рiвнянь, пiдпорядкованих нелiнiйним iнтегральним крайовим умовам з параметром.
В основi методу лежить перехiд вiд заданих iнтегральних крайових умов до параме-
тризованих умов модельного типу, якi мають простий вигляд початкових умов. Для
модельної параметризованої задачi побудована конструктивна чисельно–аналiтична
схема, яка базується на параметризованих послiдовних наближеннях iз покращени-
ми характеристиками збiжностi. Встановлено зв’язок мiж розв’язками модельної та
вихiдної крайових задач.

Цю технiку та її переваги продемонстровано на прикладi iнтегральної крайової
задачi.

Ключовi слова: звичайнi диференцiальнi рiвняння, нелiнiйна iнтегральна крайова
задача, неперервно диференцiйовний розв’язок, параметризацiя, умова Лiпшиця, по-
дiл сегменту iнтеграцiї, збiжнiсть послiдовних наближень.

1. Вступ. У данiй роботi дослiджується нелiнiйна iнтегральна крайова задача
наступного вигляду:

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓 (𝑡, 𝑥(𝑡), 𝜆) , 𝑡 ∈ [𝑎, 𝑏] , (1)

𝑏∫︁
𝑎

𝑔(𝑠, 𝑥(𝑠), 𝜆)𝑑𝑠 = 𝑑, (2)

𝑥1(𝑎) = 𝑥1𝑎, (3)

де 𝑓 : [𝑎, 𝑏] × 𝐷 × [𝑎1, 𝑏1] → R𝑛 i 𝑔 : [𝑎, 𝑏] × 𝐷 × [𝑎1, 𝑏1] → R𝑛 заданi неперервнi
функцiї у деякiй обмеженiй областi 𝐷 ⊂ R𝑛, конкретний вигляд якої буде по-
казано нижче в (9), 𝜆 ∈ [𝑎1, 𝑏1] — невiдомий скалярний параметр, a 𝑑 ∈ R𝑛 —
заданий вектор. Крiм того, припускається локальна лiпшицевiсть в областi 𝐷
функцiї 𝑓 i 𝑔 для всiх 𝑡 ∈ [𝑎, 𝑏] i {𝑢, 𝑣} ∈ 𝐷 у наступному виглядi:

|𝑓(𝑡, 𝑢, 𝜆)− 𝑓(𝑡, 𝑣, 𝜆)| ≤ 𝐾𝑓 |𝑢− 𝑣| , (4)

|𝑔(𝑡, 𝑢, 𝜆)− 𝑔(𝑡, 𝑣, 𝜆)| ≤ 𝐾𝑔 |𝑢− 𝑣| , (5)
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де 𝐾𝑓 , 𝐾𝑝, невiд’ємнi матрицi розмiрностi 𝑛× 𝑛.
Для дослiдження iснування i наближеного розв’язку задачi (1)–(3) застосу-

ємо технiку, запропоновану в [3–8].
На основi цього пiдходу замiсть iнтегральних крайових умов (2) вводяться

в розгляд параметризованi “модельнi умови” простого вигляду

𝑥(𝑎) = 𝑧, 𝑥(𝑏) = 𝜂, (6)

де

𝑧 =

⎛⎜⎜⎜⎝
𝑥1𝑎
𝑧2
...
𝑧𝑛

⎞⎟⎟⎟⎠ , 𝜂 =

⎛⎜⎜⎜⎝
𝜂1
𝜂2
...
𝜂𝑛

⎞⎟⎟⎟⎠ ,

є невiдомими параметрами i спочатку замiсть iнтегральної крайової задачi
(1)–(3) дослiджуються розв’язки наступної системи параметризованих двото-
чкових крайових задач “модельного типу”

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓 (𝑡, 𝑥(𝑡), 𝜆) , 𝑡 ∈ [𝑎, 𝑏] , 𝑥(𝑎) = 𝑧, 𝑥(𝑏) = 𝜂. (7)

2. Дослiдження модельної задачi. Вихiдними є двi обмеженi областi
𝐷𝑎, 𝐷𝑏 ⊂ R𝑛 i цiкавимося такими розв’язками, значення яких в точках 𝑡 = 𝑎 i
𝑡 = 𝑏 належить вiдповiдно множинам 𝐷𝑎 i 𝐷𝑏. Будується множина точок

𝐷𝑎,𝑏 = (1− 𝜃) 𝑧 + 𝜃𝜂, (8)

i для невiд’ємного вектора 𝜌 ∈ R𝑛 визначимо покомпонентний векторний 𝜌-окiл
множини 𝐷𝑎,𝑏 наступним чином

𝐷 = 𝐵 (𝐷𝑎,𝑏, 𝜌) = ∪
𝑦∈𝐷𝑎,𝑏

𝐵 (𝑦, 𝜌) , (9)

де пiд векторним 𝜌-околом точки 𝑦 ∈ R𝑛 розумiємо множину

𝐵 (𝑦, 𝜌) = {𝜉 ∈ R𝑛 : |𝜉 − 𝑦| ≤ 𝜌} .

На основi множини 𝐷, i правої частини системи диференцiальних рiвнянь
(1) побудуємо вектор

𝛿[𝑎,𝑏],𝐷(𝑓) =
1

2

[︂
max

(𝑡,𝑥,𝜆)∈[𝑎,𝑏]×𝐷×[𝑎1,𝑏1]
𝑓(𝑡, 𝑥, 𝜆)− min

(𝑡,𝑥,𝜆)∈[𝑎,𝑏]×𝐷×[𝑎1,𝑏1]
𝑓(𝑡, 𝑥, 𝜆)

]︂
. (10)

Умова 1. Iснує невiд’ємний вектор 𝜌 ∈ R𝑛 такий, що

𝜌 ≥ 𝛿[𝑎,𝑏],𝐷(𝑓).

Умова 2. Iснують невiд’ємнi матрицi 𝐾𝑓 , 𝐾𝑔 для яких локально в областi
𝐷 для функцiй 𝑓 i 𝑔 виконуються умови Лiпшиця (4), (5).

Умова 3. Найбiльше власне значення матрицi

𝑄 =
3 (𝑏− 𝑎)

10
𝐾𝑓 , (11)
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менше за одиницю
𝑟(𝑄) < 1. (12)

Для вивчення розв’язкiв модельної параметризованої задачi (7) введемо в
розгляд параметризовану послiдовнiсть функцiй

𝑥0 (𝑡, 𝑧, 𝜂, 𝜆) := 𝑧 +
𝑡− 𝑎

𝑏− 𝑎
[𝜂 − 𝑧] =

[︂
1− 𝑡− 𝑎

𝑏− 𝑎

]︂
𝑧 +

𝑡− 𝑎

𝑏− 𝑎
𝜂, (13)

𝑥𝑚 (𝑡, 𝑧, 𝜂, 𝜆) := 𝑧 +

𝑡∫︁
𝑎

𝑓 (𝑠, 𝑥𝑚−1 (𝑠, 𝑧, 𝜂) , 𝜆) 𝑑𝑠− (14)

− 𝑡− 𝑎

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓 (𝑠, 𝑥𝑚−1 (𝑠, 𝑧, 𝜂) , 𝜆) 𝑑𝑠+
𝑡− 𝑎

𝑏− 𝑎
[𝜂 − 𝑧] , 𝑡 ∈ [𝑎, 𝑏] , 𝑚 = 1, 2, ...,

де 𝑧 ∈ 𝐷𝑎, 𝜂 ∈ 𝐷𝑏 є параметрами. Зауважимо, що всi функцiї 𝑥𝑚 (𝑡, 𝑧, 𝜂, 𝜆)
задовольняють “модельнi крайовi умови” для будь-яких значень параметрiв
𝑧, 𝜂 ∈ R𝑛.

Наступне твердження встановлює рiвномiрну збiжнiсть послiдовностi (14)
до деякої параметризованої граничної функцiї.

Теорема 1. Припустимо, що виконуються Умова 1–Умова 3.
Тодi, для будь-яких фiксованих (𝑧, 𝜂) ∈ 𝐷𝑎 ×𝐷𝑏 :
1.Всi функцiї послiдовностi (14) є неперервно диференцiйовнi на вiдрiзку

𝑡 ∈ [𝑎, 𝑏], мають значення в область 𝐷 i задовольняють умовам (6).
2. Послiдовнiсть функцiй (14) рiвномiрно збiгається вiдносно 𝑡 ∈ [𝑎, 𝑏] при

𝑚→ ∞ до граничної функцiї

𝑥∞(𝑡, 𝑧, 𝜂, 𝜆) = lim
𝑚→∞

𝑥𝑚(𝑡, 𝑧, 𝜂, 𝜆).

3. Гранична функцiя задовольняє „модельнi умови“

𝑥∞(𝑎, 𝑧, 𝜂, 𝜆) = 𝑧, 𝑥∞(𝑏, 𝑧, 𝜂, 𝜆) = 𝜂.

4. Функцiя 𝑥∞ (𝑡, 𝑧, 𝜂, 𝜆) є єдиним неперервно диферкнцiйовним розв’язком
iнтегрального рiвняння

𝑥(𝑡) = 𝑧 +

𝑡∫︁
𝑎

𝑓(𝑠, 𝑥(𝑠), 𝜆)𝑑𝑠− 𝑡− 𝑎

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑠, 𝑥(𝑠), 𝜆)𝑑𝑠+
𝑡− 𝑎

𝑏− 𝑎
[𝜂 − 𝑧] , 𝑡 ∈ [𝑎, 𝑏] ,

в областi 𝐷.
Iншими словами, 𝑥∞ (𝑡, 𝑧, 𝜂) задовольняє задачу Кошi для модифiкованої си-

стеми диференцiальних рiвнянь:

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝜆) +

1

𝑏− 𝑎
∆(𝑧, 𝜂, 𝜆), 𝑥 (𝑎) = 𝑧, 𝑡 ∈ [𝑎, 𝑏] ,

де ∆(𝑧, 𝜂, 𝜆) : 𝐷𝑎 ×𝐷𝑏 → R𝑛 це вiдображення, яке визначене формулою:

∆(𝑧, 𝜂, 𝜆) = 𝜂 − 𝑧 −
𝑏∫︁

𝑎

𝑓(𝑠, 𝑥∞(𝑠, 𝑧, 𝜂), 𝜆)𝑑𝑠.
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5.Справедлива оцiнка

|𝑥∞(·, 𝑧, 𝜂, 𝜆)− 𝑥𝑚(·, 𝑧, 𝜂, 𝜆)| ⩽
10

9
𝛼1(𝑡, 𝑎, 𝑏− 𝑎)𝑄𝑚 (𝐼𝑛 −𝑄)−1 𝛿[𝑎,𝑏],𝐷(𝑓), (15)

для всiх 𝑡 ∈ [𝑎, 𝑏] i 𝑚 ≥ 0, де 𝛿[𝑎,𝑏],𝐷(𝑓) задається формулою (10),

𝛼1(𝑡, 𝑎, 𝑏− 𝑎) = 2 (𝑡− 𝑎)

(︂
1− 𝑡− 𝑎

𝑏− 𝑎

)︂
,

причому

𝛼1(𝑡, 𝑎, 𝑏− 𝑎) ≤ 𝑏− 𝑎

2
,

а матриця 𝑄 має вигляд (11).

Доведення. Доведення може бути проведено аналогiчно, як у Теоремi 1 [8].
A саме, на основi Лем, що доведенi у [2], встановлюється, що при умовах те-
ореми для фiксованих 𝑧 ∈ 𝐷𝑎, 𝜂 ∈ 𝐷𝑏 i всiх 𝑡 ∈ [𝑎, 𝑏] послiдовнiсть функцiй
(14) належить областi 𝐷 i є послiдовнiстю Кошi, тобто рiвномiрно збiжною, у
Банаховому просторi неперервних вектор-функцiй 𝐶([𝑎, 𝑏] ,R𝑛) з стандартною
рiвномiрною нормою.

Теорема 2. В умовах Теореми 1 гранична функцiя

𝑥∞(𝑡, 𝑧*, 𝜂*, 𝜆) = lim
𝑚→∞

𝑥𝑚(𝑡, 𝑧
*, 𝜂*, 𝜆),

послiдовностi (14) є неперервно диференцiйовним розв’язком iнтегральної кра-
йової задачi (1)–(3) тодi i тiльки тодi, коли пара (𝑧*, 𝜂*) задовольняє систему
2𝑛 алгебраїчних чи трансцендентних, так званих „визначальних рiвнянь“:

∆(𝑧, 𝜂, 𝜆) = 𝜂 − 𝑧 −
𝑏∫︁

𝑎

𝑓(𝑠, 𝑥∞(𝑠, 𝑧, 𝜂), 𝜆)𝑑𝑠 = 0,

Λ(𝑧, 𝜂, 𝜆) =

𝑏∫︁
𝑎

𝑔(𝑠, 𝑥∞(𝑠, 𝑧, 𝜂), 𝜆)𝑑𝑠− 𝑑 = 0.

(16)

Доведення. Доведення може бути проведено аналогiчно, як у Теоре-
мах 2, 3 [1].

Наступне твердження показує, що система „визначальних рiвнянь“ (16) ви-
являє всi можливi розв’язки iнтегральної крайової задачi (1)-(3), якi належать
областi 𝐷 i значення яких в точках 𝑡 = 𝑎 i 𝑡 = 𝑏 належать вiдповiдно множинам
𝐷𝑎 i 𝐷𝑏.

Теорема 3. Нехай виконуються усi умови Теореми 1.
1. Якщо, iснують вектори (𝑧0, 𝜂0) ∈ 𝐷𝑎 × 𝐷𝑏, якi задовольняють систе-

му визначальних рiвнянь (16), тодi iнтегральна крайова задача (1)–(3) має
неперервно диференцiйовний розв’язок 𝑥0(·) такий, що

𝑥0(𝑎) = 𝑧0, 𝑥0(𝑏) = 𝜂0.
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Крiм того, цей розв’язок є граничною функцiєю послiдовностi (14)

𝑥0(𝑡) = 𝑥∞(𝑡, 𝑧0, 𝜂0, 𝜆) = lim
𝑚→∞

𝑥𝑚(𝑡, 𝑧
0, 𝜂0, 𝜆), 𝑡 ∈ [𝑎, 𝑏] .

2. I навпаки, якщо iнтегральна крайова задача (1)–(3) має розв’язок 𝑥0(·) ∈
𝐷, то система „визначальних рiвнянь“ (16) задовольняється при

𝑧 = 𝑥0(𝑎), 𝜂 = 𝑥0(𝑏).

Зауважимо, що розв’язнiсть системи „визначальних рiвнянь“ (16) може бу-
ти встановлена на основi властивостей „наближеної системи визначальних рiв-
нянь“

∆𝑚(𝑧, 𝜂, 𝜆) = 𝜂 − 𝑧 −
𝑏∫︁

𝑎

𝑓(𝑠, 𝑥𝑚(𝑠, 𝑧, 𝜂), 𝜆)𝑑𝑠,

Λ𝑚(𝑧, 𝜂, 𝜆) =

𝑏∫︁
𝑎

𝑔(𝑠, 𝑥𝑚(𝑠, 𝑧, 𝜂), 𝜆)𝑑𝑠− 𝑑 = 0,

(17)

яка може бути побудована явно.
На основi нерiвностей (4), (5) i (15), врахувавши що

𝑏∫︁
𝑎

𝛼1(𝑡, 𝑎, 𝑏− 𝑎)𝑑𝑡 =
(𝑏− 𝑎)2

3
,

прямим обчисленням можна довести справедливiсть наступного твердження.

Лема 1. Припустимо, що мають мiсце умови Теореми 1 i крiм того ви-
конуються умови Лiпшиця (4), (5).

Тодi для точної i наближеної визначальних функцiй (16) i (17) мають мi-
сце наступнi оцiнки для будь-яких пар векторiв (𝑧, 𝜂) ∈ 𝐷𝑎 ×𝐷𝑏 i 𝑚 ≥ 1 :

|∆(𝑧, 𝜂, 𝜆)−∆𝑚(𝑧, 𝜂, 𝜆)| ≤
10(𝑏− 𝑎)2

27
𝐾𝑓 𝑄

𝑚 (𝐼𝑛 −𝑄)−1 𝛿[𝑎,𝑏],𝐷(𝑓),

|Λ(𝑧, 𝜂, 𝜆)− Λ𝑚(𝑧, 𝜂, 𝜆)| ≤
10(𝑏− 𝑎)2

27
𝐾 𝑄𝑚 (𝐼𝑛 −𝑄)−1 𝛿[𝑎,𝑏],𝐷(𝑓).

(18)

3. Модельний приклад. Застосуємо чисельно-аналiтичний пiдхiд, що опи-
саний вище на вiдрiзку [0, 1] до системи диференцiальних рiвнянь

𝑑𝑥1(𝑡)

𝑑𝑡
= − 𝑡

8
𝑥32(𝑡)−

𝑡

5
𝑥1(𝑡) +

𝑡4

216
+
𝑡2

50
− 1

10
,

𝑑𝑥2(𝑡)

𝑑𝑡
=
𝜆2

2
𝑥1(𝑡)𝑥2(𝑡)−

𝑡2

1200
− 𝑡

240
+

1

3
, 𝑡 ∈ [0, 1] , 𝜆 ∈ [−1, 0] ,

(19)

Роздiл 1: Математика i статистика
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з iнтегральними крайовими умовами

1∫︁
0

𝑠𝜆2𝑥1(𝑠)𝑥2(𝑠)𝑑𝑠 =
7

450
,

1∫︁
0

𝑠2

3
𝑥

2

2(𝑠)𝑑𝑠 =
1

135
,

(20)

𝑥1(0) =
1

2
. (21)

Очевидно, що (19)–(21) є окремим випадком (1)–(3) при 𝑎 := 0, 𝑏 := 1,

𝑓 (𝑡, 𝑥1, 𝑥2, 𝜆) :=

⎛⎝− 𝑡
8
𝑥32(𝑡)− 𝑡

5
𝑥1(𝑡) +

𝑡4

216
+ 𝑡2

50
− 1

10
:= 𝑓1(𝑡, 𝑥1, 𝑥2)

𝜆2

2
𝑥1(𝑡)𝑥2(𝑡)− 𝑡2

1200
− 𝑡

240
+ 1

3

⎞⎠ ,

𝑔 (𝑡, 𝑥1, 𝑥2, 𝜆) :=

⎛⎜⎜⎜⎜⎜⎜⎝

1∫︁
0

𝑡𝜆2𝑥1(𝑡)𝑥2(𝑡)𝑑𝑡

1∫︁
0

𝑡2

3
𝑥

2

2(𝑡)𝑑𝑡

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑑 :=

(︂
𝑑1
𝑑2

)︂
=

⎛⎝ 7
450

1
135

⎞⎠ .

Розв’язком крайової задачi (19)–(21) є пара функцiй

𝑥*1(𝑡) =
𝑡2

10
+

1

2
,

𝑥*2(𝑡) =
𝑡

3
.

(22)

Введемо наступнi параметри:

𝑧 := 𝑥(𝑎) = 𝑥(0) =

(︂
𝑥1(0)
𝑥2(0)

)︂
=

(︂
1
2

𝑧2

)︂
,

𝜂 := 𝑥(𝑏) = 𝑥(1) =

(︂
𝑥1(1)
𝑥2(1)

)︂
=

(︂
𝜂1
𝜂2

)︂
.

Виберемо областi 𝐷𝑎 i 𝐷𝑏:

𝐷𝑎 = 𝐷𝑏 = {(𝑥1, 𝑥2) : 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 0.8} .

У цьому випадку, множина 𝐷𝑎,𝑏 має вигляд

𝐷𝑎,𝑏 = 𝐷𝑎 = 𝐷𝑏.

Виберемо вектор

𝜌 =

(︂
0.2
0.2

)︂
,
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тодi область 𝐷 буде наступною:

𝐷 = {(𝑥1, 𝑥2) : −0.2 ≤ 𝑥1 ≤ 1.2, −0.2 ≤ 𝑥2 ≤ 1} .

Прямi обчислення показують, що умова Лiпшиця (4) для правої частини
(19) в областi 𝐷 виконується з матрицею

𝐾 =

(︃
1
5

3
8

1
10

3
25

)︃
,

i маємо

𝑄 =
3

20

(︃
1
5

3
8

1
10

3
25

)︃
, 𝑟(𝑄) = 0.107321 < 1,

𝛿[𝑎,𝑏],𝐷(𝑓) =
1

2

(︂
max

(𝑡,𝑥,𝜆)∈[𝑎,𝑏]×𝐷×[𝑎1,𝑏1]
𝑓 (𝑡, 𝑥, 𝜆)− min

(𝑡,𝑥,𝜆)∈[𝑎,𝑏]×𝐷×[𝑎1,𝑏1]
𝑓 (𝑡, 𝑥, 𝜆)

)︂
=

=

(︂
0.25436
0.0865

)︂
,

𝜌 =

(︂
0.2
0.2

)︂
≥ 1

2
𝛿[𝑎,𝑏],𝐷(𝑓) =

(︂
0.12718
0.04325

)︂
.

Всi умови Теореми 1 виконуються i тому послiдовнiсть функцiй (14) для
цього прикладу є збiжною.

Чисельнi розрахунки показують, що розв’язком наближеної системи визна-
чальних рiвнянь вигляду (17), при 𝑚 = 0, 1, 2, 3 є числовi значення, що пред-
ставленi в Табл. 1.

Таблиця 1.
Наближенi значення параметрiв

𝑚 𝜆 𝑧2 𝜂1 𝜂2
0 -0.4944144168 0.000006978058785 0.596969697 0.3333350778
1 -0.5000781257 9.577910704×10−7 0.5999999995 0.3333344676
2 -0.5000035117 1.533681735×10−7 0.6000020187 0.3333331722
3 -0.4999999154 2.623376717×10−9 0.5999999939 0.3333333358

Похибка першої апроксимацiї (𝑚 = 1) наступна:

max
𝑡∈[0,1]

|𝑥*1(𝑡)− 𝑥11(𝑡)| ≈ 3 · 10−4,

max
𝑡∈[0,1]

|𝑥*2(𝑡)− 𝑥12(𝑡)| ≈ 1.4 · 10−5.

Похибка третьої апроксимацiї (𝑚 = 3) наступна:

max
𝑡∈[0,1]

|𝑥*1(𝑡)− 𝑥31(𝑡)| ≈ 3 · 10−7,

max
𝑡∈[0,1]

|𝑥*2(𝑡)− 𝑥32(𝑡)| ≈ 1.5 · 10−8.

Роздiл 1: Математика i статистика
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перша компонента друга компонента
Рис. 1. Точний розв’язок (22) (—) та його нульове (◇) i третє наближення (×).

4. Висновки та перспективи подальших дослiджень. Обґрунтовано
ефективний пiдхiд дослiдження iснування та наближеної побудови розв’язкiв
нелiнiйних крайових задач з параметром. Для модельної параметризованої за-
дачi побудована оригiнальна конструктивна чисельно-аналiтична схема, яка
основана на послiдовних наближеннях iз покращеними характеристиками рiв-
номiрної збiжностi. Теоретичнi викладки продемонстровано на прикладi задачi
з нелiнiйними iнтегральними крайовими умовами.

В подальшому можна буде провести дослiдження систем диференцiальних
рiвнянь, права частина яких задовольняє умови Каратеодорi.
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The solutions of nonlinear systems of ordinary differential equations subject to nonlinear
integral boundary conditions with a parameter has been considered. At the heart of the
method lies transition from given integral boundary conditions to parameterized conditions
of model type, which have a simple appearance of the initial conditions. For a model
parameterized problem, a constructive numerically-analytical scheme is constructed, which
is built on parameterized approximations with improved convergence characteristics. The
connection between the solutions of the model and transitional boundary value problems
is established.

This technique and its advantages are illustrated by example of one integral boundary
value problem.

Keywords: ordinary differential equations, nonlinear integral boundary value problems,
continuously differentiated solution, parameterization, Lipshitz conditions, division of in-
tegration segment, convergence of successive approximations.
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КРИПТОГРАФIЯ ЕЛIПТИЧНИХ КРИВИХ

У статтi детально дослiджуються математичнi аспекти елiптичних кривих, зокре-
ма операцiї додавання та подвоєння точок, якi є основними операцiями для побудови
криптографiчних алгоритмiв. Зосереджено увагу на властивостях елiптичних кривих
над скiнченними полями, що робить їх придатними для реалiзацiї стiйких криптогра-
фiчних методiв, таких як ECDSA (Elliptic Curve Digital Signature Algorithm). Розгля-
нуто математичнi основи цих операцiй, їх алгоритмiчнi реалiзацiї та важливiсть для
обчислювальної стiйкостi. Окрiм математичних основ, у статтi розглянуто програмну
реалiзацiю операцiй додавання та подвоєння точок, що є важливими для ефектив-
ностi та безпеки криптографiчних алгоритмiв. Описано алгоритми реалiзацiї мовою
програмування Python.

Ключовi слова: елiптичнi кривi, криптографiя, ECC, ECSDA, Python.

1. Вступ. Елiптичнi кривi та алгоритм цифрового пiдпису на основi елiптичних
кривих (Elliptic Curve Digital Signature Algorithm, ECDSA) є ключовими компо-
нентами сучасної криптографiї. Вони використовуються для забезпечення без-
пеки даних у широкому спектрi застосувань, зокрема в блокчейн-технологiях,
криптовалютах (наприклад, Bitcoin та Ethereum) та рiзних системах захисту iн-
формацiї. Використання елiптичних кривих для криптографiчних завдань за-
безпечує високу стiйкiсть до зламiв за допомогою сучасних обчислювальних
технологiй, водночас маючи порiвняно низькi вимоги до ресурсiв для обробки
та зберiгання даних.

Особливiстю елiптичних кривих є їх здатнiсть надавати криптографiчну
стiйкiсть, яка може бути досягнута з меншою кiлькiстю бiтiв порiвняно з кла-
сичними методами, такими як RSA. У випадку застосування алгоритмiв на
елiптичних кривих вважається, що не iснує субекспоненцiальних алгоритмiв
щодо розв’язку задачi “дискретного логарифмування в групах їх точок”. Це до-
зволяє створювати бiльш ефективнi системи захисту з меншими обчислюваль-
ними витратами. Завдяки цьому алгоритми, заснованi на елiптичних кривих,
активно впроваджуються в таких технологiях, як iнтернет речей (IoT), мобiльнi
комунiкацiї, банкiвськi транзакцiї та блокчейн-платформи.
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Ця стаття зосереджується на теоретичних основах елiптичних кривих та
практичному застосуваннi ECDSA для захисту даних.

2. Основний результат.

Постановка завдання. Метою даної статтi є дослiдження математичних
основ елiптичних кривих i їхнього використання в алгоритмах цифрового пiд-
пису, таких як ECDSA. Основними завданнями дослiдження є:

1) Опис математичних властивостей елiптичних кривих i їх застосування в
криптографiї.

2) Аналiз алгоритму ECDSA i його важливостi для криптографiчних завдань.
3) Огляд iснуючих пiдходiв i лiтературних джерел щодо використання елiпти-

чних кривих в рiзних криптографiчних системах.
4) Проведення експериментiв i аналiз отриманих результатiв щодо додавання

точок на елiптичнiй кривiй.

Огляд лiтератури. У 1970 роцi британський математик та iнженер Джеймс
Еллiс запропонував iдею, засновану на простiй концепцiї. Що, якщо шифру-
вання i дешифрування — зворотнi операцiї на основi двох рiзних ключiв? У
традицiйнiй, тобто симетричнiй криптографiї, повiдомлення повинно бути на-
дiслано разом з ключем, щоб iнша сторона розшифрувала повiдомлення. Еллiс
припустив, що одержувач повiдомлення не може бути пасивною стороною, i їм
потрiбно було мати «замок» i «ключ» для себе. Замок можна було вiдправити
кому завгодно в свiтi, але ключ повинен залишатися приватним. Криптографiя
з вiдкритим ключем була винайдена в 1970-х роках i є математичною основою
для комп’ютерної та iнформацiйної безпеки. З моменту винаходу криптографiї
з вiдкритим ключем, було вiдкрито декiлька математичних функцiй, таких як
пiднесення до степеня простого числа i множення елiптичних кривих. Цi мате-
матичнi функцiї практично необоротнi, це означає, що результат їх виконання
легко отримати в одному напрямку i неможливо в зворотному. На пiдставi цих
математичних функцiй, криптографiя дозволяє створення цифрових шифрiв i
непiдробних цифрових пiдписiв. У бiткоїнах використовується множення елi-
птичних кривих.

Елiптичнi кривi як основа для криптографiї почали активно дослiджуватися
з кiнця ХХ столiття, зокрема завдяки працям таких математикiв, як Нiл Коблiц
(Neal Koblitz) i Вiктор Мiллер (Victor Miller), якi у 1985 роцi запропонували
використання елiптичних кривих для криптографiчних цiлей [1, 2]. Їхня робота
стимулювала розробку численних дослiджень щодо використання елiптичних
кривих в криптографiчних протоколах.

У [1, 2] описано основнi математичнi принципи елiптичних кривих, включа-
ючи операцiї додавання точок та скалярного множення, що використовуються
в криптографiї. Цi математичнi операцiї лежать в основi алгоритму ECDSA,
який забезпечує високий рiвень захисту завдяки своїй складностi.

У сучаснiй криптографiї важливим є також огляд ефективностi ECDSA у
порiвняннi з iншими криптографiчними алгоритмами, такими як RSA або DSA.
Згiдно з дослiдженнями [3], ECDSA пропонує бiльш високу стiйкiсть при мен-
шiй довжинi ключа, що робить його особливо привабливим для систем з обме-
женими ресурсами, таких як мобiльнi пристрої або платформи iнтернету речей.
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Робота [4] аналiзує безпеку та стiйкiсть до атак, особливо до таких загроз,
як атаки на вiдкритi ключi та пiдбор ключiв. Автори також зазначають, що
алгоритм ECDSA залишається одним iз найбiльш стiйких серед вiдомих крип-
тографiчних методiв.

Основнi матерiали. Елiптичнi кривi (Elliptic curves) є важливим об’єктом
в алгебрi та математицi, а також в криптографiї.

Означення 1. Елiптична крива над полем 𝐾 — це множина точок проек-
тивної площини над 𝐾, що задовольняють рiвнянню

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6, (1)

разом з точкою на нескiнченностi та не мiстить особливих точок, де 𝑎𝑖 —
дiйснi константи, якi визначають конкретну криву (див. [5]).

Одна з ключових властивостей елiптичних кривих полягає в тому, що во-
ни утворюють абелеву групу з операцiєю додавання точок. Додавання точок
на елiптичних кривих визначається геометрично i має свої особливостi. Воно
дозволяє обчислювати суму точок i знаходити добуток точки на цiле число.
Елiптичнi кривi також мають нейтральний елемент, який називається «безкi-
нечнiстю» i позначається символом 𝑂.

У криптографiї елiптичнi кривi знаходять широке застосування, зокрема в
алгоритмах цифрового пiдпису. ECC (Elliptic Curve Cryptography) заснована
на складностi обчислення дискретного логарифма на елiптичних кривих, що
робить її ефективною та безпечною для використання в криптографiчних про-
токолах, таких як шифрування, цифровий пiдпис та обмiн ключами.

Основною перевагою криптосистем на елiптичних кривих у порiвняннi iз
звичайними асиметричними алгоритмами є те, шо вони забезпечують еквiва-
лентний захист за меншої довжини ключа (див. табл. 1).

Таблиця 1.
Ступiнь захисту RSA та ECC

Ступiнь захисту Мiнiмальна довжина ключа (в бiтах)
(на кожен бiт ключа) RSA/DSA/DH ECC

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Розглянемо рiвняння елiптичної кривої у спрощеному виглядi (рiвняння
Вейєрштрасса):

𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏. (2)
Залежно вiд значень параметрiв 𝑎 i 𝑏 елiптичнi кривi можуть приймати на

площинi рiзнi форми. Так як 𝑦 = ±
√
𝑥3 + 𝑎𝑥+ 𝑏 , то графiк кривої симетричний

вiдносно 𝑂𝑥.
Дискримiнант рiвняння обчислюється так:

𝐷 =
(︁𝑎
3

)︁3
+
(︁ 𝑏
2

)︁2
.
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Розглянемо такi можливi випадки:
• 𝐷 < 0 — три рiзних дiйсних коренi (Рис. 4, графiк 1);
• 𝐷 = 0 — три дiйсних коренi, два з яких однаковi (Рис. 4, графiк 2 — син-

гулярна крива, такi кривi виключають з розгляду);
• 𝐷 > 0 — один дiйсний корiнь та два комплексних (Рис. 4, графiк 3, [6]).

𝑦2 = 𝑥3 − 𝑥 𝑦2 = 𝑥3 − 3𝑥+ 2 𝑦2 = 𝑥3 − 𝑥+ 1

Рис. 1. Графiки елiптичних кривих у залежностi вiд значення 𝐷.

У реальних криптосистемах використовуються елiптичнi кривi над скiнчен-
ним полем 𝑃 , що описуються рiвнянням:

𝑦2 ≡ 𝑥3 + 𝑎𝑥+ 𝑏 (𝑚𝑜𝑑 𝑝), (3)

де (𝑥, 𝑦) — точки елiптичної кривої, 𝑎, 𝑏 — параметри кривої, 𝑝 — просте число
(𝑝 ̸= 2, 𝑝 ̸= 3). При цьому параметри кривої 𝑎 та 𝑏 мають задовольняти умову:

4𝑎3 + 27𝑏2 ̸= 0 (𝑚𝑜𝑑 𝑝).

Позначимо через 𝐸𝑝(𝑎, 𝑏) множину точок елiптичної кривої. Зауважимо, що
множину точок елiптичної кривої 𝐸𝑝(𝑎, 𝑏) також включається нескiнченно вiд-
далена точка 𝑂. Точка належить елiптичнiй кривiй, якщо пара чисел (𝑥, 𝑦)
задовiльняє рiвняння (3).

Означення 2. Кiлькiсть точок кривої називається порядком кривої ([6]).

Додавання двох точок кривої.

Означення 3. Оберненою точкою до точки 𝑃 (𝑥, 𝑦) ∈ 𝐸𝑝(𝑎, 𝑏) називають
точку елiптичної кривої, що симетрична до 𝑃 (𝑥, 𝑦) вiдносно осi 𝑂𝑥 та позна-
чають −𝑃 (𝑥, −𝑦). Варто зауважити, що −𝑃 має належати 𝐸𝑝(𝑎, 𝑏).

Нехай 𝑃, 𝑄 ∈ 𝐸𝑝(𝑎, 𝑏), тодi щоб отримати нову точку 𝑅, яка є сумою точок
𝑃 i 𝑄, застосовуються такi кроки:
1) Якщо 𝑃 i 𝑄 є рiзними точками, проводемо пряму, яка проходить через цi

точки. Ця пряма перетне криву у третiй точцi 𝑅. Проведемо через точку
𝑅 вертикальну пряму до перетину з кривою у точцi −𝑅 = 𝑃 + 𝑄. Отже,
сумою двох точок 𝑃 та 𝑄 буде точка, обернена до третьої точки перетину
елiптичної кривої i прямої, що проходить через заданi точки.
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Рис. 2. Додавання точок.

2) У випадку 𝑃 = 𝑄, проведемо пряму, яка дотикається до кривої в точцi 𝑃 .
Точка 𝑅 — це точка перетину цiєї дотичної з кривою. При 𝑃 = 𝑄 сiчна
перетворюється на дотичну, тому точка 2𝑃 є оберненою до точки 𝑅.

Рис. 3. Подвоєння точки.
Координати −𝑅(𝑥3, 𝑦3) визначаються за формулами (див. рис. 7), де 𝜆 —
кутовий коефiцiєнт сiчної, що проведена через точки 𝑃 (𝑥1, 𝑦1) та 𝑄(𝑥2, 𝑦2).

Рис. 4. Формули обчислення координат точки.
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3) Якщо 𝑃 i 𝑄 мають координати, що не належать кривiй, або 𝑃 = 𝑂 (нескiн-
ченнiсть), тодi 𝑅 вважається рiвним 𝑄 (або 𝑃 , якщо 𝑄 = 𝑂, вiдповiдно).

Отримана точка 𝑅 є результатом операцiї додавання точок 𝑃 i 𝑄 на елiпти-
чнiй кривiй. Важливо враховувати, що координати точок можуть бути елемен-
тами поля (рацiональнi числа або скiнченнi поля) i операцiя додавання узго-
джується iз операцiями на полi.

Операцiя додавання точок на елiптичних кривих комутативна (тобто
𝑃 +𝑄 = 𝑄+ 𝑃 ) та асоцiативна (тобто (𝑃 +𝑄) +𝑅 = 𝑃 + (𝑄+𝑅)).

Приклад 1. Множина точок 𝐸5(2, 1) елiптичної кривої

𝑦2 ≡ 𝑥3 + 2𝑥+ 1(𝑚𝑜𝑑 5),

складається з 6 точок. Порядок кривої — 7.

Рис. 5. Множина точок 𝐸5(2, 1).

Як можна побачити, на рисунку 8 зображено усi точки, що задовольня-
ють умови кривої, це точки (0, 1), (0, 4), (1, 2), (1, 3), (3, 2), (3, 3). Перевiрити
цей факт можна простим пiдставленням:

12 ≡ 03 + 2 * 0 + 1;

32 ≡ 33 + 2 * 3 + 1 ⇒ 9 ≡ 27 + 6 + 1(𝑚𝑜𝑑 5) ⇒= 4 ≡ 4.

Розглянемо приклад з додаванням детальнiше. Спочатку проведемо аналi-
тичний пошук розв’язкiв, взявши невеликi значення, а далi обрахуємо це про-
грамно i перевiримо чи вiдповiдi спiвпадають.

Аналiтичне розв’язання. Розглянемо таке рiвняння елiптичної кривої:

𝑦2 ≡ 𝑥3 + 𝑥+ 1(𝑚𝑜𝑑 23), (4)

i перевiримо чи точки 𝑃 (3, 10) та 𝑄(9, 7) належать кривiй i, якщо належать,
знайдемо їхню суму.

Пiдставимо значення у рiвняння елiптичної кривої i переконаємося, що точ-
ки належать кривiй 4.

102 ≡ 33 + 3 + 1(𝑚𝑜𝑑 23) ⇔ 100𝑚𝑜𝑑 23 ≡ 31(𝑚𝑜𝑑 23) ⇔ 8 ≡ 8(𝑚𝑜𝑑 23);
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72 ≡ 93 + 9 + 1(𝑚𝑜𝑑 23) ⇔ 49𝑚𝑜𝑑 23 ≡ 739(𝑚𝑜𝑑 23) ⇔ 3 ≡ 3(𝑚𝑜𝑑 23).

Перевiривши правильнiсть виконання операцiї, здiйcнимо додавання i знай-
демо кутовий коефiцiєнт сiчної.

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

(𝑚𝑜𝑑 𝑝) =
7− 10

9− 3
(𝑚𝑜𝑑 23) = −3/6(𝑚𝑜𝑑 23) =

= −1/2(𝑚𝑜𝑑 23) = 22/2(𝑚𝑜𝑑 23) = 11.

Далi знайдемо точки 𝑥 та 𝑦:

𝑥3 = 𝜆2 − 𝑥1 − 𝑥2(𝑚𝑜𝑑 𝑝) = 121− 3− 9(𝑚𝑜𝑑 23) = 109(𝑚𝑜𝑑 23) = 17;

𝑦3 = 𝜆(𝑥1 − 𝑥3)− 𝑦1(𝑚𝑜𝑑 𝑝) = 11(3− 17)− 10(𝑚𝑜𝑑 23) = −164(𝑚𝑜𝑑 23) = 20.

Отже 𝑃 +𝑄 = (3, 10) + (9, 7) = (17, 20).
Програмне розв’язання. Далi розглянемо програмне розв’язання, пока-

жемо вивiд (логiка програми описана нижче).

𝑝1 + 𝑝2 = (17, 20)

𝑝1 == 𝑝2 : 𝐹𝑎𝑙𝑠𝑒

𝑝1! = 𝑝2 : 𝑇𝑟𝑢𝑒

У результатi можемо побачити як це виглядатиме на рисунку 9.

Рис. 6. Розв’язки отриманi внаслiдок програмної реалiзацiї.

Код працює за такою логiкою:
1) Клас EllipticCurvePoint визначає точку на елiптичнiй кривiй. Конструктор

init iнiцiалiзує координати точки (𝑥 i 𝑦), параметри елiптичної кри-
вої (𝑎 i 𝑏), якi виступають коефiцiєнтом бiля x та вiльним членом та поле
простого числа (𝑝).

2) Метод eq перевiряє, чи двi точки належать однiй елiптичнiй кривiй,
порiвнюючи координати 𝑥, 𝑦, 𝑎, 𝑏 i 𝑝 точок.

3) Метод ne перевiряє чи точки не належать кривiй, використовуючи ме-
тод eq .
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4) Метод add виконує додавання двох точок на елiптичнiй кривiй. Вiн
перевiряє, чи точки належать однiй елiптичнiй кривiй, обчислює кутовий
коефiцiєнт прямої або дотичної, залежно вiд того, чи точки рiвнi або рiзнi,
i обчислює координати третьої точки додавання.

5) Метод str повертає рядок, що представляє точку у форматi (𝑥, 𝑦).
6) Задається поле простого числа 𝑝 (у випадку даного прикладу використову-

ється значення 23).
7) Створюються двi точки 𝑃1 i 𝑃2 з вiдповiдними координатами i параметра-

ми елiптичної кривої.
8) Виконується операцiя додавання двох точок: 𝑃3 = 𝑃1 + 𝑃2.
9) Малюємо графiк з точками 𝑃1, 𝑃2, 𝑃3.

Файл з вiдповiдним кодом програми завантажено на GitHub (див. [7]).
Алгоритм ECDSA. ECDSA (Elliptic Curve Digital Signature Algorithm) —

це криптографiчно безпечна схема цифрового пiдпису, заснована на крипто-
графiї елiптичних кривих (ECC). ECDSA спирається на математику циклi-
чних груп елiптичних кривих над скiнченними полями та на складнiсть задачi
ECDLP (задача дискретного логарифмування елiптичних кривих). Алгоритм
пiдпису/перевiрки ECDSA ґрунтується на точковому множеннi елiптичних кри-
вих. Ключi i пiдписи ECDSA коротшi, нiж в RSA для того ж рiвня безпеки [8].
Крiм того, завдяки високiй швидкостi генерацiї пiдписiв, цей алгоритм актив-
но застосовується в сучасних протоколах безпеки, таких як TLS та SSH, що
забезпечує захищену передачу даних в Iнтернетi.

ECDSA використовує криптографiчнi елiптичнi кривi над скiнченними по-
лями в класичнiй формi Вейєрштрасса (див. рiвняння 2).

У Python є спецiальна бiблiотека, випущена за лiцензiєю MIT [9]. За допо-
могою цiєї бiблiотеки можна швидко створювати пари ключiв (ключ пiдпису
та ключ перевiрки), пiдписувати повiдомлення та перевiряти пiдписи. Також
можна не лише створити, а й порiвняти скiльки часу потрiбно кожнiй кри-
вiй для генерацiї пар ключiв (keygen), пiдписання даних (sign), перевiрки цих
пiдписiв (verify), отримання спiльного секрету (ecdh) i перевiрки пiдписiв без
попереднього обчислення ключа (no PC verify). Ось декiлька популярних кри-
вих: NIST, SECP, BRAINPOOLP. Вiн включає 256-бiтну криву — secp256k1, яку
використовує бiткойн.

ECDSA стандартизований на мiжнародному рiвнi органiзацiями, такими як
NIST та SECG, що робить його сумiсним iз багатьма сучасними криптографiч-
ними системами. Вiн також використовується для забезпечення електронних
пiдписiв, що пiдтверджують автентичнiсть документiв, а також для автенти-
фiкацiї користувачiв у веб-додатках. Завдяки цiй унiверсальностi, ECDSA став
важливим елементом цифрової безпеки, забезпечуючи як цiлiснiсть даних, так
i їх конфiденцiйнiсть.

3. Висновки та перспективи подальших дослiджень. Елiптичнi кри-
вi є важливим iнструментом сучасної криптографiї, забезпечуючи високу стiй-
кiсть до атак при оптимальних обчислювальних витратах. Алгоритм ECDSA,
заснований на цих кривих, продемонстрував свою ефективнiсть у багатьох галу-
зях, зокрема у блокчейн-технологiях i системах захисту даних. Елiптичнi кри-
вi дозволяють зменшити розмiр ключiв i пiдвищити швидкiсть обчислень без
втрати рiвня безпеки, що робить їх перспективними для подальшого розвитку
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криптографiї.
Елiптичнi кривi демонструють високу стiйкiсть до класичних методiв кри-

птоаналiзу, але iснує необхiднiсть подальшого дослiдження стiйкостi цих ал-
горитмiв в умовах появи квантових обчислювальних систем, якi можуть за-
грожувати традицiйним методам шифрування. (Зокрема, можливi атаки на
основi квантового обчислення можуть значно скоротити час, необхiдний для
розв’язання задачi дискретного логарифмування на елiптичних кривих). Однак
на сьогоднiшнiй день ECDSA залишається одним iз найбiльш безпечних i ефек-
тивних криптографiчних алгоритмiв.

Важливо також вiдзначити гнучкiсть використання елiптичних кривих у
рiзних протоколах безпеки. Окрiм цифрових пiдписiв, елiптичнi кривi засто-
совуються в шифруваннi та генерацiї спiльних ключiв, що дозволяє будувати
комплекснi системи захисту з рiзнорiвневим шифруванням.

Отже, на основi проведених дослiджень i експериментiв можна зробити вис-
новок, що елiптичнi кривi та алгоритм ECDSA є важливими складовими сучас-
ної криптографiї, забезпечуючи високий рiвень безпеки, ефективнiсть та стiй-
кiсть до бiльшостi вiдомих атак. Це робить їх незамiнними в сучасних iнформа-
цiйних системах i криптографiчних рiшеннях. Проте для подальшого вдоско-
налення технологiй захисту необхiдно враховувати перспективи розвитку кван-
тових обчислювальних систем i продовжувати дослiдження в галузi стiйкостi
криптографiї на основi елiптичних кривих до нових загроз.
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foundations of these operations, their algorithmic implementations, and their importance
for computational security are discussed. In addition to the mathematical foundations,
the article discusses the software implementation of point addition and doubling opera-
tions, which are important for the efficiency and security of cryptographic algorithms. The
algorithms of implementation in the Python programming language are described.
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AVERAGED OPTIMAL CONTROL PROBLEMS OF NON-LINEAR
DIFFERENTIAL INCLUSIONS ON THE FINITE AND INFINITE

INTERVALS

In this paper, we use the averaging method to find an approximate solution for the
optimal control of nonlinear differential inclusions with rapidly oscillating coefficients.

This work highlights the interplay between averaging methods and asymptotic analy-
sis, suggesting that a hybrid approach can provide reliable strategies for solving complex
optimal control problems. Addressing both finite interval and unbounded domains, the
studies together contribute to a more complete framework for understanding and apply-
ing control methodology in nonlinear settings. We use the averaging method to find an
approximate solution to these optimal control problems. Future research can benefit from
integrating insights from both methodologies to further improve control strategies, poten-
tially leading to improved results in various fields of engineering and applied mathematics.
The Carathéodory-type differential switching optimal control problems are considered.

Keywords: non-linear differential inclusion, optimal control, averaging method, approxi-
mate solution.

1. Introduction. In recent years, the study of optimal control problems involving
differential inclusions has gained significant attention due to its wide range of appli-
cations in engineering, economics, and the natural sciences. This article address the
complexities of controlling systems described by differential inclusions, albeit from
different perspectives and methodologies.

The first part of research explores the application of the averaging method to
non-linear differential inclusions within a finite interval, providing insights into sim-
plifying complex control systems for practical implementation. The second one
delves into the asymptotic behavior of optimal control problems on the semiaxes,
particularly focusing on Carathéodory differential inclusions with fast oscillating co-
efficients, thereby offering a deeper understanding of the impact of rapid oscillations
on system dynamics. Together, these works contribute to advancing the theoretical
framework and application strategies for optimal control in systems governed by
differential inclusions.

2. Statement of the problem. Let us consider two optimal control problems.
The first one ⎧⎪⎪⎨⎪⎪⎩

𝑥̇(𝑡) ∈ 𝑋( 𝑡
𝜀
, 𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ (0, 𝑇 ),

𝑥(0) = 𝑥0, 𝑢(·) ∈ 𝑈,

𝐽 [𝑥, 𝑢] =
𝑇∫︀
0

𝐿(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡+ Φ(𝑥(𝑇 )) → inf .
(1)
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Here 𝜀 > 0 is a small parameter, 𝑥 : [0, 𝑇 ] → R is an unknown phase variable,
𝑢 : [0, 𝑇 ] → R𝑚 is an unknown control function, 𝑋 : R+ × R𝑛 × R𝑚 → conv(R𝑛) is
a multi-valued function, 𝑈 ⊂ 𝐿2(0, 𝑇 ) is a fixed set.

Assume that uniformly with respect to 𝑥 for every 𝑢 ∈ R𝑚

dist𝐻

⎛⎝1

𝑠

𝑠∫︁
0

𝑋(𝜏, 𝑥, 𝑢)𝑑𝜏 , 𝑌 (𝑥, 𝑢)

⎞⎠→ 0, 𝑠→ ∞, (2)

where limits for multi-valued function are considered in the sense of [1, 2], 𝑑𝑖𝑠𝑡𝐻 is
the Hausdorff metric, 𝑌 : R𝑛 × R𝑚 → conv(R𝑛), and the integral of multi-valued
function is considered in the sense of Aumann [3]. We consider the following problem
with averaged right hand side:⎧⎪⎪⎨⎪⎪⎩

𝑦̇(𝑡) ∈ 𝑌 (𝑦(𝑡), 𝑢(𝑡)),
𝑦(0) = 𝑥0, 𝑢(·) ∈ 𝑈,

𝐽 [𝑥, 𝑢] =
𝑇∫︀
0

𝐿(𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡+ Φ(𝑥(𝑇 )) → inf .
(3)

Under the natural assumptions on 𝑋,𝐿,Φ, 𝑈 we will show that the problems (1)
and (3) have solutions {𝑥𝜀, 𝑢𝜀} and {𝑦, 𝑢} respectively,

𝐽𝜀𝑛 → 𝐽, 𝜀𝑛 → 0,

where 𝐽𝜀𝑛 := 𝐽 [𝑥𝜀𝑛 , 𝑢𝜀𝑛 ], 𝐽 := [𝑦, 𝑢], and up to a subsequence

𝑢𝜀𝑛 → 𝑢 in 𝐿2(0, 𝑇 ),

𝑥𝜀𝑛 → 𝑦 in C([0, 𝑇 ]).

In what follows we consider the problem of finding an approximate solution of (1)
by transition to averaged coefficients. We note that the transition to the averaging
parameters can essentially simplify the problem.

We consider the second following optimal control problem

𝑥̇(𝑡) ∈ 𝑓(
𝑡

𝜀
, 𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡), 𝑡 ≥ 0,

𝑥(0) = 𝑥0,
(4)

𝑢 ∈ U = {𝑢 ∈ 𝐿2(0,∞;R𝑚)| 𝑢(𝑡) ∈ 𝑈 a.e. on (0,∞)} (5)

is such that
𝐽(𝑥, 𝑢) =

∫︁ ∞

0

(𝑒−𝛾𝑡𝜙(𝑥(𝑡)) + |𝑢(𝑡)|2)𝑑𝑡 → inf, (6)

where 𝜀 > 0 is a small parameter, and 𝑓, 𝑔, 𝜙 satisfy the following:
1) 𝑓 : [0,∞)× R𝑑 → conv;
2) ∀𝑥 ∈ R𝑑 the map 𝑓(·, 𝑥) possesses a measurable selector;
3) ∀𝑡 ≥ 0 the map 𝑓(𝑡, ·) is upper semicontinuous;
4) ∃𝑀 ≥ 0 ∀𝑥 ∈ R𝑑 ∀𝑡 ≥ 0 : ||𝑓(𝑡, 𝑥)||+ ≤𝑀 ;
5) 𝑔 : R𝑑 → R𝑑×𝑚 is continuous and bounded, that is ∃𝑁 ≥ 0 with ||𝑔(𝑥)|| ≤

𝑁, 𝑥 ∈ R𝑑;
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6) 𝑈 ⊂ R𝑚 is closed, convex and 0 ∈ 𝑈 ;
7) 𝜙 : R𝑑 → R is continuous and there are constants 𝑐 > 0 and 𝑝 ≥ 1 with

inf
𝑥∈R𝑑

𝜙(𝑥) ≥ −𝑐, |𝜙(𝑥)| ≤ 𝑐(1 + ||𝑥||𝑝).

For a given control function 𝑢 ∈ U we understand solution of (1) as an absolutely
continuous function 𝑥 which satisfies (1) almost everywhere (a.e.) on [0,+∞). In
this case we say that {𝑥, 𝑢} is an admissible pair for (1)-(3). An admissible pair
{𝑥𝜀, 𝑢𝜀} is called an optimal pair (or solution) for (1)-(3) if for every admissible pair
{𝑥, 𝑢} we have

𝐽(𝑥𝜀, 𝑢𝜀) ≤ 𝐽(𝑥, 𝑢).

The existence of an optimal solution {𝑥𝜀, 𝑢𝜀} is established in the next section.
Let us denote

𝐽𝜀 := inf 𝐽(𝑥, 𝑢) = 𝐽(𝑥𝜀, 𝑢𝜀).

Using approach of [5] we define the average function 𝑓 basing on the notion of the
Kuratowski upper limit [6]

𝑓(𝑥) = ∩𝛿>0𝐹
𝛿(𝑥),

where 𝐹 𝛿 is the convex hull of the map

Φ𝛿(𝑥) = lim sup
𝜃↗1

lim sup
𝑇→∞

1

(1− 𝜃)𝑇
𝐼(𝜃𝑇, 𝑇, 𝑥, 𝛿),

𝐼(𝜃𝑇, 𝑇, 𝑥, 𝛿) =
{︁∫︁ 𝑇

𝜃𝑇

𝑣(𝑡)𝑑𝑡 | 𝑣(·) ∈ 𝐿1
𝑙𝑜𝑐(0,∞;R𝑑), 𝑣(𝑡) ∈ 𝑓(𝑡, 𝑦), 𝑦 ∈ 𝑂𝛿(𝑥)

}︁
.

It is proved in [5] that if there exists 𝐹 (𝑥) = lim𝑇→∞
1
𝑇

∫︀ 𝑇
0
𝑓(𝑡, 𝑥)𝑑𝑡 in the sense of

the Hausdorff distance 𝑑𝑖𝑠𝑡𝐻 , and if 𝑓(𝑡.·) is Lipschitz, then 𝑓 = 𝐹 .
Also we consider the optimal control problem

𝑥̇ ∈ 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡), 𝑥(0) = 𝑥0, (7)

𝑢 ∈ U, (8)

𝐽(𝑥, 𝑢) → inf (9)

Our aim is to prove that for 𝜀→ 0 it follows that

𝐽𝜀 → 𝐽 and {𝑥𝜀, 𝑢𝜀} → {𝑥̄, 𝑢̄} in some sense,

where {𝑥̄, 𝑢̄} is a solution of (7)–(9), 𝐽 = 𝐽(𝑥̄, 𝑢̄).
3. Main resuts. Let 𝑄 = {𝑡 ≥ 0, 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚} and assume the following

assumptions hold.
(A1) the mapping 𝑡, 𝑥, 𝑢 ↦→ 𝑋(𝑡, 𝑥, 𝑢) is continuous in Hausdorff metric;
(A2) the multi-valued function 𝑋(𝑡, 𝑥, 𝑢) satisfies the next growth property: there

exists 𝑀 > 0 such that

||𝑋(𝑡, 𝑥, 𝑢)||+ ≤𝑀(1 + ||𝑥||) ∀(𝑡, 𝑥, 𝑢) ∈ 𝑄,

where ||𝑋(𝑡, 𝑥, 𝑢)||+ = sup𝜉∈𝑋(𝑡,𝑥,𝑢) ||𝜉||, ||𝜉|| is the Euclidian norm of 𝜉 ∈ R𝑛;
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(A3) the multi-valued function 𝑋(𝑡, 𝑥, 𝑢) satisfies the next Lipschitz condition: there
exists 𝜆 > 0 such that

dist𝐻 (𝑋(𝑡, 𝑥1, 𝑢1), 𝑋(𝑡, 𝑥2, 𝑢2)) ≤ 𝜆 (||𝑥1 − 𝑥2||+ ||𝑢1 − 𝑢2||) ;

(A4) the function (𝑥, 𝑢) ↦→ 𝐿(𝑡, 𝑥, 𝑢) is continuous, moreover the function 𝑡 ↦→
𝐿(𝑡, 𝑥, 𝑢) is measurable ∀𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚 and

|𝐿(𝑡, 𝑥, 𝑢)| ≤ 𝑐(𝑡)(1 + ||𝑢||),

where 𝑐 ∈ 𝐿2(0, 𝑇 ) is a given function;
(A5) the function Φ : R𝑛 → R is continuous;
(A6) the set 𝑈 ⊂ 𝐿2(0, 𝑇 ) is compact.

Theorem 1. Under the Assumptions A1-A6 the problem (1) (resp. the problem
(3)) has the solution {𝑥𝜀, 𝑢𝜀} (resp. {𝑦, 𝑢}).

Proof. Fix 𝜀 > 0 and suppress it in what follows. Under the conditions on 𝐿
and Φ the cost functional in (1) reaches its finite extremum. Now deduce a priory
estimate for 𝑥(𝑡). Since 𝑥 is an absolutely continuous function then 𝑡 ↦→ ||𝑥(𝑡)|| is
an absolutely continuous too and

𝑑

𝑑𝑡
||𝑥(𝑡)|| ≤ ||𝑥̇(𝑡)|| a.e.

Then

𝑑

𝑑𝑡
||𝑥(𝑡)|| ≤ ||𝑥̇(𝑡)|| ≤ ||𝑋(𝑡, 𝑥, 𝑢)||+ ≤𝑀(1 + ||𝑥||),

and

||𝑥(𝑡)|| ≤ ||𝑥(0)||+
𝑡∫︁

0

𝑀(1 + ||𝑥||)𝑑𝑠 = ||𝑥(0)||+𝑀𝑇 +

𝑡∫︁
0

𝑀 ||𝑥||𝑑𝑠.

Taking into account Gronwall’s inequality we have

||𝑥(𝑡)|| ≤ (||𝑥(0)||+𝑀𝑇 ) 𝑒

𝑡∫︀
0

𝑀𝑑𝑠
= (||𝑥(0)||+𝑀𝑇 ) 𝑒𝑀𝑡 ≤ (||𝑥(0)||+𝑀𝑇 ) 𝑒𝑀𝑇 .

(10)
Let {𝑥𝑛, 𝑢𝑛}𝑛∈N be a minimizing sequence for the problem (1), that is:

{𝑥𝑛, 𝑢𝑛} ∈ {(𝑥, 𝑢) : 𝑢 ⊂ 𝑈, 𝑥 is the solution to the Cauchy problem (1)
for all admissible 𝑢},

and 𝐽(𝑥𝑛, 𝑢𝑛, ) ≤ 𝐽 + 1
𝑛
. Due to (10) we have the uniform boundedness of the

sequence {𝑥𝑛}𝑛∈N on every finite interval [0, 𝑇 ], i.e. ∃𝐿 > 0:

sup
𝑡∈[0,𝑇 ]

||𝑥𝑛(𝑡)|| ≤ 𝐿, 𝑡 ∈ [0, 𝑇 ].

Moveover,
sup
𝑡∈[0,𝑇 ]

||𝑥̇𝑛(𝑡)|| ≤ 𝐿, 𝑡 ∈ [0, 𝑇 ], (11)
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and

||𝑥𝑛(𝑡2)− 𝑥𝑛(𝑡1)|| ≤
𝑡2∫︁
𝑡1

𝑀(1 + 𝐿)𝑑𝑠 =𝑀(1 + 𝐿)(𝑡2 − 𝑡1),

so the sequence {𝑥𝑛}𝑛∈N is precompact in C([0, 𝑇 ]). Due to the Arcel’s theorem
𝑥𝑛 → 𝑥 in 𝐶([0, 𝑇 ]) up to a subsequence.

From [2] and (11) we deduce that 𝑥 is absolutely continuous and 𝑥̇𝑛 → 𝑥̇ *-weakly
as 𝑛→ ∞ in 𝐿∞(0, 𝑇 ). Since ∀𝜀 > 0 for a.e. 𝑡 there exists 𝑛0 such that ∀𝑛 ≥ 𝑛0

𝜆 (||𝑥𝑛(𝑡)− 𝑥(𝑡)||+ ||𝑢𝑛(𝑡)− 𝑢(𝑡)||) < 𝜀,

then by the Assumption A3 we have

𝑥̇𝑛(𝑡) ∈ 𝑋

(︂
𝑡

𝜀
, 𝑥𝑛(𝑡), 𝑢𝑛(𝑡)

)︂
⊂ 𝑂𝜀

(︂
𝑋

(︂
𝑡

𝜀
, 𝑥𝑛(𝑡), 𝑢𝑛(𝑡)

)︂)︂
.

Taking into account the convergence theorem [4, p.60] for a.e. 𝑡 we have

𝑥̇(𝑡) ∈ 𝑋

(︂
𝑡

𝜀
, 𝑥(𝑡), 𝑢(𝑡)

)︂
.

By the Assumption A6 we obtain the convergence 𝑢𝑛 → 𝑢, 𝑛→ ∞ in 𝐿2[0, 𝑇 ] up to
a subsequence.

Now we will show that {𝑥, 𝑢} is the solution of (1). Since 𝑢𝑛(𝑡) → 𝑢̇(𝑡) and
𝑥𝑛(𝑡) → 𝑥(𝑡), 𝑛→ ∞ a.e. by the Assumption A4 we obtain that

𝐿(𝑡, 𝑥𝑛(𝑡), 𝑢𝑛(𝑡)) → 𝐿(𝑡, 𝑥(𝑡), 𝑢(𝑡)) a.e., 𝑛→ ∞,

and {𝐿(𝑡, 𝑥𝑛, 𝑢𝑛)} is bounded in 𝐿2(0, 𝑇 ). Therefore by the Lions’ Lemma we have
that 𝐿(𝑡, 𝑥𝑛, 𝑢𝑛) → 𝐿(𝑡, 𝑥, 𝑢) weakly in 𝐿2(0, 𝑇 ) for 𝑛→ ∞.
Hence,

𝑇∫︁
0

𝐿(𝑡, 𝑥𝑛(𝑡), 𝑢𝑛(𝑡))𝑑𝑡→
𝑇∫︁

0

𝐿(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡, 𝑛→ ∞,

With the convergence Φ(𝑥𝑛(𝑇 )) → Φ(𝑥(𝑇 )) we have lim
𝑛→∞

𝐽 [𝑥𝑛, 𝑢𝑛] = 𝐽 [𝑥, 𝑢] = 𝐽

and therefore {𝑥, 𝑢} is the solution of (1).
For the second optimal control problem we have a similar result.

Lemma 1. Under the conditions 1)–7) the optimal control problem 1–3 has a
solution {𝑥𝜀, 𝑢𝜀}.

Lemma 2. Let 𝑓 : [0,∞)×R𝑑 → conv satisfy 1)–4). Then there exists a sequence
of locally Lipschitz maps 𝑓𝑘 : [0,∞)× R𝑑 → conv satisfying 1)–4) for 𝑘 ∈ N with

𝑓(𝑡, 𝑥) ⊂ · · · ⊂ 𝑓𝑘+1(𝑡, 𝑥) ⊂ 𝑓𝑘(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ R𝑑, 𝑘 ∈ N (12)

and for each 𝑘 ∈ N and 𝑥 ∈ R𝑑 there exist 𝑙𝑘 > 0 and 𝛿𝑘 > 0 such that

𝑑𝑖𝑠𝑡𝐻(𝑓
𝑘(𝑡, 𝑥′), 𝑓𝑘(𝑡, 𝑥′′)) ≤ 𝑙𝑘‖𝑥′ − 𝑥′′‖, 𝑥′, 𝑥′′ ∈ 𝑂𝛿𝑘(𝑥), 𝑡 ≥ 0, (13)

moreover, for any 𝜀 > 0, 𝑡 ≥ 0, 𝑥 ∈ R𝑑 there is 𝐾 = 𝐾(𝜀, 𝑡, 𝑥) with

𝑓𝑘(𝑡, 𝑥) ⊂ 𝑐𝑜𝑓(𝑡, 𝑂𝜀(𝑥)), 𝑘 ≥ 𝐾. (14)
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Moreover for a fixed 𝜀 > 0, if 𝑥𝑛 is the solution to (4) corresponding to the
control 𝑢𝑛, 𝑛 ∈ N and sup𝑛∈N ||𝑢𝑛||𝐿2 < ∞ then up to a subsequence the following
convergence holds

𝑢𝑛 → 𝑢 weakly in 𝐿2(0,∞;R𝑚), (15)

𝑥𝑛 → 𝑥 in 𝐶([0, 𝑇 ];R𝑑), 𝑇 > 0, (16)

where 𝑥 is a solution of (4) with control 𝑢. Additionally, if 𝑢𝑛 ∈ U for 𝑛 ∈ N then
𝑢 ∈ U.

Lemma 3. Let 𝜀𝑛 → 0 as 𝑛 → ∞ and 𝑥𝑛 be a solution of (4) with control 𝑢𝑛.
Let {𝑥𝑛, 𝑢𝑛} → {𝑥, 𝑢} as 𝑛→ ∞ in the sense of (15),(16). Then 𝑥 is a solution of
(7) with control 𝑢.

Now we are in a position to prove our main result.

Theorem 2. Assume that conditions 1)–7) are satisfied. Assume that for any
𝑢 ∈ U the problem (7) has a unique solution. Let {𝑥𝜀, 𝑢𝜀} be an optimal pair in
(4)–(6), 𝐽𝜀 = 𝐽(𝑥𝜀, 𝑢𝜀). Then

𝐽𝜀 → 𝐽 for 𝜀→ 0, (17)

and for 𝜀𝑛 → 0 it holds that

𝑥𝜀𝑛 → 𝑥̄ in 𝐶([0, 𝑇 ];R𝑑), 𝑇 > 0 (18)

𝑢𝜀𝑛 → 𝑢̄ weakly in 𝐿2(0,∞;R𝑚), (19)

where {𝑥̄, 𝑢̄} is an optimal pair in (7)–(9), 𝐽 = 𝐽(𝑥̄, 𝑢̄).

Proof.
Let for 𝜀𝑛 → 0, {𝑥𝜀𝑛 , 𝑢𝜀𝑛} be an optimal pair for (4)-(6). From the optimality of

𝑢𝜀𝑛 it follows that
𝐽(𝑥𝜀𝑛 , 𝑢𝜀𝑛) ≤ 𝐽(𝑥𝑛, 0),

where 𝑥𝑛 is a solution of (4) with 𝜀 = 𝜀𝑛, 𝑢 = 0. Then

− 𝑐

𝛾
+‖𝑢𝜀𝑛‖2 ≤

∫︁ ∞

0

𝑒−𝛾𝑡𝜙(𝑥𝑛(𝑡)) ≤
∫︁ ∞

0

𝑒−𝛾𝑡𝑐(1+(‖𝑥0‖+(𝑀+𝑁)𝑡)𝑝)𝑑𝑡 ≤ 𝐶1, (20)

where 𝐶1 does not depend on 𝑛. Additionally, we have

‖𝑥𝜀𝑛(𝑡)− 𝑥𝜀𝑛(𝑠)‖ ≤𝑀 |𝑡− 𝑠|+𝑁 |𝑡− 𝑠|
1
2‖𝑢𝜀𝑛‖. (21)

Estimations (20),(21) and the Arzela-Ascoli theorem imply that on some subse-
quence {𝑥𝜀𝑛 , 𝑢𝜀𝑛}, 𝑛 ∈ N converges to some {𝑥̄, 𝑢̄} in the sense of (18),(19). Hence,
from Lemma 3 we deduce that 𝑥̄ is a solution of (7) with control 𝑢 ∈ U. Let us
prove that {𝑥̄, 𝑢̄} is an optimal pair.

For every 𝑢 ∈ U and the corresponding solution 𝑥𝑛 to (4) we have

𝐽(𝑥𝜀𝑛 , 𝑢𝜀𝑛) ≤ 𝐽(𝑥𝑛, 𝑢). (22)

Arguing as in the proof of Lemma 1, we get from (22) after passing to the limit:

𝐽(𝑥̄, 𝑢̄) ≤ lim inf
𝑛→∞

𝐽(𝑥𝜀𝑛 , 𝑢𝜀𝑛) ≤ lim inf
𝑛→∞

𝐽(𝑥𝑛, 𝑢). (23)
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Due to (21) with 𝑢𝜀𝑛 replaced with 𝑢 we have that 𝑥𝑛 → 𝑥 in the sense of (18). By
Lemma 3 it follows that 𝑥 is a unique solution of (7) with control 𝑢. So, from (23)
follows

𝐽(𝑥̄, 𝑢̄) ≤ lim inf
𝑛→∞

𝐽(𝑥𝑛, 𝑢) = 𝐽(𝑥, 𝑢).

This inequality means that {𝑥̄, 𝑢̄} is an optimal pair.
Applying previous arguments with 𝑢 = 𝑢̄ we get

𝐽(𝑥̄, 𝑢̄) ≤ lim inf
𝑛→∞

𝐽𝜀𝑛 ≤ lim sup
𝑛→∞

𝐽𝜀𝑛 ≤ lim
𝑛→∞

𝐽(𝑥𝑛, 𝑢̄) = 𝐽(𝑥̄, 𝑢̄).

This means, that there exists lim𝑛→∞ 𝐽𝜀𝑛 = 𝐽(𝑥̄, 𝑢̄). Because of arbitrariness of
𝜀𝑛 → 0, we get (17). Theorem is proved.

4. Concusions. We significantly advance our understanding of optimal
control problems characterized by non-linear dynamics and varying conditions. The
first study introduces the averaging method as a viable technique to address finite
interval problems, elucidating how it simplifies the control process by reducing the
complexity of the differential inclusions involved. This approach not only facilitates
the identification of optimal solutions but also broadens the applicability of control
strategies to a wider range of practical scenarios.

Conversely, the second article delves into the asymptotic behavior of control
problems defined on semiaxes, where the challenges posed by fast oscillating coef-
ficients are meticulously examined. The authors demonstrate that under specific
conditions, asymptotic techniques can effectively yield optimal control solutions,
thereby enhancing our ability to manage systems with rapidly changing dynamics.

Together, these works highlight the interplay between averaging methods and
asymptotic analysis, suggesting that a hybrid approach may yield robust strategies
for solving complex optimal control problems. By addressing both finite intervals
and unbounded domains, the studies collectively contribute to a more comprehen-
sive framework for understanding and applying control methodologies in non-linear
settings. Future research could benefit from integrating insights from both method-
ologies to further refine control strategies, potentially leading to improved outcomes
in various engineering and applied mathematics fields.

This research was supported by NRFU project No. 2023.03/0074 "Infinite-
dimensional evolutionary equations with multivalued and stochastic dynamics"
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Жук Т. Ю. Усередненi задачi оптимального керування нелiнiйними дифе-
ренцiальними включеннями на скiнченних i нескiнченних iнтервалах.

У данiй статтi ми використовуємо метод усереднення, щоб знайти наближений
розв’язок для оптимального керування нелiнiйними диференцiальними включеннями
з швидкоосцилюючими коефiцiєнтами.

Дана робота висвiтлюює взаємодiю мiж методами усереднення та асимптотичним
аналiзом, припускаючи, що гiбридний пiдхiд може дати надiйнi стратегiї для вирi-
шення складних проблем оптимального керування. Звертаючись як до скiнченних iн-
тервалiв, так i до необмежених областей, дослiдження разом роблять внесок у бiльш
повну структуру для розумiння та застосування методологiї контролю в нелiнiйних
умовах. Ми використовуємо метод усереднення, щоб знайти наближене рiшення для
цих задач оптимального керування. Майбутнi дослiдження можуть отримати вигоду
вiд iнтеграцiї розумiння з обох методологiй для подальшого вдосконалення страте-
гiй контролю, що потенцiйно призведе до покращення результатiв у рiзних галузях
iнженерiї та прикладної математики. Розглядаються задачi оптимального керування
диференцiальним включенням типу Каратеодорi.

Ключовi слова: нелiнiйне диференцiальне включення, оптимальне керування, метод
усереднення, наближений розв’язок.
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СЛАБКI РОЗВ’ЯЗКИ СТОХАСТИЧНО ЗБУРЕНИХ
ПАРАБОЛIЧНИХ РIВНЯНЬ ЗI ШВИДКО ЗРОСТАЮЧИМИ

ЗОВНIШНIМИ ЗБУРЕННЯМИ

В данiй роботi вивчаються стохастичнi еволюцiйнi рiвняння у нескiнченновимiрних
просторах. Цi рiвняння є математичними моделями реальних процесiв природознав-
ства iз розподiленими параметрами i таких, що у процесi своєї еволюцiї зазнають впли-
ву випадкових факторiв. Данi фактори можна розглядати як сумарний результат ве-
ликої кiлькостi незалежних у сукупностi випадкових величин. Тодi, у силу центральної
граничної теореми, отримаємо, що випадковi збурення описуються нескiнченновимiр-
ним процесом бiлого шуму, що приводить до стохастичних рiвнянь Iтовського типу.
Характерним прикладом таких рiвнянь є стохастичнi параболiчнi рiвняння iз нелi-
нiйним зносом. Головним диференцiальним оператором тут є, як правило, оператор
другого порядку елiптичного типу. Вiдомi ранiше результати стосувались iснування та
єдиностi слабких розв’язкiв таких рiвнянь за умови степеневого росту нелiнiйностей
та деяких умов монотонностi. Однак у застосуваннях часто трапляється нелiнiйностi
експоненцiального росту, наприклад, добре вiдоме рiвняння Франка–Каменського.

В данiй роботi отриманi умови iснування, єдиностi та неперервної залежностi слаб-
ких розв’язкiв вiд правих частин та початкових даних. При цьому нелiнiйностi можуть
допускати рiст вище степеневого. Також для розв’язкiв отриманi оцiнки у спецiальних
Соболiвських нормах.

Ключовi слова: процес Вiнера, лапласiан, елiптичнiсть, простiр Соболева, крайова
задача.

1. Вступ. В данiй роботi вивчається стохастично збурене нескiнченновимiрним
𝑄-вiнерiвським процесом рiвняння реакцiя-дифузiя вигляду:⎧⎪⎨⎪⎩

𝑑𝑦 = (∆𝑦 + 𝑓(𝑦) + 𝑢(𝑡))𝑑𝑡+ 𝜎(𝑦)𝑑𝑊 (𝑡),

𝑦(𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ [0, 𝑇 ],

𝑦(0, 𝑥) = 𝑦0(𝑥,𝑤),

(1)

де 𝐷 ⊂ 𝑅𝑑, 𝑑 ≥ 2, обмежена область iз ляпуновською межею, ∆ — оператор
Лапласа, 𝑓 i 𝜎 дiйснi скалярнi функцiї з 𝑅1 в 𝑅1, що породжують вiдповiднi
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абстрактнi вiдображення як вiдображення Немицького: 𝑦(𝑥) → 𝑓(𝑦(𝑥)), 𝜎(𝑦(𝑥)),
𝑢(𝑡) певне випадкове збурення, що часто iнтегрується як вектор керування. Такi
рiвняння виникають у застосуваннях як математичнi моделi процесiв iз розпо-
дiленими параметрами, що зазнають випадкових впливiв. Типовими представ-
никами є, наприклад, модель Ходжкiна–Каменського–Хакслi (нейрофiзiологiя),
де 𝑦(𝑡, 𝑥) є еластичним потенцiалом клiтинного нерва [1], модель Давсона–Фле-
мiнга популяцiйної динамiки [2] та багато iнших моделей.

Але, результати, що стосуються коректної розв’язностi вiдповiдних рiвнянь
отриманi за умови степеневого росту функцiї реакцiї 𝑓, наприклад [3, 4] для
детермiнiстичного випадку та [5, 6] для стохастичного випадку.

Однак, зустрiчаються ситуацiї, коли функцiя 𝑓(𝑦) має рiст вище лiнiйного,
типовим представником тут є рiвняння Франка–Каменського [7], де функцiя 𝑓
має експоненцiйний рiст. Тому важливо довести конкретну розв’язнiсть задачi
(1) i в подiбних випадках.

Для отримання вiдповiдного результату ми використовуємо пiдхiд робiт [8,
9], розроблений для детермiнованого випадку, де основною умовою на функцiю
𝑓 є наступна:

𝑓 ′(𝑠) ≤ Λ𝑓 , Λ𝑓 ≥ 0.

Очевидно, що наприклад, функцiя 𝑓(𝑠) = 𝑒−𝑠 дану умову задовольняє, але
не задовольняє умову степеневого росту.

2. Постановка задачi та основний результат. Позначимо наступнi про-
стори 𝐻 = 𝐿2(𝐷), 𝑉 = 𝐻1

0 , 𝑉 ′ = 𝐻−1. Тодi 𝑉 ⊂ 𝐻 ⊂ 𝑉 ′ утворюють трiйку
Гельфанда. Надалi ‖·‖ — норма в 𝐻, (·, ·) — скалярний добуток в 𝐻, < ·, · > —
спарка мiж 𝑉 ′ i 𝑉 (тобто < 𝑧, 𝑣 >:= 𝑧(𝑣), для 𝑧 ∈ 𝑉 ′, 𝑣 ∈ 𝑉 .)

При цьому
< 𝑧, 𝑣 >= (𝑧, 𝑣) для 𝑧 ∈ 𝐻, 𝑣 ∈ 𝑉.

Нехай (Ω, 𝐹, 𝑃 ) є повним ймовiрностним простором, а (𝐹𝑡) — нормальна
фiльтрацiя, 𝑡 ∈ [0, 𝑇 ]. Позначимо також 𝑄 = 𝐷 × (0, 𝑇 ) i Ω𝑇 = Ω× [0, 𝑇 ].

Задамо послiдовнясть {𝜆𝑖}∞1 — невiд’ємних чисел таку, що
∑︀∞

𝑖=1 𝜆
2
𝑖 < ∞ i

нехай {𝑙𝑖}∞1 є ортогональним базисом в 𝐻, що 𝑙𝑖 ∈ 𝐿∞(𝐷) i sup𝑖 ‖𝑙𝑖‖𝐿∞ <∞.
Введемо лiнiйний неперервний оператор 𝑄 такий, що вiн є невiд’ємно визна-

ченим i 𝑇𝑟(𝑄) <∞, 𝑄𝑙𝑖 = 𝜆𝑖𝑙𝑖.
За допомогою цього оператора стандартним чином можна визначити

𝐻 — значний процес Вiнера

𝑊 (𝑡) :=
∞∑︁
𝑖=1

𝜆𝑖𝑙𝑖(𝑥)𝛽𝑖(𝑡), 𝑡 > 𝑜

який називається 𝑄-вiнерiвським процесом. Тут 𝛽𝑖(𝑡) є стандартними, скаляр-
ними, незалежними в сукупностi процесами Вiнера. Вiдносно 𝑊 (𝑡) i потоку
𝜎-алгебр (𝐹𝑡) будемо вважати наступне:
1) 𝑊 (𝑡) ∈ 𝐹𝑡 — вимiрним при всiх 𝑡 ∈ [0, 𝑇 ];
2) 𝑊 (𝑡+ ℎ)−𝑊 (𝑡) не залежить вiд 𝜎-алгебри 𝐹𝑡 при всiх ℎ ≥ 0, 𝑡 ≥ 0.

Позначимо 𝑈 = 𝑄
1
2 (𝐻). Тодi з [10, Lemma 2.2] випливає, що 𝑈 ∈ 𝐿∞(𝐷).

Аналогiчно [10] введемо мультиплiкативний оператор Φ : 𝑈 → 𝐻 наступним
чином

Φ(𝜓) := 𝜙𝜓, 𝜓 ∈ 𝑈,
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що визначений функцiєю 𝜙 ∈ 𝐻. Оскiльки 𝜓 ∈ 𝐿∞(𝐷), то даний оператор ви-
значений коректно. Тодi Φ ∘𝑄 1

2 : 𝐻 → 𝐻 визначає оператор Гiльберта-Шмiдта.
Простiр таких операторiв позначатимемо 𝐿0

2 = 𝐿2(𝑄
1
2𝐻,𝐻), а норму в ньому

‖·‖𝐿0
2
.

При цьому⃦⃦⃦
Φ ∘𝑄

1
2

⃦⃦⃦2
𝐿0
2

:=
∞∑︁
𝑖=1

⃦⃦⃦
Φ ∘𝑄

1
2 𝑙𝑖

⃦⃦⃦2
=

∞∑︁
𝑖=1

𝜆2𝑖

∫︁
𝐷

𝜙2(𝑥)𝑙2𝑖 (𝑥)𝑑𝑥 ≤

≤ sup
𝑖

‖𝑙𝑖‖2𝐿∞ · ‖𝜙‖2 𝑇𝑟(𝑄),
(2)

де 𝑇𝑟𝑄 =
∑︀∞

𝑖=1 𝜆
2
𝑖 = 𝜆.

Тодi, для 𝐹𝑡 — вимiрного процесу Φ : Ω𝑇 → 𝐿(𝑈,𝐻), що задовольняє умову

𝐸

∫︁ 𝑇

0

⃦⃦⃦
Φ ∘𝑄

1
2

⃦⃦⃦2
𝐿0
2

𝑑𝑡 <∞,

можемо визначити стохастичний iнтеграл
∫︀ 𝑡
0
Φ(𝑠)𝑑𝑊 (𝑠) як елемент простору 𝐻.

Деталi можна подивитись в [11].
Даний iнтеграл допускає представлення∫︁ 𝑡

0

Φ(𝑠)𝑑𝑊 (𝑠) =
∞∑︁
𝑖=1

𝜆𝑖

∫︁ 𝑡

0

Φ(𝑠, ·)𝑙𝑖(·)𝑑𝛽𝑖(𝑠),

при цьому

𝐸

⃦⃦⃦⃦∫︁ 𝑡

0

Φ(𝑠)𝑑𝑊 (𝑠)

⃦⃦⃦⃦2
≤ 𝜆𝑖 sup

𝑖
‖𝑙𝑖‖2𝐿∞

∫︁ 𝑡

0

𝐸 ‖Φ(𝑠, ·)‖2 𝑑𝑠. (3)

Приведемо тепер умови на дiйснi функцiї 𝑓 i 𝜎, що характеризують реакцiю
та випадковi впливи.

(A1) 𝑓 : 𝑅1 → 𝑅1 є неперервно диференцiйовною функцiєю, що 𝑓(0) = 0 i
iснує стала Λ𝑓 ≥ 0 така, що 𝑓 ′(𝑠) ≤ Λ𝑓 , для всiх 𝑠 ∈ 𝑅1;

(A2) 𝜎 : 𝑅1 → 𝑅1, задовольняє глобальну умову Лiпшиця зi сталою 𝐿𝜎.
Очевидно, що |𝜎(𝑠)| ≤ 𝐿𝜎|𝑠|+ |𝜎(0)|.
(A3). Iснує стала 𝐶 > 0 така, що

|𝑓 ′(𝑠)𝜎2(𝑠)| ≤ 𝐶(1 + |𝑠|𝑝), (4)

для деякого 𝑝 ≥ 2.
Зрозумiло, що можна завжди вважати 𝑝-парним.
Розв’язок задачi (1) будемо розглядати у слабкому сенсi. А саме:

Означення 1. Нехай 𝑦0 ∈ 𝐹0 — вимiрним випадковим процесом, а 𝑢(𝑡) ∈ 𝐹𝑡
— вимiрним. Тодi 𝐹𝑡 — адаптований випадковий процес 𝑦(𝑡) ∈ 𝐿2(Ω𝑇 , 𝑉 ) нази-
вається слабким розв’язком задачi (1) на [0, 𝑇 ], якщо для всiх 𝜑 ∈ 𝑉 виконує-
ться рiвнiсть:

(𝑦𝑘(𝑡), 𝜑) = (𝑦0, 𝜑)−
∫︁ 𝑡

0

(︂
𝜕𝑦(𝑠)

𝜕𝑥
,
𝜕𝜑

𝜕𝑥

)︂
+ (𝑢(𝑠), 𝜑)+

+ (𝑓(𝑦(𝑠)), 𝜑)𝑑𝑠+

∫︁ 𝑡

0

(𝜑, 𝜎(𝑦(𝑠))𝑑𝑊 (𝑠)).

(5)

для майже всiх 𝑡 ∈ [0, 𝑇 ] з ймовiрнiстю 1.
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Основним результатом роботи є така теорема.

Теорема 1 (Iснування та єдиностi). Нехай виконанi умови (А1)–(А3) i 𝑦0 ∈
𝐿∞(Ω, 𝐿∞(𝐷)) та 𝐸

∫︀ 𝑇
0

∫︀
𝐷
𝑢𝑝(𝑡, 𝑥)𝑑𝑥𝑑𝑡 <∞.

Тодi задача (1) має єдиний слабкий розв’язок на [0, 𝑇 ].

Нехай 𝑦(𝑡, 𝑦0, 𝑢) i 𝑦(𝑡, 𝑦1, 𝑢1) два розв’язки рiвняння (1) з початковими умо-
вами 𝑦0, 𝑦1 i процесами 𝑢1(𝑡) та 𝑢2(𝑡) у правiй частинi (1) вiдповiдно.

Наступна теорема гарантує неперервну залежнiсть розв’язкiв вiд початко-
вих даних та процесiв 𝑢1(𝑡) та 𝑢2(𝑡).

Теорема 2 (Неперервна залежнiсть). За умов теореми 1 iснує стала 𝐶(𝑇 )
така, що

sup
𝑡∈[0,𝑇 ]

𝐸 ‖𝑦(𝑡, 𝑦0, 𝑢)− 𝑦(𝑡, 𝑦1, 𝑢1)‖2 ≤ 𝐶(𝑇 )(𝐸 ‖𝑦0 − 𝑦1‖2+

+

∫︁ 𝑇

0

𝐸 ‖𝑢1(𝑡)− 𝑢(𝑡)‖2 𝑑𝑡).
(6)

3. Доведення теорем 1 i 2. Доведення теореми 1. Замiсть рiвняння (1)
розглянемо спочатку “зрiзане” рiвнянням iз обмеженими коефiцiєнтами.

Для кожного цiлого 𝑘 ≥ ||𝑦0||𝐿∞(Ω,𝐿∞,(𝐷)), покладемо 𝑓𝑘(𝑠) = 𝑓(𝑃𝑘(𝑆)) i
𝜎𝑘(𝑠) = 𝜎(𝑃𝑘(𝑠)), де 𝑃𝑘(𝑠) = min{max{−𝑘, 𝑠}, 𝑘}.

Далi розглянемо “зрiзане” рiвняння⎧⎪⎨⎪⎩
𝑑𝑦𝑘 = (∆𝑦𝑘 + 𝑓𝑘(𝑦𝑘) + 𝑢)𝑑𝑡+ 𝜎𝑘(𝑦𝑘)𝑑𝑊 (𝑡),

𝑦𝑘 = 0, 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ [0, 𝑇 ]

𝑦𝑘(0, 𝑥) = 𝑦0(𝑥,𝑤).

(7)

В даному рiвняннi 𝑓𝑘 ∈ 𝜎𝑘 є обмеженими функцiями (зi сталою залежною
вiд 𝑘), а також глобально лiпшицевими, причому стала Лiпшиця для 𝜎𝑘 така
ж, як i для 𝜎, а для 𝑓𝑘, звичайно, залежить вiд 𝑘.

Таким чином, рiвняння (7) задовольняє умови теореми 7.5 [12, гл. 6], а отже
має єдиний слабкий розв’язок на [0, 𝑇 ]. При цьому справедлива енергетична
рiвнiсть:

||𝑦𝑘(𝑡)||2 = ||𝑦0||2 + 2

∫︁ 𝑡

0

(−||∇𝑦𝑘(𝑠)||2 + (𝑓𝑘(𝑦𝑘(𝑠)), 𝑦𝑘(𝑠)) + (𝑢(𝑠), 𝑦𝑘(𝑠)𝑑𝑠+

+

∫︁ 𝑡

0

||𝜎𝑘(𝑦𝑘(𝑠))||2𝐿0
2
𝑑𝑠+ 2

∫︁ 𝑡

0

𝜎𝑘(𝑦𝑘(𝑠))𝑑𝑊 (𝑠), 𝑦𝑘(𝑠)).

(8)

З (2) також випливає, що

||𝜎𝑘(𝑦𝑘(𝑡))||𝐿0
2
=
∑︁
𝑖

𝜆2𝑖

∫︁
𝐷

𝜎2
𝑖 (𝑦𝑘)𝑙

2
𝑖 (𝑥)𝑑𝑥 ≤ 𝜆 sup

𝑖
||𝑙𝑖||2𝐿∞𝑙2𝜎(1 + ||𝑦𝑘||2). (9)

Також з (A1), з використання теореми про середнє значення, отримуємо:

(𝑓𝑘(𝑦𝑘(𝑠)), 𝑦𝑘(𝑠)) =

∫︁
𝐷

𝑦𝑘𝑓𝑘(𝑦𝑘)𝑑𝑥 ≤ Λ𝑓 ||𝑦𝑘||2. (10)
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Також маємо, що

(𝑢(𝑠), 𝑦𝑘(𝑠)) ≤
1

2
(||𝑢(𝑠)||2 + ||𝑦𝑘(𝑠)||2). (11)

Далi, iз енергетичної рiвностi (8) маємо

||𝑦𝑘(𝑡)||2 ≤ ||𝑦0||2 + 2

∫︁ 𝑡

0

(−Λ||𝑦𝑘(𝑠)||2𝑉 + 𝐶1||𝑦𝑘(𝑠)||2 + Λ𝑓 ||𝑦𝑘(𝑠)||2+

+
1

2
||𝑢(𝑠)||2 + ||𝑦𝑘(𝑠)||2 + 𝜆 sup

𝑖
||𝑙𝑖||2𝐿∞𝐿2

𝜎(1 + ||𝑦𝑘(𝑠)||2)𝑑𝑠+

+ 2

∫︁ 𝑡

0

(𝜎𝑘(𝑦𝑘(𝑠))𝑑𝑊 (𝑠), 𝑦𝑘(𝑠)),

для деяких додатнiх сталих Λ i 𝐶1. Отже,

𝐸||𝑦𝑘(𝑡)||2 + Λ𝐸

∫︁ 𝑡

0

||𝑦𝑘(𝑠)||2𝑉 ≤ 𝐸||𝑦0||2 + 𝐶2

∫︁ 𝑡

0

𝐸||𝑦𝑘(𝑠)||2𝑑𝑠+ 𝐶3+

+

∫︁ 𝑡

0

𝐸||𝑢(𝑠)||2𝑑𝑠 ≤ 𝐸||𝑦0||2 + 𝐶3+

+ 𝐶2

∫︁ 𝑡

0

𝐸||𝑦𝑘(𝑠)||2𝑑𝑠+ 𝑇

(︂∫︁ 𝑡

0

𝐸||𝑢(𝑠)||𝑝𝐿𝑝𝑑𝑠

)︂ 2
𝑝

(12)

для деяких додатнiх сталих 𝐶2 i 𝐶3, залежних лише вiд 𝑇. З (12) з використа-
нням леми Гронуолла маємо

sup
𝑡∈[0,𝑇 ]

𝐸||𝑦𝑘(𝑡)||2 +
∫︁ 𝑡

0

𝐸||𝑦𝑘(𝑠)||2𝑉 𝑑𝑠 ≤ 𝐶(𝑦0, 𝑇, 𝑢). (13)

Отже, 𝑦𝑘 слабо збiгається (за пiдпослiдовнiстю) в 𝐿2(Ω𝑇 ;𝑉 ). З лiнiйного ро-
сту 𝜎, маємо також, що

𝐸

∫︁ 𝑇

0

||𝜎𝑘(𝑦𝑘(𝑡))||2𝐿0
2
𝑑𝑡 ≤ 𝐶4, (14)

отже 𝜎𝑘(𝑦𝑘) → Φ (слабко), 𝑘 → ∞ в 𝐿2(Ω𝑇 ;𝐿
0
2).

Далi розглянемо функцiю 𝐹𝑘(𝑧) = −
∫︀ 𝑧
0
𝑓𝑘(𝑠)𝑑𝑠. Маємо, що 𝐹 ′

𝑘 = −𝑓𝑘(𝑧),
𝐹 ′′
𝑘 (𝑧) = −𝑓 ′

𝑘(𝑧). Покладемо

𝐺(𝑦𝑘(𝑡)) =

∫︁
𝐷

𝐹𝑘(𝑦𝑘(𝑡))𝑑𝑥.

Використовучи формулу Iто для 𝐺, матимемо

𝐺(𝑦𝑘(𝑡))−𝐺(𝑦𝑘(0)) =

∫︁ 𝑡

0

(−(∇𝑦𝑘(𝑠),∇𝑓𝑘(𝑦𝑘(𝑠))− (𝑓𝑘(𝑦𝑘(𝑠)), 𝑢(𝑠)))𝑑𝑠−

−
∞∑︁
𝑖=1

𝜆𝑖

∫︁ 𝑡

0

∫︁
𝐷

𝑓𝑘(𝑦𝑘(𝑠)𝜎𝑘(𝑦𝑘(𝑠))𝑙𝑖(𝑥)𝑑𝑥𝑑𝛽𝑖(𝑠)−

− 1

2

∞∑︁
𝑖=1

𝜆2𝑖

∫︁
𝐷

𝑓 ′
𝑘(𝑠))𝜎

2
𝑘(𝑦𝑘(𝑠))𝑙

2
𝑖 (𝑥)𝑑𝑥𝑑𝑠−

−
∫︁ 𝑡

0

||𝑓𝑘(𝑦𝑘(𝑠))||2𝑑𝑠.

(15)
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Очевидно, що
(∇𝑦𝑘(𝑠),∇𝑓𝑘(𝑦𝑘)) ≤ 𝐶4||𝑦𝑘||2𝑉 , (16)

для деякої додатної сталої 𝐶4. Також,

|(𝑓𝑘(𝑦𝑘), 𝑢)| ≤ 𝜖||𝑓𝑘(𝑦𝑘)||2 +
𝐶5

𝜖
||𝑦𝑘(𝑠)||2, (17)

для 𝐶5 > 0 i 𝜖 > 0.
Оцiнимо тепер 𝐺(𝑦𝑘). З теореми про середнє значення випливає iснування

функцiї: Θ : 𝑅1 → [0, 1], такої, що для 𝑧 > 0

𝐹𝑘(𝑧) = −
∫︁ 𝑧

0

𝑓𝑘(𝑠)𝑑𝑠 = −
∫︁ 𝑧

0

𝑓 ′(Θ(𝑠)𝑃𝑘(𝑠))𝑃𝑘(𝑠)𝑑𝑠 ≥

≥
∫︁ 𝑧

0

Λ𝑓 (−𝑃𝑘(𝑠))𝑑𝑠 ≥ Λ𝑓

∫︁ 𝑧

0

−𝑠𝑑𝑠 = −Λ𝑓
2
𝑧2

Якщо 𝑧 < 0, то маємо

𝐹𝑘(𝑧) =

∫︁ 𝑜

𝑧

𝑓𝑘(𝑠)𝑑𝑠 =

∫︁ 𝑜

𝑧

𝑓 ′(Θ(𝑠)𝑃𝑘(𝑠))𝑃𝑘(𝑠)𝑑𝑠 ≥

≥
∫︁ 𝑜

𝑧

Λ𝑓𝑃𝑘(𝑠)𝑑𝑠 ≥ Λ𝑓

∫︁ 0

𝑧

𝑠𝑑𝑠 = −Λ𝑓
2
𝑧2.

Таким чином, ми отримуємо наступну оцiнку

𝐺(𝑦𝑘(𝑡)) =

∫︁
𝐷

𝐹𝑘(𝑦𝑘(𝑡))𝑑𝑥 ≥ −Λ𝑓
2

‖𝑦𝑘(𝑡)‖2 . (18)

Для 𝐺(𝑦𝑘(0)), враховуючи неперервнiсть 𝐹𝑘 i належнiсть 𝑦0 до простору
𝐿∞(Ω, 𝐿∞(𝐷)), матимемо

|𝐺𝑘(𝑦0)| ≤ 𝐶6‖𝑦0‖2𝐿∞(Ω,𝐿∞(𝐷)), (19)

де 𝐶6 = 𝐶6(𝑦0, 𝑓) > 0. Взявши в (15) математичне сподiвання, матимемо

−Λ𝑓
2
𝐸 ‖𝑦𝑘(𝑡)‖2 ≤ 𝐶6𝐸 ‖𝑦0‖2𝐿∞(Ω,𝐿∞(𝐷)) + 𝐶4

∫︁ 𝑡

0

𝐸 ‖𝑦𝑘(𝑠)‖2𝑉 𝑑𝑠+

+
𝐶5

𝜖

∫︁ 𝑡

0

𝐸 ‖𝑦𝑘(𝑠)‖2 𝑑𝑠+ 𝜖

∫︁ 𝑡

0

𝐸 ‖𝑓𝑘(𝑦𝑘(𝑠))‖2 𝑑𝑠+
𝑇

𝜖
(

∫︁ 𝑇

0

𝐸 ‖𝑢(𝑡)‖2𝐿𝑝 𝑑𝑡)
𝑝
2+ (20)

+
1

2

∑︁
𝑖

𝜆𝑖
2𝐸

∫︁ 𝑡

0

‖𝑓 ′
𝑘(𝑦𝑘(𝑠))𝜎

2
𝑘(𝑦𝑘(𝑠))𝑙

2
𝑖 (𝑥)𝑑𝑥𝑑𝑠−

∫︁ 𝑇

0

𝐸 ‖𝑓𝑘(𝑦𝑘)(𝑠)‖2 𝑑𝑠.

Звiдси, з використанням (A2) i (13) матимемо

𝐸

∫︁ 𝑇

0

‖𝑓𝑘(𝑦𝑘(𝑡))‖2 𝑑𝑡 ≤ 𝐶7 + 𝐶8

∫︁ 𝑇

0

𝐸

∫︁
𝐷

|𝑦𝑘(𝑡)|𝑝𝑑𝑥𝑑𝑡, (21)

для деяких сталих 𝐶7 = 𝐶7(𝑦0, 𝑢) > 0 i 𝐶8 > 0.
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Отже, ми отримаємо рiвномiрну оцiнку

𝐸

∫︁ 𝑇

0

‖𝑓𝑘(𝑦𝑘(𝑠))‖2 𝑑𝑠 ≤ 𝐶9, (22)

якщо доведемо рiвномiрну оцiнку для

𝐸

∫︁ 𝑇

0

‖𝑓𝑘(𝑦𝑘(𝑠))‖𝑝𝐿𝑝 𝑑𝑠 ≤ 𝐶10. (23)

Для її отримання ми використаємо теорiю стохастичного iнтегрування в ба-
нахових просторах, зокрема в 𝐿𝑝(𝐿𝑝− теорiя). А саме, скористаємось теоремою
1.1 з [13]. Неважко переконатися, що для “зрiзаного” рiвняння (7) виконанi всi
умови цiєї теореми. Дiйсно, в ролi спектральної мiри, що фiгурує в данiй тео-
ремi, (умова 𝐻1) можна взяти наступну мiру: для кожної борелевої множини
𝐴 iз 𝑅𝑑 покладемо 𝜇(𝐴) := 𝜆(𝐴∩𝐷), де 𝜆 — мiра Лебега на 𝑅𝑑. Тодi мiра 𝜇 має
вигляд типу (𝐻1) : 𝜇 = 𝜇 + 𝜇1, де 𝜇1(𝐴) = 0, для кожної борелевої множини
𝐴 iз 𝑅𝑑. Очевидно, що 𝜇1 абсолютно неперервна вiдносно мiри 𝜆. Таким чи-
ном, характеристика 𝑎𝑤, що фiгурує в умовi (𝐻1) теореми 1.1 [13] рiвна нулю.
Перевiрка решти умов цiєї теореми для рiвняння (7) тривiальна.

Таким чином, рiвняння (7) має єдиний м’який розв’язок 𝑧𝑘 такий, що

𝐸 sup
𝑡∈[0,𝑇 ]

‖𝑧𝑘(𝑡)‖𝑝𝐿𝑝 <∞. (24)

Оскiльки 𝑧𝑘(𝑡) ∈ 𝐿2(𝐷) то даний процес є м’яким розв’язком (7) i в 𝐻. Але, у
нашому випадку, слабкий розв’язок спiвпадає iз м’яким, [5. Пропозицiя 𝐺05 та
зауваження 𝐺06]. Тодi, в силу єдиностi, 𝑦𝑘(𝑡) = 𝑧𝑘(𝑡), а тому врахувавши (24),
можна використати формулу Iто для

∫︀
𝐷
𝑦𝑝𝑘(𝑡, 𝑥)𝑑𝑥. Маємо∫︁

𝐷

𝑦𝑝𝑘(𝑡)𝑑𝑥−
∫︁
𝐷

𝑦𝑝𝑘(0)𝑑𝑥 =

∫︁ 𝑡

0

(𝑝 < ∆𝑦𝑘, 𝑦
𝑝−1
𝑘 > 𝑑𝑥+ 𝑝(𝑢(𝑠), 𝑦𝑝−1

𝑘 (𝑠))+

+ 𝑝

(︃
𝑓𝑘(𝑦𝑘(𝑠), 𝑦

𝑝−1
𝑘 (𝑠)) +

1

2

∞∑︁
𝑖=1

𝜆2𝑖

∫︁
𝐷

𝑝(𝑝− 1)𝑦𝑝−2
𝑘 𝜎2

𝑘(𝑦𝑘(𝑠))𝑙
2
𝑖 𝑑𝑥)𝑑𝑠+

+
∞∑︁
𝑖=1

𝜆𝑖

∫︁ 𝑡

0

∫︁
𝐷

𝑝𝑦𝑝−1
𝑘 (𝑠)𝜎𝑘(𝑦𝑘(𝑠))𝑙𝑘(𝑥)𝑑𝑥𝑑𝛽𝑖(𝑠).

(25)

Оцiними в (25) кожний доданок окремо. Для спарки мiж просторами 𝑉 i 𝑉 ′

маємо

< ∆𝑦𝑘, 𝑦
𝑝−1
𝑘 >= −

∫︁
𝐷

(𝑝− 1)𝑦𝑝−2
𝑘

𝑑∑︁
𝑖=1

(︂
𝜕𝑦𝑖
𝜕𝑥𝑖

)︂2

𝑑𝑥 ≤ 0. (26)

Далi

(𝑢, 𝑦𝑝−1
𝑘 ) =

∫︁
𝐷

𝑦𝑝−1
𝑘 𝑢(𝑠)𝑑𝑥 ≤ 𝐶11(‖𝑦𝑘‖𝑝𝐿𝑝 + ‖𝑢‖𝑝𝐿𝑝), (27)

а також
(𝑓𝑘(𝑦𝑘), 𝑦

𝑝−1
𝑘 ) =

∫︁
𝐷

𝑦𝑝−2
𝑘 𝑦𝑘𝑓𝑘(𝑦𝑘)𝑑𝑥 ≤

∫︁
𝐷

Λ𝑓𝑦
𝑝
𝑘𝑑𝑥. (28)
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Тут ми використали умову (A1). Також отримаємо∫︁
𝐷

𝑦𝑝−2
𝑘 𝜎2(𝑦𝑘)𝑙

2
𝑖 𝑑𝑥 ≤

∫︁
𝐷

𝑦𝑝−2
𝑘 𝐿2

𝜎(1 + |𝑦2𝑘|𝑑𝑥) ≤ 𝐶12

∫︁
𝐷

𝑦𝑝𝑘𝑑𝑥+ 𝐶13, (29)

для деяких додатнiх сталих 𝐶10 − 𝐶13.
Взявши математичне сподiвання в (25), з використанням (25)–(29), матиме-

мо

𝐸

∫︁
𝐷

𝑦𝑝𝑘(𝑡)𝑑𝑥 ≤ 𝐶14 + 𝐶15

∫︁ 𝑡

0

𝐸

∫︁
𝐷

𝑦𝑝𝑘(𝑠)𝑑𝑥𝑑𝑠,

звiдки, прийнявши до уваги нерiвнiсть Гронуолла, отримаємо оцiнку (23), а
вiдтак i (22).

Отже, послiдовнiсть {𝑓𝑘(𝑦𝑘)} є слабко компактною в 𝐿2(Ω𝑇 , 𝐿
2(𝐷)), а отже

за послiдовнiстю
𝑦𝑘 ⇀ 𝑦 в 𝐿2(Ω𝑇 , 𝑉 ),

𝜎𝑘(𝑦𝑘)⇀ Φ в 𝐿2(Ω𝑇 , 𝐿
0
2)

𝑓𝑘(𝑦𝑘)⇀ 𝜓 в 𝐿2(Ω𝑇 , 𝐻).

(30)

Далi обгрунтуємо граничний перехiд в (7). Позначимо 𝑆(𝑡) — напiвгрупу,
генератором якої є оператор Лапласа. Оскiльки 𝑦𝑘 є слабким розв’язком (7) то,
як було сказано вище, у нашому випадку, 𝑦𝑘 є також м’яким розв’язком. Тому,
в силу означення м’якого розв’язку, маємо наступне iнтегральне представлення

𝑦𝑘(𝑡) = 𝑆(𝑡)𝑦0 +

∫︁ 𝑡

0

𝑆(𝑡− 𝑠)(𝑓𝑘(𝑦𝑘(𝑠)) + 𝑢(𝑠))𝑑𝑠+

+

∫︁ 𝑡

0

𝑆(𝑡− 𝑠)𝜎𝑘(𝑦𝑘(𝑠))𝑑𝑊 (𝑠).

(31)

Добре вiдомо, що напiвгрупа 𝑆(𝑡) компактна при 𝑡 > 0, як вiдображення з
𝐻 в 𝐻 [4, гл. 6].

Для 𝛼 ∈ (1
𝑝
; 1] введемо до розгляду оператор 𝐺𝛼 :

(𝐺𝛼𝜙)(𝑡) =

∫︁ 1

0

(𝑡− 𝑠)𝛼−1𝑆(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠. (32)

Для даного вiдображення є справедливим наступне твердження.

Твердження 1 (11). Якщо 𝑆(𝑡) компактний оператор при 𝑡 > 0, то опе-
ратор 𝐺𝛼 з (32) є також компактним оператором з 𝐿𝑝(0, 𝑇 ;𝐻) в 𝐶([0, 𝑇 ];𝐻).

Нагадаємо, що у наших позначеннях 𝐻 = 𝐿2(𝐷) i ми беремо 𝑝 > 2.
Iз стохастичного аналогу теореми Фубiнi [11] отримується наступна факто-

ризацiйна формула∫︁ 𝑡

0

𝑆(𝑡− 𝑠)𝜓(𝑠)𝑑𝑊 (𝑠) =
sin 𝜋𝛼

𝜋
(𝐺𝛼𝑌 )(𝑡), 𝑡 ∈ [0, 𝑇 ], (33)

де

𝑌 (𝑡) =

∫︁ 𝑡

0

(𝑡− 𝜖)−𝛼𝑆(𝑡− 𝜏)Φ(𝜏)𝑑𝑊 (𝜏). (34)
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Тому
𝑦𝑘(𝑡) = 𝑆(𝑡)𝑦0 +𝐺1(𝑓𝑘(𝑦𝑘)) + 𝑢)(𝑡) +𝐺𝛼(𝑌𝑘)(𝑡), (35)

де

𝑌𝑘(𝑡) =

∫︁ 𝑡

0

(𝑡− 𝑠)−𝛼𝑆(𝑡− 𝑠)𝜎𝑘(𝑦𝑘(𝑠))𝑑𝑊 (𝑠). (36)

Звiдси маємо

𝐸

∫︁ 𝑇

0

‖𝑌𝑘(𝑡)‖𝑝 𝑑𝑡 ≤ 𝐶16𝐸

∫︁ 𝑇

0

(︂∫︁ 𝑇

0

(𝑡− 𝑠)−2𝛼 ‖𝜎𝑘(𝑦𝑘(𝑠))‖2𝑧02 𝑑𝑠
)︂ 𝑝

2

𝑑𝑡.

Використавши нерiвнiсть Хаусдорфа-Юнга для конволюцiй, матимемо

𝐸

∫︁ 𝑇

0

‖𝑌𝑘(𝑡)‖𝑝 𝑑𝑡 ≤ 𝐶16𝐸

∫︁ 𝑇

0

(︂∫︁ 𝑇

0

(𝑡− 𝑠)−2𝛼

)︂
‖𝜎𝑘(𝑦𝑘(𝑡))‖𝑝𝑧02 𝑑𝑡,

для 𝛼 ∈ (
1

𝑝
,
1

2
).

(37)

Прийнявши також до уваги лiнiйне зростання 𝜎, матимемо

𝐸

∫︁ 𝑇

0

‖𝑌𝑘(𝑡)‖𝑝 𝑑𝑡 ≤ 𝐶17

∫︁ 𝑇

0

(1 + 𝐸 ‖𝑦𝑘(𝑡)‖𝑝)𝑑𝑡.

Але

𝐸

∫︁ 𝑇

0

‖𝑦𝑘(𝑡)‖𝑝 𝑑𝑡 = 𝐸

∫︁ 𝑇

0

(︂∫︁
𝐷

𝑦2𝑘(𝑡, 𝑥)𝑑𝑥

)︂ 𝑝
2

𝑑𝑡 ≤

≤ 𝐶18𝐸

∫︁ 𝑇

0

(︂∫︁
𝐷

𝑦𝑝𝑘(𝑡, 𝑥)𝑑𝑥

)︂
𝑑𝑡 ≤ 𝐶19,

(38)

в силу (22). Тут 𝐶15 − 𝐶19 — деякi додатнi сталi.
Аналогiчно маємо

𝐸

∫︁ 𝑇

0

‖𝑓𝑘(𝑦𝑘(𝑡))‖2 𝑑𝑡 ≤ 𝐶20, (39)

i

𝐸

∫︁ 𝑇

0

‖𝑢(𝑡)‖2 𝑑𝑡 ≤ 𝐶21 + 𝐶22

(︂
𝐸

∫︁ 𝑇

0

(︂∫︁
𝐷

𝑢𝑝(𝑡, 𝑥)𝑑𝑥

)︂
𝑑𝑡

)︂ 2
𝑝

≤ 𝐶23, (40)

для деяких додатнiх сталих 𝐶21 − 𝐶23.
З твердження ([11]) випливає, що множина

𝐾(𝑟) =

{︂
𝑆(·)𝑦0 +𝐺𝛼𝜙(·) +𝐺1𝑔(·) :

∫︁ 𝑇

0

‖𝑓(𝑡)‖𝑝 𝑑𝑡 ≤ 𝑟,

∫︁ 𝑇

0

‖𝑔(𝑡)‖2 𝑑𝑡 ≤ 𝑟

}︂
,

є компактом в 𝐶([0, 𝑇 ];𝐻). Тодi з (36)–(38), з використанням нерiвностi Чеби-
шева, отримаємо, що для довiльного 𝜖 > 0 можна знайти 𝑟 > 0 таке, що для
всiх 𝑘 ∈ 𝑁

𝑃 {𝑦𝑘 /∈ 𝐾(𝑟)} ≤ 𝑃

{︂∫︁ 𝑇

0

‖𝑓𝑘(𝑦𝑘(𝑡)) + 𝑢(𝑡)‖2 𝑑𝑡 > 𝑟

}︂
+

+ 𝑃

{︂∫︁ 𝑇

0

‖𝑦𝑘(𝑡)‖𝑝 𝑑𝑡 >
𝜋𝑟

sin𝛼𝜋

}︂
≤ 𝐶24

𝑟2
+
𝐶25

𝑟𝑝
< 𝜖,
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де 𝐶24 i 𝐶25 додатнi сталi.
Таким чином, для множини мiр 𝑧(𝑦𝑘) маємо

𝑧(𝑦𝑘)(𝐾(𝑟)) = 𝑃{𝑦𝑘 ∈ 𝐾(𝑟)} ≥ 1− 𝜖, 𝑘 = 1, 2, ...

Тодi, згiдно з теоремою Прохорова, ця множина мiр компактна, а отже 𝜇𝑘 =
𝑧(𝑦𝑘) слабко збiгається в 𝐶([0, 𝑇 ];𝐻) до деякої мiри 𝜇. За теоремою Скорохода
[14] iснує ймовiрнiсний простiр (Ω̃, 𝐹 , 𝑃 ), фiльтрацiя (𝐹𝑡) i процес Вiнера 𝑊̃ (𝑡),
випадковi процеси 𝑦𝑘, 𝑦, 𝑢̃ такi, що 𝑧(𝑦) = 𝜇, 𝑧(𝑦𝑘) = 𝑧(𝑦𝑘), 𝑧(𝑢̃) = 𝑧(𝑢), i 𝑦𝑘 → 𝑦
в 𝐶([0, 𝑇 ];𝐻) майже всюди за мiрою 𝑃 .

Оскiльки закони розподiлiв спiвпадають, то з означення слабкої збiжно-
стi маємо, що 𝑦𝑘 ⇀ 𝑦 в 𝐿2(Ω̃, 𝑉 ), 𝜎𝑘(𝑦𝑘) ⇀ Φ̃ в 𝐿2(Ω̃𝑇 ;𝐿

0
2) та 𝑓𝑘(𝑦𝑘) ⇀ Ψ̃ в

𝐿2(Ω̃𝑇 ;𝐻). Тодi, з використанням леми Лiонса [15, Леми 1.3] 𝑓𝑘(𝑦𝑘) ⇀ 𝑓(𝑦) в
𝐿2(Ω̃𝑇 ;𝐻), 𝑦𝑘(𝑡, 𝑥, 𝑤) → 𝑦(𝑡, 𝑥, 𝑤) майже всюди, 𝜎𝑘(𝑦𝑘)⇀ 𝜎(𝑦) в 𝐿2(Ω̃𝑇 ;𝐿

0
2).

Iз властивостей стохастичного iнтеграла випливає, що iнтеграл
∫︀ 𝑡
0
𝑓(𝑠)𝑑𝑊 (𝑠)

є лiнiйним неперервним оператором з банахового простору 𝐿2(Ω𝑇 , 𝐿
0
2) в 𝐿2(Ω, 𝐻),

а отже i неперервним вiдносно слабкої збiжностi.
Значить ∫︁ 𝑡

0

𝜎𝑘(𝑦
𝑠
𝑘)𝑑𝑊̃ (𝑠) →

∫︁ 𝑡

0

𝜎(𝑦(𝑠))𝑑𝑊̃ (𝑠).

в 𝐿2(Ω𝑇 , 𝐿
0
2) i зокрема в 𝐿∞([0, 𝑇 ];𝐿2(Ω, 𝐻)).

Для 𝑓𝑘 iз умови (𝐴1) отримуємо

(𝑓𝑘(𝑠1)− 𝑓𝑘(𝑠2))(𝑠1 − 𝑠2) ≤ Λ𝑓 (𝑠1 − 𝑠2)
2. (41)

Оскiльки 𝜎𝑘(𝑠) є лiпшицевими зi сталою 𝐿𝜎, то

‖𝜎𝑘(𝑢)− 𝜎𝑘(𝑣)‖2𝐿0
2
≤ 𝐿2

𝜎𝐶20 ‖𝑢− 𝑣‖2 , (42)

для деякої сталої 𝐶20 > 0.
Далi, з використанням теореми Фубiнi i означення слабкої збiжностi, для

довiльної 𝜑 ∈ 𝐿∞(Ω̃𝑇 ), 𝑣 ∈ 𝑉 матимемо

𝐸

∫︁ 𝑇

0

(𝑦(𝑡), 𝜙(𝑡)𝑣)𝑑𝑡 = lim
𝑘→∞

𝐸

∫︁ 𝑇

0

(𝑦𝑘(𝑡), 𝜙(𝑡)𝑣)𝑑𝑡 =

= lim
𝑘→∞

𝐸

(︂∫︁ 𝑇

0

(𝑦0, 𝜙(𝑡)𝑣)𝑑𝑡+

∫︁ 𝑇

0

∫︁ 𝑡

0

< ∆𝑦𝑘(𝑠), 𝜙(𝑠)𝑣 > 𝑑𝑠𝑑𝑡+

+

∫︁ 𝑇

0

∫︁ 𝑡

0

(𝑓𝑘(𝑦𝑘(𝑠), 𝜙(𝑡)𝑣))𝑑𝑠𝑑𝑡+

∫︁ 𝑇

0

∫︁ 𝑡

0

(𝑢̃(𝑠)𝜙(𝑡), 𝑣)𝑑𝑠𝑑𝑡+

+

∫︁ 𝑇

0

∫︁ 𝑡

0

(𝜎𝑘(𝑦𝑘(𝑠), 𝑑𝑊̃ (𝑠), 𝜑(𝑡)𝑣))𝑑𝑠𝑑𝑡 = lim
𝑘→∞

𝐸

∫︁ 𝑇

0

(𝑦0, 𝜙(𝑡)𝑣)𝑑𝑡+

+𝐸

∫︁ 𝑇

0

< ∆𝑦𝑘(𝑠),

∫︁ 𝑇

0

𝜑(𝑡)𝑑𝑡𝑣 > 𝑑𝑠+ 𝐸

∫︁ 𝑡

0

(𝑓𝑘(𝑦𝑘(𝑠)),

∫︁ 𝑇

0

𝜙(𝑡)𝑑𝑡𝑣)𝑑𝑠+

+𝐸

∫︁ 𝑇

0

(𝑢̃(𝑠),

∫︁ 𝑇

𝑠

𝜙(𝑡)𝑑𝑡𝑣)𝑑𝑠+ 𝐸

∫︁ 𝑇

0

(︂∫︁ 𝑡

0

𝜎𝑘(𝑦𝑘(𝑠))𝑑𝑊̃ (𝑠), 𝜙(𝑡)𝑣

)︂
𝑑𝑡 =
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= 𝐸

(︂∫︁ 𝑇

0

< 𝑦0 +

∫︁ 𝑡

0

(∆𝑦(𝑠) + 𝑓(𝑦(𝑠)) + 𝑢̃(𝑠))𝑑𝑠+

∫︁ 𝑡

0

𝜎(𝑦(𝑠))𝑑𝑊̃ (𝑠), 𝜙(𝑡)𝑣 > 𝑑𝑡

)︂
.

В силу довiльностi 𝜑 i 𝑣 звiдси отримуємо, що

𝑦(𝑡) = 𝑦0 +

∫︁ 𝑡

0

(∆𝑦 + 𝑓(𝑦) + 𝑢̃(𝑠))𝑑𝑠+

∫︁ 𝑡

0

𝜎(𝑦(𝑠))𝑑𝑊̃ (𝑠)

в 𝑉.
Отже 𝑦 є слабким мартингальним розв’язком (1) на (Ω̃, 𝐹 , 𝑃 ). Енергетична

рiвнiсть випливає з формули Iто для ‖𝑦(𝑡)‖2 .
Доведемо тепер потраєкторну єдинiсть.
Нехай 𝑦1 i 𝑦2 два розв’язки рiвняння (1) на (Ω̃, 𝐹 , 𝑃 ) i 𝑦1(0) = 𝑦2(0) = 𝑦0.

Тодi

𝑑(𝑦1(𝑡)− 𝑦2(𝑡)) =

∫︁ 𝑡

0

(∆(𝑦1 − 𝑦2)) + 𝑓(𝑦1)− 𝑓(𝑦2))𝑑𝑡+

∫︁ 𝑡

0

(𝜎(𝑦1)− 𝜎(𝑦2))𝑑𝑊̃ (𝑡).

Отже

𝐸 ‖𝑦1(𝑡)− 𝑦2(𝑡)‖2 = 𝐸

(︂
2

∫︁ 𝑡

0

(< ∆(𝑦1(𝑠)− 𝑦2(𝑠)), 𝑦1(𝑠)− 𝑦2(𝑠) > +

+(𝑓(𝑦1(𝑠)− 𝑦2(𝑠)), 𝑦1(𝑠)− 𝑦2(𝑠))) 𝑑𝑠+

∫︁ 𝑡

𝑜

‖𝜎(𝑦1(𝑠))− 𝜎𝑦2(𝑠)‖2𝑧02 𝑑𝑠
)︂

≤

≤ 2

∫︁ 𝑡

0

−𝐶4𝐸 ‖𝑦1(𝑠)− 𝑦2(𝑠)‖2𝑣 𝑑𝑠+ 𝐶27

∫︁ 𝑡

0

𝐸 ‖𝑦1(𝑠)− 𝑦2(𝑠)‖2 𝑑𝑠,

𝐶27 > 0. Звiдси, з використанням леми Гронуолла, отримуємо

𝐸 ‖𝑦1(𝑡)− 𝑦2(𝑡)‖2 = 0.

Звiдси випливає потраєкторна єдинiсть розв’язку. Отже, враховуючи нескiн-
ченновимiрний аналог теореми Ямада-Ватанабе [13, Т.2] отримуємо доведення
теореми 1.

Доведення теореми 2. Доведення даної теореми подiбне до доведення єдино-
стi попередньої теореми. Покладемо

𝑦(𝑡) = 𝑦(𝑡, 𝑦0, 𝑢) та 𝑧(𝑡) = 𝑦(𝑡, 𝑦1, 𝑢1).

Тодi

𝑑(𝑦(𝑡)− 𝑧(𝑡)) = (∆(𝑦(𝑡)− 𝑧(𝑡)) + 𝑓(𝑦(𝑡))− 𝑓(𝑧(𝑡)) + 𝑢1(𝑡)− 𝑢2(𝑡))𝑑𝑡+

+(𝜎(𝑦(𝑡))− 𝜎(𝑧(𝑡)))𝑑𝑊 (𝑡).

Далi, з використанням енергетичної рiвностi маємо

𝐸 ‖𝑦(𝑡)− 𝑧(𝑡)‖ = 𝐸 ‖𝑦0 − 𝑦1‖2 + 2𝐸

∫︁ 𝑡

0

(< ∆(𝑦(𝑠)− 𝑧(𝑠)), 𝑦(𝑠)− 𝑧(𝑠) >)+

+(𝑓(𝑦(𝑠))− 𝑓(𝑧(𝑠)), 𝑦(𝑠)− 𝑧(𝑠))𝑑𝑠+

∫︁ 𝑡

0

𝐸 ‖𝜎(𝑦(𝑠))− 𝜎(𝑧(𝑠)))‖2𝑧02 𝑑𝑠 ≤
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≤ 𝐸 ‖𝑦0 − 𝑦1‖2 + 𝐶28

∫︁ 𝑡

0

𝐸 ‖𝑦(𝑠)− 𝑧(𝑠)‖2 𝑑𝑠+
∫︁ 𝑡

0

‖𝑦(𝑠)− 𝑧(𝑠)‖2𝑧02 𝑑𝑠, 𝐶28 > 0.

Тодi нерiвнiсть (5) випливає з леми Гронуолла, що i доводить теорему.
4. Висновки. В данiй роботi нами отримано достатнi умови iснування та

єдиностi слабких розв’язкiв стохастичних рiвнянь параболiчного типу, збуре-
них нескiнченновимiрним процесом бiлого шуму. Основною вiдмiннiстю даної
роботи вiд ранiше вiдомих є те, що нашi умови допускають зростання нелiнiй-
ностей швидше степеневого, наприклад, одностороннє експоненцiйне. Тому цi
умови розширюють коло застосувань отриманих теоретичних результатiв до
конкретних математичних моделей. Зокрема, стає можливим вивчення рiвнян-
ня Франка–Каменського [7].

Роботa виконана за пiдтримки Нацiонального фонду дослiджень України,
проект 2023, 03/0074 “Нескiнченновимiрнi еволюцiйнi рiвняння iз багатозначною
та стохастичною динамiкою”.
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Kapustyan O. V., Stanzhytskiy A. O., Stanzhytskiy O. M. Weak solutions
of stochastically perturbed parabolic equations with rapidly growing external per-
turbations.

This paper studies stochastic evolution equations in infinite-dimensional spaces. These
equations are mathematical models of real natural science processes with distributed pa-
rameters and those that are influenced by random factors in the process of their evolution.
These factors can be considered as the total result of a large number of independent random
variables. Then, by virtue of the central limit theorem, we obtain that random disturbances
are described by an infinite-dimensional white noise process, which leads to stochastic equa-
tions of the Ito type. The characteristic example of such equations are stochastic parabolic
equations with nonlinear wear. The main differential operator here is, as a rule, a second-
order operator of elliptic type. Previously known results related to the existence and unity
of weak solutions of such equations under the condition of power-law growth of nonlineari-
ties and certain conditions of monotonicity. However, nonlinearities of exponential growth
often occur in applications, for example, the well-known Frank–Kamensky equation.

In this work, the conditions of existence, unity and continuous dependence of weak
solutions on the right parts and initial data are obtained. At the same time, non-linearities
can allow growth above the exponent. Also, for the solutions, estimates were obtained in
special Sobolev’s norms.

Keywords: Wiener process, Laplacian, ellipticity, Sobolev space, boundary value problem.
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ДИНАМIКИ ПЕРЕДАЧI
ТУБЕРКУЛЬОЗУ З ВИКОРИСТАННЯМ ДИФЕРЕНЦIАЛЬНИХ

РIВНЯНЬ ЗБУРЕНИХ ЗА ДОПОМОГОЮ ВIНЕРIВСЬКИХ
ПРОЦЕСIВ

У цiй статтi ми розробляємо стохастичну математичну епiдемiчну модель динамiки
туберкульозу з метою покращення розумiння процесiв передачi вiрусу та прогнозува-
ння розвитку епiдемiї. Для запропонованої моделi за допомогою теорiї функцiй Ля-
пунова доведено iснування єдиного майже напевно невiд’ємного розв’язку. Наведено
приклади симуляцiй з використанням мови програмування Python, якi пiдтверджу-
ють коректнiсть теоретичних результатiв.

Це дослiдження виконано в рамках грантової програми MSCA4Ukraine, яка фiнан-
сується Європейським Союзом.

Ключовi слова: стохастичне диференцiальне рiвняння, лiнiйне стохастичне дифе-
ренцiальне рiвняння, формула Iто, функцiя Ляпунова, SIR-модель, моделювання сто-
хастичних диференцiальних рiвнянь.

1. Вступ. Математичне моделювання вiдiграє важливу роль у вивченнi поши-
рення та контролю iнфекцiйних хвороб та у прийняттi рiшень стосовно втру-
чань для боротьби з ними. Розумiння механiзмiв передачi iнфекцiй у рiзних
громадах, регiонах та країнах сприяє удосконаленню стратегiй зниження рiвня
поширення цих захворювань.

Для аналiзу та моделювання передачi захворювань використовують стоха-
стичнi диференцiальнi рiвняння (СДР). СДР ефективно моделюють випадковi
процеси, вони є основним iнструментом для дослiдження у багатьох галузях
науки, зокрема i в бiологiї та медицинi. Цей математичний iнструмент дозволяє
краще описати невизначенiсть та випадковiсть у динамiцi поширення iнфекцiй.
Природна рiзноманiтнiсть у популяцiї, яку СДР враховують, дозволяє оцiнити
iндивiдуальнi вiдмiнностi в передачi захворювання. Оскiльки люди можуть ма-
ти рiзнi частоти контактiв та ступiнь сприйнятливостi, важливо враховувати цi
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вiдмiнностi при моделюваннi iнфекцiйних захворювань. СДР успiшно викори-
стовують для аналiзу динамiки поширення захворювань, таких як COVID-19,
вiспа, СНIД та iнших (див. наприклад, [1], [2], [3]). Бiльшiсть епiдемiчних мо-
делей базуються на подiлi населення на невелику кiлькiсть груп, кожна з яких
мiстить людей, якi iдентичнi з точки зору їхнього статусу по вiдношенню до
захворювання, що вивчається.

Математичнi моделi динамiки iнфекцiйних захворювань iнтенсивно дослi-
джуються протягом останнього столiття. За основу для вивчення поширен-
ня захворювань використовується SIR-модель (Susceptible-Infected-Recovered,
див. [4]), що включає в себе три звичайних диференцiальних рiвняння (або
СДР, якщо враховується випадкова складова передачi iнфекцiї), тобто задаю-
ться наступнi класи осiб:

• Вразливi (S): це люди, якi можуть захворiти, бо не мають iмунiтету, напри-
клад, новонародженi дiти або тi, чий iмунiтет втрачається;

• Iнфiкованi (I): це особи, якi вже зараженi i можуть передавати iнфекцiю;
• Резистентнi (R): це тi, хто одужав вiд хвороби i набув iмунiтет.
У цiй роботi ми розглянемо стохастичну модель розповсюдження iнфекцiй-

ного захворювання на прикладi туберкульозу.
Туберкульоз — одне з найпоширенiших iнфекцiйних захворювань, на яке

хворiє близько двох мiльярдiв людей (третина всього населення свiту на даний
час iнфiкованi). Приблизно дев’ять мiльйонiв нових випадкiв активної форми
захворювання реєструється щорiчно, що призводить до двох мiльйонiв смер-
тей, головним чином в країнах, що розвиваються. Оскiльки передача та iнфi-
кування туберкульозом вiдбувається пiд впливом рiзних складних бiологiчних
процесiв, можна припустити iснування випадковостi в динамiцi передачi захво-
рювання. Тому динамiка передачi туберкульозу за допомогою математичних
моделей важлива для того, щоб запропонувати найкращi механiзми контролю
за поширенням туберкульозу. Для України питання дослiдження поширення за-
хворювання на туберкульоз є актуальним. Тим часом, коли загальнi показники
захворюваностi на туберкульоз знижуються у багатьох країнах свiту, в деяких
країнах вони продовжують зростати. Україна знаходиться серед країн-лiдерiв у
поширеннi туберкульозу, особливо щодо множинної лiкарської стiйкостi, яка не
врегульовується деякими найефективнiшими протитуберкульозними препара-
тами. Згiдно з даними Центру громадського здоров’я МОЗ України (див., [5]),
за 2022 рiк було зареєстровано 18 510 випадкiв туберкульозу, включаючи реци-
диви, що становить 45.1 на 100 000 населення, що на 2.5% бiльше, нiж у 2021
роцi (18 241, або 44 на 100 000 населення). Записи захворюваностi на туберку-
льоз серед дiтей вiком до 14 рокiв залишилися у 2022 роцi на тому ж рiвнi, що
i у 2021 роцi.

За даними МОЗ у 2023 роцi кiлькiсть уперше зареєстрованих в Українi за-
хворювань на туберкульоз становила 19851, що на 7.3% бiльше аналогiчного
показника 2022 року.

Як видно з iнфографiки на Рис. 1, кiлькiсть випадкiв захворюваностi на
туберкульоз зросла у бiльшостi областей України. Падiння кiлькостi захворю-
ваностi в бiльшостi випадкiв (Луганська, Донецька, Херсонська) є результатом
неможливостi зiбрати повну статистику з огляду на воєннi дiї.

На жаль, вiйна в Українi призводить до збiльшення випадкiв туберкульозу.

Роздiл 1: Математика i статистика
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Рис. 1. Iнфографiка захворюваностi на туберкульоз станом на 2023 рiк в
порiвняннi з 2022 роком за областями України.

Також в 2023 роцi захворiло на туберкульоз 639 дiтей, що становить зростання
понад 3%. Показник захворюваностi серед пiдлiткiв збiльшився на 55.3% — 196
випадкiв у 2023 роцi. Збiльшення захворюваностi на туберкульоз серед дiтей
та пiдлiткiв є наслiдком погiршення епiдемiчної ситуацiї серед дорослих, умов
життя та перебування.

Люди можуть захистити себе вiд захворювання на туберкульоз, дотримую-
чись основних правил гiгiєни, вакцинуватися та пiдтримувати iмунiтет. Оскiль-
ки в Українi туберкульоз є поширеним, вакцинацiя БЦЖ включена до перелiку
щеплень, рекомендованих Мiнiстерством охорони здоров’я України.

Тому у цiй роботi ми розглянемо стохастичну модель, яка є розширенням
SIR-моделi, для вивчення динамiки захворюваностi на туберкульоз з урахува-
нням вакцинацiї новонароджених дiтей.

Метою цiєї роботи є дослiдження можливостi та доцiльностi використання
SIRV-моделi, що враховує аспект вакцинацiї населення та потенцiйно здатна
враховувати бiльше факторiв, у тому числi й випадкових, для прогнозування
складних процесiв перебiгу епiдемiй туберкульозу. У межах роботи, ми сфор-
мулюємо умови невiд’ємностi траєкторiй стохастичної SIRV-моделi та викори-
стаємо її для симуляцiї динамiки епiдемiї, порiвняємо результати моделювання
з реальною динамiкою перебiгу туберкульозу в Українi.

2. Формулювання та опис моделi. У порiвняннi з iснуючою лiтерату-
рою про динамiку туберкульозу, наша робота сприяє дослiдженню складних
аспектiв захворювання, включаючи невизначенiсть у моделi та залежнiсть па-
раметрiв моделi вiд часу. Поведiнка епiдемiї є непередбачуваною через зовнiшнi
збурення навколишнього середовища, якi впливають на її поширення. Запро-
понована модель подiляє все населення на чотири класи вiдповiдно до статусу
захворювання: сприйнятливi 𝑆, iнфiкованi 𝐼, вакцинованi 𝑉 та резистентнi 𝑅.

Починаючи з визначення детермiнованої моделi (див. Рис. 2), щоб врахувати
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Рис. 2. Блок-схема детермiнованої моделi динамiки епiдемiї туберкульозу.

невизначенiсть, ми вводимо стохастичнi шуми, якi моделюються за допомогою
вiнерiвських процесiв. Цi шуми впливають на систему, переважно через неви-
значенiсть у факторах смертностi та народжуваностi, а також через неточностi
в пiдрахунках чисельностi популяцiї, тому стохастична модель дозволяє бiльш
точно описувати динамiку перебiгу хвороби з урахуванням випадкових впливiв.
Отже, ми розглядаємо наступну стохастичну модель:

𝑑𝑆(𝑡) =

[︂
(1− 𝑝)𝜃(𝑡) + 𝑏(𝑡)𝑉 (𝑡) + 𝛼(𝑡)𝑅(𝑡)− 𝜇1(𝑡)𝑆(𝑡)−

𝛽𝑐(𝑡)𝐼(𝑡)

𝑁(𝑡)
𝑆(𝑡)

]︂
𝑑𝑡+

+𝜎1(𝑡)𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝑉 (𝑡) =

[︂
𝑝𝜃(𝑡)− 𝛾𝛽𝑐(𝑡)𝐼(𝑡)

𝑁(𝑡)
𝑉 (𝑡)− (𝑏(𝑡) + 𝜇1(𝑡))𝑉 (𝑡)

]︂
𝑑𝑡+ 𝜎2(𝑡)𝑉 (𝑡)𝑑𝑊2(𝑡),

𝑑𝐼(𝑡) =

[︂
𝛽𝑐(𝑡)𝐼(𝑡)

𝑁(𝑡)
𝑆(𝑡) +

𝛾𝛽𝑐(𝑡)𝐼(𝑡)

𝑁(𝑡)
𝑉 (𝑡)− (𝜇1(𝑡) + 𝜇2(𝑡) + 𝑟(𝑡))𝐼(𝑡)

]︂
𝑑𝑡+

+𝜎3(𝑡)𝐼(𝑡)𝑑𝑊3(𝑡),

𝑑𝑅(𝑡) = [𝑟(𝑡)𝐼(𝑡)− 𝛼(𝑡)𝑅(𝑡)− 𝜇1(𝑡)𝑅(𝑡)] 𝑑𝑡+ 𝜎4(𝑡)𝑅(𝑡)𝑑𝑊4(𝑡), (1)

де (𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) ∈ R4
+ — початкове значення, 𝑊𝑖(𝑡), 𝑖 = 1, . . . , 4, —

взаємно незалежнi стандартнi вiнерiвськi процеси, визначенi на ймовiрнiсно-
му просторi (Ω,F, {F𝑡}𝑡≥0,P), 𝜎𝑖, 𝑖 = 1, 2, 3, 4, — iнтенсивностi цих процесiв (або
волатильностi). Також припустимо, що усi функцiї задiянi в моделi є неперерв-
ними додатнiми функцiями, а загальна чисельнiсть популяцiї в момент часу 𝑡
позначається через 𝑁(𝑡), i визначається як 𝑁(𝑡) = 𝑆(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) +𝑅(𝑡).

Вразливий клас 𝑆(𝑡), 𝑡 ≥ 0 складається з осiб усiх вiкових груп населення,
якi не мали ефективного контакту з бактерiєю, що cпричиняє захворювання.

Клас iнфiкованих 𝐼(𝑡), 𝑡 ≥ 0 складається з осiб усiх вiкових груп, iнфiко-
ваних туберкульозом в активнiй стадiї; з iнфiкованого класу людина отримує
лiкування i переходить до класу тих, що одужали 𝑅(𝑡), 𝑡 ≥ 0.

Роздiл 1: Математика i статистика



МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ДИНАМIКИ ПЕРЕДАЧI ТУБЕРКУЛЬОЗУ . . . 101

Вакцинований клас, 𝑉 (𝑡), 𝑡 ≥ 0, складається з осiб, якi були вакцинова-
нi, коли вони були новонародженими i досi мають частковий iмунiтет проти
туберкульозу.

Вакцинований клас збiльшується при народжуваностi з швидкiстю приросту
𝜃(𝑡), 𝑡 ≥ 0, з ймовiрнiстю 𝑝 (0 ≤ 𝑝 ≤ 1). Вразливий клас збiльшується при
народжуваностi з швидкiстю приросту 𝜃(𝑡), 𝑡 ≥ 0, з ймовiрнiстю (1 − 𝑝) та за
рахунок вакцинованого класу 𝑉 зi швидкiстю 𝑏(𝑡), 𝑡 ≥ 0, а також за рахунок
тих, що одужали 𝑅 з швидкiстю приросту 𝛼(𝑡), 𝑡 ≥ 0. У всiх пiдкласах 𝜇1(𝑡), 𝑡 ≥
0 — це швидкiсть природної смертностi, 𝜇2(𝑡), 𝑡 ≥ 0 — швидкiсть смертностi,
спричиненої хворобою, для окремих осiб з класу 𝐼, 𝛽 — ймовiрнiсть того, що
вразливi 𝑆 i вакцинованi 𝑉 особи iнфiкуються вiд однiєї iнфiкованої особи при
одному контактi за одиницю часу. Швидкiсть, з якою iнфiкуються вразливi
особи, дорiвнює 𝛽𝑐(𝑡), 𝑡 ≥ 0; швидкiсть, з якою iнфiкуються вакцинованi особи,
дорiвнює 𝛾𝛽𝑐(𝑡), 𝑡 ≥ 0, де 0 ≤ 𝛾 ≤ 1 — це ефективнiсть вакцинацiї. Якщо
𝛾 = 0, то ефективнiсть захисту вакцинацiї дорiвнює 100%, якщо 𝛾 = 1, то
ефективнiсть захисту вакцинацiї дорiвнює 0%, а 1 − 𝛾 — це зниження ризику
iнфiкування завдяки ефективностi вакцинацiї. Також 𝑟(𝑡), 𝑡 ≥ 0 — це швидкiсть,
з якою iнфiкована особа залишає iнфекцiйний клас 𝐼 i приєднується до класу
𝑅, 𝛽𝑐(𝑡)𝐼

𝑁
, 𝑡 ≥ 0 — потужнiсть iнфекцiї.

3. Невiд’ємнiсть розв’язку стохастичної моделi. Спочатку перевiри-
мо, чи є запропонована модель добре визначеною, i чи може вона достовiрно
моделювати майбутнi можливi розвитки хвороби, залежно вiд початкових умов
популяцiї на початку епiдемiї та набору параметрiв. Важливо, щоб траєкторiї
були невiд’ємними, оскiльки вiд’ємнi значення розв’язку не матимуть змiстовної
iнтерпретацiї.

Теорема 1. Система, що описується рiвнянням (1), має єдиний розв’язок,

(𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)),

за початкової умови (𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) ∈ R4
+ при 𝑡 ≥ 0, i цей розв’язок

залишиться додатнiм з ймовiрнiстю 1, тобто

(𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ R4
+ для всiх 𝑡 ≥ 0 майже напевно (м. н.),

якщо 𝜎𝑖, 𝑖 = 1, 2, 3, 4, 𝜇𝑗, 𝑗 = 1, 2, 𝑟, 𝛼, 𝛽, 𝑐 є обмеженими функцiями.

Доведення. Оскiльки коефiцiєнти рiвняння є локально лiпшицевими для
будь-якого заданого початкового значення (𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) ∈ R4

+, то iснує
єдиний локальний розв’язок (𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)) на 𝑡 ∈ [0, 𝜏𝑒), де 𝜏𝑒 — момент
за якого розв’язок досягає нескiнченностi (див. [6]). Для того, щоб довести, що
цей розв’язок є глобальним, треба показати, що 𝜏∞ = ∞ м.н. Для цього задамо
достатньо велике значення для 𝑚0 ≥ 0, таке, що

(𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) ∈
[︂

1

𝑚0

,𝑚0

]︂×4

.

Далi визначимо час зупинки для кожного цiлого 𝑚 ≥ 𝑚0:

𝜏𝑚 = inf

{︃
𝑡 ∈ [0, 𝜏𝑒) : (𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) /∈

(︂
1

𝑚
,𝑚

)︂×4
}︃
. (2)
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За означенням 𝜏𝑚 зростає, при 𝑚→ ∞. Тодi 𝜏∞ = lim
𝑚→∞

𝜏𝑚 ≤ 𝜏𝑒 м.н.
Для завершення доведення треба показати, що 𝜏∞ = ∞ м.н. Якщо це твер-

дження хибне, то можна знайти 𝑇 > 0 i 𝜀 ∈ (0, 1) такi, що 𝑃{𝜏∞ ≤ 𝑇} > 𝜀.
Отже, iснує цiле число 𝑚1 ≥ 𝑚0 таке, що

P{𝜏𝑚 ≤ 𝑇} ≥ 𝜀 для всiх 𝑚 ≥ 𝑚1. (3)

Далi застосуємо формулу Iто (див. [7]) до функцiї Ляпунова 𝑓 : R4 → R

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1−1− ln𝑥1)+(𝑥2−1− ln𝑥2)+(𝑥3−1− ln𝑥3)+(𝑥4−1− ln𝑥4),

до того ж 𝑓 ′
𝑥𝑖
= 1− 1

𝑥𝑖
та 𝑓 ′′

𝑥𝑖𝑥𝑖
= 1

𝑥2𝑖
, при 𝑖 = 1, 2, 3, 4. Вiдмiтимо, що функцiя 𝑓 є

невiд’ємною, оскiльки 𝑥𝑖 − 1− log 𝑥𝑖 ≥ 0 для всiх 𝑥𝑖 > 0, 𝑖 = 1, 2, 3, 4. Тодi,

𝑑𝑓(𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)) =

(︂
1− 1

𝑆(𝑡)

)︂
𝑑𝑆(𝑡) +

(︂
1− 1

𝑉 (𝑡)

)︂
𝑑𝑉 (𝑡)+

+

(︂
1− 1

𝐼(𝑡)

)︂
𝑑𝐼(𝑡) +

(︂
1− 1

𝑅(𝑡)

)︂
𝑑𝑅(𝑡) +

1

2𝑆2(𝑡)
𝜎2
1(𝑡)𝑆

2(𝑡)𝑑𝑡+

+
1

2𝑉 2(𝑡)
𝜎2
2(𝑡)𝑉

2(𝑡)𝑑𝑡+
1

2𝐼2(𝑡)
𝜎2
3(𝑡)𝐼

2(𝑡)𝑑𝑡+
1

2𝑅2(𝑡)
𝜎2
4(𝑡)𝑅

2(𝑡)𝑑𝑡.

Звiдки маємо,

𝑑𝑓(𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)) = [𝜃(𝑡) + 4𝜇1(𝑡) + 𝜇2(𝑡) + 𝑟(𝑡) + 𝛼(𝑡) + 𝑏(𝑡)]𝑑𝑡−

−[𝜇1(𝑡)(𝑆(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) +𝑅(𝑡)) + 𝜇2(𝑡)𝐼(𝑡)]𝑑𝑡+

+
(︁
(1 + 𝛾)

𝛽𝑐(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (1− 𝑝)𝜃(𝑡)

𝑆(𝑡)
− 𝑏(𝑡)𝑉 (𝑡)

𝑆(𝑡)
− 𝛼(𝑡)𝑅(𝑡)

𝑆(𝑡)
− 𝑝𝜃(𝑡)

𝑉 (𝑡)
−

−𝛽𝑐(𝑡)𝑆(𝑡)
𝑁(𝑡)

− 𝛾
𝛽𝑐(𝑡)𝑉 (𝑡)

𝑁(𝑡)
− 𝑟(𝑡)𝐼(𝑡)

𝑅(𝑡)

)︁
𝑑𝑡+

+
1

2

(︀
𝜎2
1(𝑡) + 𝜎2

2(𝑡) + 𝜎2
3(𝑡) + 𝜎2

4(𝑡)
)︀
𝑑𝑡+

+𝜎1(𝑡) (𝑆(𝑡)− 1)) 𝑑𝑊1(𝑡) + 𝜎2(𝑡) (𝑉 (𝑡)− 1) 𝑑𝑊2(𝑡)+

+𝜎3(𝑡) (𝐼(𝑡)− 1) 𝑑𝑊3(𝑡) + 𝜎4(𝑡) (𝑅(𝑡)− 1) 𝑑𝑊4(𝑡). (4)

Позначимо у останньому спiввiдношеннi коефiцiєнт при 𝑑𝑡 через 𝐿𝑓 : R4 → R
та оцiнимо його. Тодi, оскiльки функцiї 𝜎𝑖, 𝑖 = 1, 2, 3, 4, 𝜇𝑗, 𝑗 = 1, 2, 𝑟, 𝛼, 𝛽, 𝑐 є
обмеженими та 𝐼

𝑁
< 1, то

𝐿𝑓(𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)) ≤ 𝜃+4𝜇̂1+𝜇̂2+𝑟+𝛼̂+𝑏̂+(1+𝛾)𝛽𝑐+
1

2

(︀
𝜎̂2
1 + 𝜎̂2

2 + 𝜎̂2
3 + 𝜎̂2

4

)︀
,

де 𝜃 = sup
𝑡≥0

𝜃(𝑡), 𝜇̂𝑗 = sup
𝑡≥0

𝜇𝑗(𝑡), 𝑗 = 1, 2, 𝑟 = sup
𝑡≥0

𝑟(𝑡), 𝛼̂ = sup
𝑡≥0

𝛼(𝑡), 𝑏̂ = sup
𝑡≥0

𝑏(𝑡),

𝑐 = sup
𝑡≥0

𝑐(𝑡), 𝜎̂𝑖 = sup
𝑡≥0

𝜎𝑖(𝑡), 𝑖 = 1, 2, 3, 4.

Роздiл 1: Математика i статистика
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Покладемо

𝐾 = 𝜃 + 4𝜇̂1 + 𝜇̂2 + 𝑟 + 𝛼̂ + 𝑏̂+ (1 + 𝛾)𝛽𝑐+
1

2

(︀
𝜎̂2
1 + 𝜎̂2

2 + 𝜎̂2
3 + 𝜎̂2

4

)︀
.

Проiнтегруємо обидвi частини спiввiдношення (4) вiд 0 до 𝜏 = min {𝜏𝑚, 𝑡}. На
цьому кроцi з урахуванням нерiвностi 𝑑𝐿𝑓(𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)) ≤ 𝐾 отримаємо:

𝜏∫︁
0

𝑑𝑓(𝑆(𝑠), 𝑉 (𝑠), 𝐼(𝑠), 𝑅(𝑠)) =

𝜏∫︁
0

𝑑𝐿𝑓(𝑆(𝑠), 𝑉 (𝑠), 𝐼(𝑠), 𝑅(𝑠))+

+

𝜏∫︁
0

𝜎1(𝑠)(𝑆(𝑠)− 1)𝑑𝑊1(𝑠) +

𝜏∫︁
0

𝜎2(𝑠)(𝑉 (𝑠)− 1)𝑑𝑊2(𝑠)+

+

𝜏∫︁
0

𝜎3(𝑠)(𝐼(𝑠)− 1)𝑑𝑊3(𝑠) +

𝜏∫︁
0

𝜎4(𝑠)(𝑅(𝑠)− 1)𝑑𝑊4(𝑠) ≤

≤ 𝐾𝜏 +

𝜏∫︁
0

𝜎1(𝑠)(𝑆(𝑠)− 1)𝑑𝑊1(𝑠) +

𝜏∫︁
0

𝜎2(𝑠)(𝑉 (𝑠)− 1)𝑑𝑊2(𝑠)+

+

𝜏∫︁
0

𝜎3(𝑠)(𝐼(𝑠)− 1)𝑑𝑊3(𝑠) +

𝜏∫︁
0

𝜎4(𝑠)(𝑅(𝑠)− 1)𝑑𝑊4(𝑠).

Вiзьмемо математичне сподiвання вiд обох частин попередньої нерiвностi:

E

⎡⎣ 𝜏∫︁
0

𝑑𝑓(𝑆(𝑠), 𝑉 (𝑠), 𝐼(𝑠), 𝑅(𝑠))

⎤⎦ ≤ 𝐾E[𝜏 ] + E

⎡⎣ 𝜏∫︁
0

𝜎1(𝑠)(𝑆(𝑠)− 1)𝑑𝑊1(𝑠)

⎤⎦+

+E

⎡⎣ 𝜏∫︁
0

𝜎2(𝑠)(𝑉 (𝑠)− 1)𝑑𝑊2(𝑠)

⎤⎦+ E

⎡⎣ 𝜏∫︁
0

𝜎3(𝑠)(𝐼(𝑠)− 1)𝑑𝑊3(𝑠)

⎤⎦+

+E

⎡⎣ 𝜏∫︁
0

𝜎4(𝑠)(𝑅(𝑠)− 1)𝑑𝑊4(𝑠)

⎤⎦ .
Оскiльки 𝑡 ∈ [0, 𝑇 ], то 𝜏 = min {𝜏𝑚, 𝑡} ≤ 𝑇 . Також необхiдно врахувати, що

E

⎡⎣ 𝜏∫︁
0

𝜎1(𝑠)(𝑆(𝑠)− 1)𝑑𝑊1(𝑠)

⎤⎦ = 0, E

⎡⎣ 𝜏∫︁
0

𝜎2(𝑠)(𝑉 (𝑠)− 1)𝑑𝑊2(𝑠)

⎤⎦ = 0,

E

⎡⎣ 𝜏∫︁
0

𝜎3(𝑠)(𝐼(𝑠)− 1)𝑑𝑊3(𝑠)

⎤⎦ = 0, E

⎡⎣ 𝜏∫︁
0

𝜎4(𝑠)(𝑅(𝑠)− 1)𝑑𝑊4(𝑠)

⎤⎦ = 0.

Вiдтак, отримаємо наступну нерiвнiсть:

E[𝑓(𝑆(𝜏), 𝑉 (𝜏), 𝐼(𝜏), 𝑅(𝜏))] ≤ 𝐾𝑇 + 𝑓(𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)). (5)
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Введемо множину 𝐴𝑚 = {𝜏𝑚 ≤ 𝑡}, 𝑚 > 𝑚1, для якої згiдно з (3) справедливо,
що 𝑃 (𝐴𝑚) ≥ 𝜖. Принаймнi одне зi значень 𝑆(𝜏), 𝑉 (𝜏), 𝐼(𝜏), 𝑅(𝜏) рiвне 1

𝑚
або 𝑚,

а тому справедливою є оцiнка:

E [𝑓(𝑆(𝜏), 𝑉 (𝜏), 𝐼(𝜏), 𝑅(𝜏))] ≥ min

{︂
(𝑚− 1− ln𝑚) ,

(︂
1

𝑚
− 1− ln

1

𝑚

)︂}︂
. (6)

Враховуючи результат (5) та (6), отримаємо наступну нерiвнiсть:

𝐾𝑇 + 𝑓(𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) ≥ E[𝑓(𝑆(𝜏), 𝑉 (𝜏), 𝐼(𝜏), 𝑅(𝜏))] ≥

≥ E[I𝐴𝑚𝑓(𝑆(𝜏𝑚), 𝑉 (𝜏𝑚), 𝐼(𝜏𝑚), 𝑅(𝜏𝑚))] ≥

≥ 𝜖min

{︂
(𝑚− 1− ln𝑚) ,

(︂
1

𝑚
− 1− ln

1

𝑚

)︂}︂
.

Якщо взяти границю при 𝑚→ ∞ вiд обох частин нерiвностi вище, отримаємо,
що:

𝐾 lim
𝑚→∞

𝑇 + 𝑓(𝑆(0), 𝑉 (0), 𝐼(0), 𝑅(0)) ≥

≥ lim
𝑚→∞

[︂
min

{︂
(𝑚− 1− ln𝑚) ,

(︂
1

𝑚
− 1− ln

1

𝑚

)︂}︂]︂
= ∞.

Звiдки випливає, що 𝑇 → ∞ при 𝑚 → ∞. Отже, отримуємо суперечнiсть,
оскiльки неможливо знайти таке 𝑇 > 0, щоб виконувалася нерiвнiсть за припу-
щенням: 𝑃{𝜏𝑚 ≤ 𝑇} ≥ 𝜖. Таким чином, теорему доведено.

4. Моделювання розв’язкiв лiнiйних стохастичних диференцiаль-
них рiвнянь. Чисельне моделювання значень стохастичних диференцiйних
рiвнянь можна здiйснювати за допомогою низки методiв, серед яких: метод
Ейлера-Маруямi, схема Мiльштейна, методи Рунге-Кутта (див. [8], [9], [10], [11]).
Для чисельного моделювання траєкторiй процесiв системи стохастичних дифе-
ренцiйних рiвнянь застосуємо метод Ейлера за його простоту виконання.

Метод Ейлера полягає в обчисиленнi кожного наступного значення випад-
кового процесу (у вузлi 𝑡𝑛+1 за попереднiм — у вузлi 𝑡𝑛) за рахунок наступних
наближень:

𝑋𝑖(𝑡𝑛+1) ≈ 𝑋𝑖(𝑡𝑛) + 𝑎𝑖(𝑡𝑛, 𝑋(𝑡𝑛))(𝑡𝑛+1 − 𝑡𝑛) + 𝑏𝑖(𝑡𝑛, 𝑋(𝑡𝑛))(𝑊𝑖(𝑡𝑛+1)−𝑊𝑖(𝑡𝑛)).

Тут 𝑎𝑖(𝑡,𝑋(𝑡)) — функцiя при 𝑑𝑡, 𝑏𝑖(𝑡,𝑋(𝑡)) — функцiя при 𝑑𝑊𝑖(𝑡), також тут
𝑋𝑖(𝑡), 𝑖 = 1, 2, 3, 4 — певний процес 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑉 (𝑡).

Використання такої простої схеми допомагає чисельно змоделювати розв’яз-
ки з достатньо високою швидкiстю.

Для системи рiвнянь (1) введено сукупнiсть числових параметрiв та функцiй-
параметрiв системи. У межах даної роботи, вважатимемо, що значення функцiй-
параметрiв стале для довiльного 𝑡. Початковi значення (𝑆(0), 𝑅(0), 𝑉 (0), 𝐼(0)),
якi використовуються в моделюваннi, були визначенi на основi доступних да-
них. Загальна чисельнiсть населення становить 𝑁(0) = 42153200, що вiдповiд-
ає кiлькостi жителiв України на початок 2019 року (див. [13]). Кiлькiсть лю-
дей, що мають природний iмунiтет до туберкульозу, встановлена як 𝑅(0) = 0.

Роздiл 1: Математика i статистика



МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ДИНАМIКИ ПЕРЕДАЧI ТУБЕРКУЛЬОЗУ . . . 105

Це пояснюється тим, що з огляду на особливостi захворювання та його по-
ширенiсть в Українi, наявнiсть ефективного природного iмунiтету вважається
надзвичайно малоймовiрною подiєю. Вiдсоток вакцинованих проти туберкульо-
зу складає приблизно 70%, що є адекватною оцiнкою з урахуванням факти-
чної обов’язковостi щеплення БЦЖ. Кiлькiсть iнфiкованих людей на початко-
вий момент часу вибрана вiдповiдно до даних офiцiйних джерел i дорiвнює
𝐼(0) = 21132. Задамо параметри волатильностi для кожного класу:

𝜎1 = 0.05, 𝜎2 = 0.03, 𝜎3 = 0.01, 𝜎4 = 0.05.

Iншi елементи моделi наведено у Таблицi 1.

Таблиця 1.
Значенння параметрiв моделi

Параметр 𝑝 𝜃 𝛼 𝛽 𝛾 𝑏 𝑐 𝑟 𝜇1 𝜇2

Значення 0.5 0.71 0.4 0.5 0.7 0.1 0.1 0.005 0.185 0.0053

Як видно з Рис. 3 – Рис. 6 результати моделювання за перiод в три роки (вiд
сiчня 2019 року до грудня 2021, 𝑇 = 3) пiдтверждують теоретичний висновок
Теореми 1 про невiд’ємнiсть траєкторiй процесiв, що є складовими моделi. Рис. 4
демонструє зростання кiлькостi резистентних осiб в моделi з вакцинацiєю. Спа-
дання кiлькостi вакцинованих обумовлено низьким фактором народжуваностi
та високим рiвнем смертностi.

Рис. 3. Змiна популяцiї осiб 𝑆, що
сприйнятливi до бактерiй туберкульозу.

Рис. 4. Поведiнка процесу 𝑅- популяцiї
осiб, якi є стiйкими до захворювання.

Рис. 5. Змiна поведiнки процесу 𝑉 , що
вiдповiдає популяцiї вакцинованих осiб.

Рис. 6. Поведiнка траєкторiй процесу 𝐼,
що описує клас iнфiкованих осiб.

На Рис. 6 при збiльшеннi часу кiлькiсть iнфiкованих зменшується. Це очiку-
вано, оскiльки з плином часу вакцинацiя впливає на швiдкисть росту кiлькостi
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Рис. 7. Динамiка захворюваностi на туберкульоз в перiод з 2019 до 2020.

iнфiкованих та усе бiльше iнфiкованих переходять з активної стадiї захворюва-
ння до латентної стадiї.

Порiвняємо результати SIRV-моделi з реальними даними. Для цього вико-
ристовуватимемо данi Центру громадського здоров’я МОЗ України (див. [5])
захворюваностi на туберкульоз за мiсяцями. Вiдповiдну iнфографiку кiлькостi
хворих за мiсяцями протягом перiоду вiд сiчня 2019 року до кiнця 2020 року
наведено на Рис. 7.

Порiвняємо результати прогнозу за перiод вiд сiчня 2019 року до початку
2020 року. Для розрахунку прогнозованої кiлькостi iнфiкованих осiб скориста-
ємося математичним середнiм значень змодельованих процесiв, представлених
на Рис. 6. Ми будемо використовувати данi з десяти траєкторiй 𝐼(𝑡) на початку
кожного мiсяця 2019 року.

Побудуємо графiк (див Рис. 8), на якому представленi фактичнi данi про
кiлькiсть хворих за зазначений перiод, що вiдповiдають значенням на Рис. 7, а
також кiлькiсть iнфiкованих осiб, отриманих за допомогою SIRV-моделi (Рис. 6).

З огляду на графiки, можна констатувати, що рiзниця мiж фактичними та
прогнозованими значеннями зростає з пiдвищенням часу симуляцiї. Це свiдчить
про важливiсть дослiдження моделей з коефiцiєнтами, що змiнюються в часi.
Моделi, якi використовують постiйнi коефiцiєнти, забезпечують точнi результа-
ти лише на коротких iнтервалах. Крiм того, для пiдтримання допустимої точно-
стi моделi необхiдно перiодично переглядати її параметри. Тому використання
параметрiв у виглядi аналiтично заданих функцiй має краще вiдображати ре-
альнi процеси.

Оцiнити близькiсть значень нашого прогнозу до реальної кiлькостi хворих.
Для цього використаємо середню вiдсоткову похибку (або скорочено MAPE),
яка вимiрює середнє вiдхилення прогнозованих значень вiд цiльової величини
у вiдсотках:
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Рис. 8. Ламана значень 𝐼(𝑡) (блакитна) в
порiвняннi з ламаною дiйсних значень

захворюваностi на туберкульоз за 2019 рiк
(помаранчева).

Рис. 9. Абсолютнi рiзницi дiйсних та
прогнозованих величин кiлькостi хворих

за 2019 рiк.

𝑀𝐴𝑃𝐸 =
100

𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒𝑎𝑖 − 𝑓𝑖
𝑎𝑖

⃒⃒⃒
,

де 𝑎𝑖 — акуальне значення в 𝑖-ому вузлi (у межах симуляцiї — на 𝑖-ому мiсяцi),
𝑓𝑖 — прогнозоване значення, а 𝑛 — загальна кiлькiсть iнтервалiв (мiсяцiв), що
розглядаються.

Бiльше про методи визначення якостi прогнозування та метрики, якi широко
застосовуються на практицi, можна переглянути в [12].

Середня вiдсоткова похибка (MAPE) рiвна 2.2% для iнфiкованих осiб. Це
достатньо непогана точнiсть, але для досягнення такого результату необхiдно
визначити оптимальнi параметри, що не завжди коректно виходить, оскiль-
ки епiдемiологiчнi процеси — високоволатильнi та недостатньо вивченi. Вiдтак,
SIRV-модель може бути непоганим iнструментом прогнозування на коротко-
тривалу перспективу розвитку епiдемiологiчної ситуацiї за умови своєчасного
перегляду результатiв та корегування параметрiв.

5. Висновки та перспективи подальших дослiджень. У данiй статтi
розглянуто математичну модель поширення туберкульозної iнфекцiї, яку побу-
довано з урахуванням вакцинацiї при народженнi. Ця модель базується на схемi
SIRV.

Надалi було б цiкаво продовжити дослiдження стохастичної SIRV-моделi
захворювання на туберкулбоз, а саме встановити фактори, якi можуть призве-
сти до зникнення захворювання, або ж зменшити швидкiсть розповсюдження
iнфекцiї. На основi отриманих результатiв роботи [14] заплановано дослiдити
характеристики процесiв моделi з огляду на їхню поведiнку в довгостроковiй
перспективi.
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LOCAL NEARRINGS WITH ADDITIVE GROUPS OF ORDER 128

The determination of the finite non-abelian 𝑝-groups which are the additive groups
of local nearrings is an open problem (Feigelstock, 2006). Therefore it is important to
determine such groups and to classify some classes of nearrings with identity on these
groups, for example, local nearrings. We study local nearrings on 2-generated groups of
order 128.

Keywords: local nearring, additive group, 2-generated group.

1. Preliminaries.

Nearrings are generalization of associative rings, in which the additive group
can be non-abelian, and addition is connected with multiplication by only one dis-
tributive law, left or right. In this sense local nearrings are generalization of local
rings.

Clearly every associative ring is a nearring and each group is the additive group
of a nearring, but not necessarily of a nearring with identity. However, it is not true
that any finite non-abelian group is the additive group of a nearring with identity.

A nearing with an identity is called local if the set of all non-invertible elements
forms a subgroup of its additive group. A study of local nearrings was initiated by
Maxson [2] who defined a number of their basic properties.

Complicated symbolic computations are being used to solve problems from dif-
ferent areas of mathematics, in particular, to study of algebraic structures. Based
on well-known system of computer algebra GAP [3] we construct and investigate
one-sided distributive structures (i.e., local nearrings of small orders) with a view of
classification of such models.

Boykett and Nöbauer [4] classified all non-abelian groups of order less than 32
that can be the additive groups of a nearring with identity and found the number
of non-isomorphic nearrings with identity on such groups (see also GAP package
SONATA [5]).

For the researchers in nearrings, the list of all 698 local nearrings of order at
most 31 up to isomorphism is provided by the GAP package SONATA; however,
classifying nearrings of higher orders is a significant challenge.

2. Local nearrings on 2-generated groups of order 128.

We recall some definitions.
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Definition 1. A non-empty set 𝑅 with two binary operations “ + ” and “ · ” is
a nearring if:

1) (𝑅,+) is a group with neutral element 0;

2) (𝑅, ·) is a semigroup;

3) 𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅.

Such a nearring is called a left nearring. If axiom 3) is replaced by an axiom (𝑥 +
𝑦) · 𝑧 = 𝑥 · 𝑧 + 𝑦 · 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅, then we get a right nearring.

The group (𝑅,+) of a nearring 𝑅 is denoted by 𝑅+ and called the additive group
of 𝑅. If in addition 0 · 𝑥 = 0 for all 𝑥 ∈ 𝑅, then the nearring 𝑅 is called zero-
symmetric. Furthermore, 𝑅 is a nearring with an identity 𝑖 if the semigroup (𝑅, ·)
is a monoid with identity element 𝑖.

Definition 2. A nearring 𝑅 with identity is called local if the set 𝐿 of all non-
invertible elements of 𝑅 forms a subgroup of the additive group 𝑅+ and a nearfield,
if 𝐿 = 0.

It was found that the additive group of a finite zero-symmetric local nearring is
a 𝑝-group [2].

There exist 2328 non-isomorphic groups of order 128 = 27 from which 162 are
2-generated groups: 5 groups are of exponent 64 and only 2 of these groups are the
additive groups of local nearrings, 18 groups are of exponent 32 and only 6 of these
groups are the additive groups of local nearrings, 65 groups are of exponent 16 and
only 16 of these groups are the additive groups of local nearrings, 72 groups are of
exponent 8 (unknown the number of the groups which are the additive groups of
local nearrings), and 2 groups are of exponent 4 and both of these groups are the
additive groups of local nearrings).

Let [𝑛, 𝑖] be the 𝑖-th group of order 𝑛 in the SmallGroups library in the computer
system algebra GAP. We denote by 𝐶𝑛 and 𝑄𝑛 the cyclic and quaternion groups of
order 𝑛, respectively.

Theorem 1. The following 2-generated groups of exponent 4 and only they are
the additive groups of zero-symetric local nearrings of order 128:

IdGroup Structure Description Number of LNR
[128, 36] (𝐶2 × ((𝐶4 × 𝐶2)⋊ 𝐶2))⋊ 𝐶4 > 80384
[128, 125] (𝐶4 × 𝐶4 × 𝐶2)⋊ 𝐶4 > 35040

Lemma 1. The following 2-generated groups of exponent 8 are the additive
groups of zero-symmetric local nearrings of order 128:
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IdGroup Structure Description Number of LNR
[128, 2] ((𝐶8 × 𝐶2)⋊ 𝐶4)⋊ 𝐶2 > 41184
[128, 4] (𝐶2 ×𝑄8)⋊ 𝐶8 > 103424
[128, 5] (𝐶8 × 𝐶2)⋊ 𝐶8 > 1536
[128, 6] (𝐶8 × 𝐶4)⋊ 𝐶4 > 73728
[128, 7] (𝐶8 × 𝐶2)⋊ 𝐶8 > 4160
[128, 8] (𝐶4 ⋊ 𝐶8)⋊ 𝐶4 > 10240
[128, 12] ((𝐶8 × 𝐶2)⋊ 𝐶2)⋊ 𝐶4 > 1336
[128, 13] (𝐶8 × 𝐶2)⋊ 𝐶8 > 33928
[128, 27] (𝐶8 ⋊ 𝐶4)⋊ 𝐶4 > 106240
[128, 38] ((𝐶8 × 𝐶2)⋊ 𝐶2)⋊ 𝐶4 > 80384
[128, 48] (((𝐶8 × 𝐶2)⋊ 𝐶2)⋊ 𝐶2)⋊ 𝐶2 > 194080
[128, 49] (𝐶4 × 𝐶2 × 𝐶2)⋊ 𝐶8 > 191520
[128, 50] ((𝐶4 × 𝐶2)⋊ 𝐶8)⋊ 𝐶2 > 16992
[128, 51] (𝐶2 ×𝑄8)⋊ 𝐶8 > 16992
[128, 56] (𝐶4 × 𝐶4)⋊ 𝐶8 > 254208
[128, 57] (𝐶4 × 𝐶4)⋊ 𝐶8 > 127488

Question 1. Are the following 2-generated groups of exponent 8 the additive
groups of zero-symmetric local nearrings of order 128?

IdGroup Structure Description
[128, 9] (𝐶8 × 𝐶2)⋊ 𝐶8

[128, 28] (𝐶4 ⋊ 𝐶8)⋊ 𝐶4

[128, 126] (𝐶2.((𝐶4 × 𝐶2)⋊ 𝐶2) = (𝐶2 × 𝐶2).(𝐶4 × 𝐶2))⋊ 𝐶4

Theorem 2. Only the following groups of order 128 and exponent 16 are the
additive groups of zero-symmetric local nearrings:

IdGroup Structure Description Number of LNR
[128, 42] 𝐶16 × 𝐶8 > 134754
[128, 43] 𝐶16 ⋊ 𝐶8 > 133866
[128, 44] 𝐶8 ⋊ 𝐶16 > 145648
[128, 46] ((𝐶16 × 𝐶2)⋊ 𝐶2)⋊ 𝐶2 > 24704
[128, 47] ((𝐶16 × 𝐶2)⋊ 𝐶2)⋊ 𝐶2 252928
[128, 52] ((𝐶16 ⋊ 𝐶2)⋊ 𝐶2)⋊ 𝐶2 > 115840
[128, 53] ((𝐶16 ⋊ 𝐶2)⋊ 𝐶2)⋊ 𝐶2 > 277248
[128, 54] (𝐶4 × 𝐶2)⋊ 𝐶16 > 82944
[128, 55] (𝐶4 × 𝐶2).((𝐶4 × 𝐶2)⋊ 𝐶2) = (𝐶4 × 𝐶2).(𝐶8 × 𝐶2) 640
[128, 59] 𝐶4.((𝐶2 × 𝐶2 × 𝐶2)⋊ 𝐶4) = (𝐶4 × 𝐶2).(𝐶8 × 𝐶2) > 13056
[128, 99] 𝐶8 ⋊ 𝐶16 > 29248
[128, 102] 𝐶8 ⋊ 𝐶16 > 5376
[128, 106] (𝐶16 × 𝐶2)⋊ 𝐶4 > 2808
[128, 107] (𝐶16 × 𝐶2)⋊ 𝐶4 > 16460
[128, 108] (𝐶16 ⋊ 𝐶2)⋊ 𝐶4 > 1344
[128, 109] (𝐶16 ⋊ 𝐶2)⋊ 𝐶4 > 2344
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Theorem 3. There exist 389976 zero-symetric local nearrings on 2-generated
additive groups of exponent 32 of order 128:

IdGroup Structure Description Number of LNR
[128, 128] 𝐶32 × 𝐶4 48968
[128, 129] 𝐶32 ⋊ 𝐶4 48968
[128, 131] (𝐶32 × 𝐶2)⋊ 𝐶2 144016
[128, 132] (𝐶32 ⋊ 𝐶2)⋊ 𝐶2 23936
[128, 153] 𝐶4 ⋊ 𝐶32 118968
[128, 154] 𝐶16.𝐷8 = 𝐶4.(𝐶16 × 𝐶2) 5120

Theorem 4. There exist 1024 zero-symetric local nearrings on 2-generated ad-
ditive groups of exponent 64 of order 128:

IdGroup Structure Description Number of LNR
[128, 159] 𝐶64 × 𝐶2 512
[128, 160] 𝐶64 ⋊ 𝐶2 512

The library of zero-symmetric local nearrings of order 128 on 2-generated groups
can be extracted from [7] using GAP and the package LocalNR [6].
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Раєвська I. Ю. Локальнi майже-кiльця з адитивною групою порядку 128.

Визначення скiнченних неабелевих 𝑝-груп, якi є адитивними групами локальних
майже-кiлець, є вiдкритою проблемою (Feigelstock, 2006). Тому важливо визначити
такi групи та класифiкувати деякi класи майже-кiлець з одиницею на цих групах,
наприклад, локальнi майже-кiльця. В статтi ми дослiджуємо локальнi майже-кiльця
на 2-породжених групах порядку 128.

Ключовi слова: локальне майже-кiльце, адитивна група, 2-породжена група.

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



114 I. RAIEVSKA

Список використаної лiтератури
1. Feigelstock S. Additive Groups of Local Near-Rings. Comm. Algebra. 2006. Vol. 34. P. 743–747.
2. Maxson C. J. On local near-rings. Math. Z. 1968. Vol. 106. P. 197–205.
3. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.13.0; 2024.

https://www.gap-system.org
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РОЗПОДIЛ ЧАСТИХ СЛIВ
У КОРОТКИХ ТЕКСТОВИХ ПОВIДОМЛЕННЯХ

Розглядається задача про розподiл частот слiв у текстовому корпусi, що склада-
ється з коротких повiдомлень (акцент зроблено на частих словах). Серед декiлькох
сiмей розподiлiв знайденi найбiльш адекватнi (використовувався критерiй хi-квадрат,
а також порiвняння за допомогою статистик AIC та BIC).

Ключовi слова: розподiл частот слiв, математична лiнгвiстика, критерiй хi-квадрат,
критерiй AIC, критерiй BIC.

1. Вступ. У математичнiй лiнгвiстицi та iнтелектуальному аналiзi тексту по-
рiвняно багато вивчались рiзнi аспекти коротких текстiв — це задачi класи-
фiкацiї, кластерного аналiзу, iдентифiкацiї автору, тематичного моделювання
та iншi (див, наприклад, [1–11]) Але задача про розподiл частот слiв у корот-
ких текстах явно вивчена недостатньо. Мета даною статтi — заповнити (хоча
б частково) цю прогалину. Ми з’ясуємо, якi сiм’ї дискретних розподiлiв краще
пiдходять для описання розподiлу частот частих слiв у великiй колекцiї корот-
ких текстiв.

2. Основнi результати. Для дослiдження було взято випадковi 10% вiд
набору даних [12]. Отриманий таким чином набiр даних складається з вели-
кої кiлькостi порiвняно коротких англомовних текстiв (це SMS-повiдомлення,
Telegram-повiдомлення та електронна пошта). Слiд зазаначити, що приблизно
40% цих текстiв є спам-повiдомленнями. Попередня обробка текстiв з нашого
набору даних включала, зокрема, видалення чисел та знакiв пунктуацiї, ви-
далення так званих стоп-слiв (це займенники, прийменники, сполучники, рiзнi
форми допомiжних дiєслiв та ще декiлька iнших слiв) i стемiнг (тобто видiлення
основи слова). Хоча фактично ми працюємо з основами слiв, але надалi заради
зручностi ми будемо замiсть фрази “основа слова” писати просто “слово”.

Пiсля попередньої обробки у текстовому корпусi залишилося приблизно 35700
унiкальних слiв та приблизно 480000 слiв усього, документiв усього — близько
4700. Кiлькiсть слiв у документi корпуса знаходиться у межах вiд 0 до прибли-
зно 10300, середнє число слiв у документi дорiвнює 100.8.

Для моделювання частот iз слiв, що зустрiчаються в усьому текстовому кор-
пусi як мiнiмум 330 разiв, було вiдiбрано 46 слiв. Зазначимо, що серед обраних
46 слiв є рiзнi слова — це як “маркери” спаму (зокрема, “free”, “save”, “money”),
так i просто частi слова.
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Для кожного фiксованого слова w утворимо вибiрку 𝜉 = (𝜉1, ...., 𝜉𝑛), де 𝜉𝑖 —
кiлькiсть повторень слова w у 𝑖-му документi нашого текстового корпуса. Що
можна сказати про розподiл 𝜉𝑖?

Для всiх наших слiв має мiсце дуже сильно виражене явище “роздутостi”
маси нуля (zero inflation) — для емпiричного розподiлу частот маса нуля часто
бiьше 0.9. Це природно, оскiльки для великої кiлькостi документiв конкретне
слово w зустрiчатися у них не буде. Тому надалi ми моделюємо не розподiл
𝜉𝑖, а розподiл елементiв перетвореної вибiрки. Робимо наступне: з вибiрки 𝜉
вилучимо всi нулi, отримаємо вибiрку 𝜂 = (𝜂1, ...., 𝜂𝑗, ....𝜂𝑚), а потiм зсунемо на
1 всi її елементи, тобто перейдемо до вибiрки

𝜁 = (𝜁1, . . . , 𝜁𝑗, . . . , 𝜁𝑚),

де 𝜁𝑗 = 𝜂𝑗 − 1 (i 𝜁𝑗 вже набувають значення 0, 1, 2, . . .). I надалi нашою задачею
буде моделювання розподiлу 𝜁𝑗.

Вартою уваги особливiстю емпiричних розподiлiв частот слiв є те, що для
багатьох слiв “довжина емпiричного хвоста” є високою або навiть надзвичайно
високою. Точнiше,

max{𝜁}
𝑞0.9(𝜁)

> 10

для 15 з 46 слiв (через 𝑞𝛼 позначено емпiричну 𝛼-квантиль), та

max{𝜁}
𝑞0.9(𝜁)

≥ 5

для 40 з 46 слiв.
Наведемо тепер розподiли, якi будуть використовуватись для моделювання

частот слiв у перетворенiй вибiрцi (тобто вибiрцi 𝜁).
Розподiл Зiхеля (Sichel distribution, див. [13]) з параметрами 𝜔, 𝜅, 𝛾 означа-

ється формулою

𝑃 (𝑙;𝜔, 𝜅, 𝛾) =
(𝜔/𝛼)𝛾

𝐾𝛾(𝜔)
· (𝜅𝜔/𝛼)

𝑙𝐾𝛾+𝑙(𝛼)

𝑙!
, 𝑙 = 0, 1, 2, . . . , (1)

де 𝛼 = ((𝜔 + 𝜅)2 − 𝜅2)
1/2, 𝐾𝜈(𝑧) — модифiкована функцiя Бесселя другого роду.

Бета-вiд’ємний бiномний розподiл (beta-negative binomial distribution, див.
[13]) з параметрами 𝛼, 𝛽, 𝑟 задається наступним чином:

𝑃 (𝑙;𝛼, 𝛽, 𝑟) =
Γ(𝑟 + 𝑙)

Γ(𝑙 + 1)Γ(𝑟)
· 𝐵(𝛼 + 𝑟, 𝛽 + 𝑙)

𝐵(𝛼, 𝛽)
, 𝑙 = 0, 1, 2, . . . (2)

Цей розподiл має важкий хвiст, у нього iснує лише скiнчена кiлькiсть моментiв.
Пуассонiвський логнормальний розподiл (Poisson lognormal distribution, див.

[14]) з параметрами 𝜇, 𝜎 означається формулою

𝑃 (𝑙;𝜇, 𝜎) =
1√
2𝜋𝜎𝑙!

∫︁ ∞

0

𝑒−𝜆𝜆𝑙−1 exp

{︂
−(ln𝜆− 𝜇)2

2𝜎2

}︂
𝑑𝜆, 𝑙 = 0, 1, 2, . . . (3)

Дискретний розподiл Вейбулла (див. [15]) з параметрами 𝑞, 𝛽 означається
так:

𝑃 (𝑙; 𝑞, 𝛽) = 𝑞𝑙
𝛽 − 𝑞(𝑙+1)𝛽 , 𝑙 = 0, 1, 2, . . .
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Такi добре вiдомi розподiли як пуассонiвський та геометричний не розгля-
далися в якостi моделей з огляду на їх недостатню гнучкiсть.

Для кожної сiм’ї розподiлiв за допомогою критерiю 𝜒2 було перевiрено гi-
потезу вигляду 𝐻0 : 𝐹 = 𝐺, де 𝐹 — розподiл частот даного слова, 𝐺 — гiпоте-
тичний розподiл (що залежить вiд невiдомих параметрiв). Невiдомi параметри
оцiнювались за методом максимальної правдоподiбностi.

Також були отриманi значення iнформацiйних критерiїв AIC та BIC. Нага-
даємо, що статистики AIC та BIC означаються наступними формулами:

AIC = −2(𝑙 − 𝑝),

BIC = 𝑝 ln(𝑁)− 2𝑙,

де 𝑝 — кiлькiсть параметрiв, якими задається розподiл, 𝑙 — значення логариф-
мiчної функцiї правдоподiбностi, 𝑁 — обсяг вибiрки.

Розрахунки проводились на мовi програмування R iз використанням пакетiв
DiscreteWeibull, fitdistrplus, gamlss.dist, sads та tm (див. [16–20]).

Значення p-value критерiю 𝜒2 наведено у табл. 1 та 2; значення статистик
AIC та BIC — вiдповiдно у табл. 3, 4 (AIC) та 5, 6 (BIC). Прочерки у деяких
клiтинках означають те, що вiдповiдний розподiл пiдiгнати не вдалося. Вико-
ристанi позначення BNB, DW, NB, PL вiдповiдно для бета-вiд’ємного бiномного
розподiлу, дискретного розподiлу Вейбулла, вiд’ємного бiномного розподiлу та
пуассонiвського логнормального розподiлу.

Таблиця 1.
p-value критерiя 𝜒2

Слово BNB DW NB PL Sichel
like 0.1413 1.76 · 10−13 0.0615 0.7052 0.6041
now 0.0245 1.52 · 10−16 0.0001 0.2010 0.2752
provid 0.6665 1.37 · 10−8 0.1253 0.8267 0.8839
product 0.0857 1.60 · 10−6 0.1291 0.0528 0.1457
inform — 9.09 · 10−9 0.0412 0.0035 0.0135
number 0.0046 6.96 · 10−8 0.0156 0.0335 0.0522
offer 0.1455 4.80 · 10−9 0.0263 0.2608 0.0148
time 0.5632 1.59 · 10−12 0.0183 0.4442 0.0766
trade 0.3080 1.30 · 10−11 3.54 · 10−6 0.3956 0.8730
work 0.1711 6.14 · 10−10 0.1602 0.2266 0.0843
secur — 2.30 · 10−6 0.0006 3.60 · 10−8 0.0003
includ 0.4074 1.06 · 10−9 0.0501 0.7641 0.5750
list 0.0444 2.65 · 10−12 0.0031 0.2059 0.2888
cash 0.0357 2.17 · 10−4 0.0409 0.2228 0.0962
opportun — 8.78 · 10−7 0.1889 0.0729 0.0680
increas — 4.21 · 10−5 0.0063 0.0001 0.0014
softwar 0.3699 1.04 · 10−3 0.6592 0.5677 0.4276
cost 0.3766 1.81 · 10−3 0.8146 0.3628 0.5024
world 0.0271 3.02 · 10−7 0.0195 0.0547 0.0574
approv 0.1910 2.68 · 10−4 0.3716 0.3512 0.1647
present 0.4601 4.65 · 10−5 0.7881 0.4651 0.4399
financ 0.6325 2.54 · 10−5 0.1224 0.9157 0.8742
home 0.2704 8.57 · 10−5 0.1005 0.4558 0.1277
plan 0.6598 5.66 · 10−4 0.3768 0.7614 0.4791
url — 9.43 · 10−6 0.1488 0.1199 0.1424
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Таблиця 2.
p-value критерiя 𝜒2, продовження

Слово BNB DW NB PL Sichel
credit 0.0895 1.23 · 10−4 0.0193 0.2186 0.0345
execut 0.2777 5.91 · 10−5 0.0046 0.5307 0.5989
first 0.5630 5.79 · 10−5 0.2730 0.6922 0.7425
fund 0.0135 9.98 · 10−6 0.0423 0.0558 0.0530
last 0.0365 1.05 · 10−7 0.0004 0.0704 0.0778
news 0.0110 2.16 · 10−5 0.0269 0.0033 0.0120
peopl 0.0940 1.64 · 10−7 0.0002 0.1370 0.2602
question 0.1862 6.05 · 10−7 0.0474 0.5752 0.4276
right 0.0866 1.59 · 10−6 0.0026 0.3139 0.3273
sale 0.0126 2.04 · 10−7 0.0042 0.0682 0.0877
term 0.0009 1.48 · 10−7 0.0007 0.0061 0.0022
transact 0.7511 1.38 · 10−2 0.5070 0.8782 0.6282
valu 0.0213 1.76 · 10−4 0.0209 0.4851 0.1664
move 0.0469 2.04 · 10−6 0.1273 0.8272 0.7724
buy 0.5468 2.56 · 10−4 0.0188 0.8314 0.1239
claim — 1.68 · 10−4 0.0003 3.74 · 10−8 0.0000
high 0.0203 3.06 · 10−8 0.0154 0.1826 0.1166
save 0.0015 2.09 · 10−3 0.0228 0.0005 0.0041
billion 0.0112 6.65 · 10−8 6.03 · 10−6 0.0120 0.0777
compani 3.43 · 10−5 4.06 · 10−16 9.76 · 10−11 0.0003 0.0004
deal 0.7321 4.40 · 10−5 0.0771 0.8647 0.6723

Таблиця 3.
Значення AIC

Слово BNB DW NB PL Sichel
like 1073.919 1076.704 1079.409 1071.088 1071.891
now 1034.329 1047.799 1057.33 1028.515 1025.887
provid 1024.096 1028.647 1031.029 1021.226 1022.077
product 1112.814 1111.143 1111.204 1116.548 1111.646
inform — 1783.784 1782.552 1800.536 1784.552
number 1063.598 1062.380 1061.951 1070.928 1063.407
offer 838.844 846.588 853.525 835.881 837.663
time 1971.167 1984.697 2003.675 1970.120 1975.928
trade 923.134 945.424 963.692 920.518 917.507
work 1298.469 1299.216 1301.972 1297.612 1299.534
secur — 1097.535 1097.276 1112.183 1099.276
includ 1015.669 1021.323 1024.785 1012.509 1013.176
list 959.341 967.788 971.867 955.248 954.776
cash 397.311 395.510 395.933 395.050 394.684
opportun — 459.278 459.111 461.992 461.111
increas — 402.813 401.325 411.117 403.497
softwar 490.502 488.522 488.602 490.072 490.383
cost 493.637 491.927 492.749 493.014 494.151
world 408.779 408.767 409.653 406.282 407.065
approv 436.206 434.416 434.785 434.974 436.207
present 504.251 502.283 502.396 503.353 504.370
financ 470.174 474.599 477.354 467.573 468.783
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Таблиця 4.
Значення AIC, продовження

Слово BNB DW NB PL Sichel
home 489.996 490.295 493.730 487.957 489.630
plan 549.016 547.823 549.321 547.455 548.178
url — 612.554 612.641 612.907 614.166
credit 545.821 546.600 550.038 543.433 544.539
execut 414.665 418.898 423.496 412.059 412.264
first 684.814 684.033 686.041 683.076 683.351
fund 516.442 516.361 519.462 516.394 519.180
last 612.137 618.543 626.479 608.932 608.908
news 590.990 589.082 589.053 597.566 591.053
peopl 635.583 641.664 647.494 632.226 631.588
question 538.807 541.150 544.685 535.985 537.201
right 497.069 501.433 506.737 493.895 493.587
sale 538.091 539.398 540.738 535.475 535.803
term 649.873 653.966 658.369 647.858 650.215
transact 570.138 570.115 573.326 568.772 570.617
valu 482.817 482.306 483.461 480.294 480.311
move 476.753 478.836 480.744 474.167 475.512
buy 433.025 435.181 438.805 430.419 431.285
claim — 467.600 466.533 478.757 468.533
high 505.384 509.234 511.189 502.165 502.918
save 460.922 459.095 460.481 461.264 462.213
billion 341.529 349.568 354.570 339.277 338.005
compani 2066.078 2087.486 2116.992 2060.633 2060.711
deal 1018.781 1025.508 1037.541 1016.756 1019.938

Таблиця 5.
Значення BIC

Слово BNB DW NB PL Sichel
like 1087.520 1085.772 1088.476 1080.156 1085.492
now 1047.722 1056.729 1066.259 1037.445 1039.281
provid 1035.948 1036.548 1038.930 1029.128 1033.929
product 1124.673 1119.050 1119.110 1124.454 1123.506
inform — 1792.688 1791.456 1809.440 1797.908
number 1075.697 1070.447 1070.018 1078.994 1075.506
offer 850.907 854.630 861.567 843.923 849.726
time 1985.493 1994.248 2013.226 1979.671 1990.254
trade 934.049 952.701 970.969 927.795 928.422
work 1311.714 1308.046 1310.802 1306.442 1312.779
secur — 1104.956 1104.696 1119.604 1110.407
includ 1027.783 1029.399 1032.861 1020.585 1025.290
list 971.338 975.786 979.865 963.246 966.772
cash 406.665 401.746 402.169 401.286 404.038
opportun — 466.119 465.952 468.833 471.373
increas — 409.535 408.047 417.840 413.581
softwar 500.047 494.886 494.966 496.435 499.929
world 419.067 415.626 416.512 413.141 417.353
approv 446.086 441.003 441.371 441.560 446.087
present 514.526 509.133 509.246 510.203 514.644
financ 479.265 480.660 483.414 473.634 477.874
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Таблиця 6.
Значення BIC, продовження

Слово BNB DW NB PL Sichel
cost 503.547 498.533 499.355 499.621 504.061
home 500.802 497.500 500.934 495.161 500.437
plan 559.640 554.905 556.404 554.538 558.801
url — 618.984 619.071 619.336 623.811
credit 555.466 553.030 556.468 549.863 554.184
execut 423.490 424.781 429.380 417.942 421.089
first 696.388 691.749 693.757 690.792 694.925
fund 525.630 522.486 525.587 522.520 528.368
last 623.685 626.242 634.177 616.631 620.456
news 600.252 595.257 595.228 603.742 600.315
peopl 646.704 649.078 654.908 639.640 642.710
question 550.620 549.025 552.560 543.860 549.013
right 508.069 508.766 514.070 501.228 504.586
sale 547.955 545.974 547.315 542.052 545.668
term 659.872 660.631 665.034 654.523 660.213
transact 579.492 576.351 579.562 575.008 579.971
valu 492.445 488.725 489.880 486.713 489.939
move 486.618 485.413 487.321 480.744 485.376
buy 442.905 441.767 445.392 437.005 441.165
claim — 473.320 472.252 484.476 477.112
high 515.523 515.994 517.949 508.925 513.057
save 471.210 465.953 467.340 468.122 472.501
billion 348.481 354.203 359.205 343.912 344.958
compani 2078.426 2095.718 2125.224 2068.864 2073.059
deal 1029.962 1032.961 1044.995 1024.209 1031.119
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Рис. 1. Слово “includ”, бета-вiд’ємний бiномний розподiл.
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Рис. 2. Слово “includ”, розподiл Зiхеля.
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Рис. 3. Слово “list”, вiд’ємний бiномний розподiл.
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Рис. 4. Слово “list”, розподiл Зiхеля.

Графiки емпiричних функцiй розподiлу та функцiй розподiлу деяких з тео-
ретичних розподiлiв для слiв “includ” та “list” наведено на рис. 1, 2, 3 та 4.

Проаналiзуємо отриманi результати.
Дискретний розподiл Вейбулла є непридатним для моделювання частот слiв

— цей розподiл не є адекватним за критерiєм 𝜒2 (p-value менше 0.05) у всiх 46
випадках.

Решта розподiлiв (за винятком вiд’ємного бiномного) порiвняно непогано
пiдганяються до даних: p-value критерiю 𝜒2 бiльше 0.10 для 50%, 57% i 65%
з наших 46 слiв вiдповiдно для бета-вiд’ємного бiномного розподiлу, розподiлу
Зiхеля та пуассонiвського логнормального розподiлу.

Вiд’ємний бiномний розподiл пристосований для моделювання частот слiв
гiрше — p-value критерiю 𝜒2 бiльше 0.10 лише для 33% слiв. Варто зазначи-
ти, що, незважаючи на порiвняно погану якiсть пiдгонки цього розподiлу “у
цiлому”, вiд’ємний бiномний розподiл часто добре пiдганяється до вибiрок з
порiвняно коротким “емпiричним хвостом” (де max{𝜁} ≤ 25).

Що стосується критерiїв AIC та BIC, оптимальним розподiлом найчастiше
є пуассонiвський логнормальний розподiл — для нього значення AIC та BIC є
найменшимими вiдповiдно для 23 слiв та 31 слова.

3. Висновки. Знайдено ймовiрнiснi розподiли, якi є оптимальними для
моделювання частот широко вживаних слiв у великiй колекцiї коротких текс-
тiв. Отриманi результати можуть бути використанi, зокрема, для класифiкацiї
документiв та побудови регресiйних моделей, де залежною змiнною є частота
слова.

Розподiл роботи спiвавторiв. Є. В. Турчин: постановка задачi, методо-
логiя, написання статтi, частково — обчислення. Ю. С. Федорченко: частково
— обчислення.

Роздiл 1: Математика i статистика



РОЗПОДIЛ ЧАСТИХ СЛIВ . . . 123

Список використаної лiтератури
1. Tagg C. A corpus linguistics study of SMS text messaging. Ph. D. thesis : Birmingham, 2009.

402 p. URL: https://etheses.bham.ac.uk/id/eprint/253/ (date of access: 08.06.2024).
2. Ni X. et al. Short text clustering by finding core terms. Knowledge and Information Systems.

2011. Vol. 27, No. 3. P. 345–365. DOI: https://doi.org/10.1007/s10115-010-0299-7
3. Rafeeque P. C., Sendhilkumar S. A survey on short text analysis in Web. Proceedings of 2011

Third International Conference on Advanced Computing : Chennai. India, 2011. P. 365–371.
URL: https://ieeexplore.ieee.org/abstract/document/6165203/ (date of access: 08.06.2024).

4. Brocardo M. L. et al. Authorship verification for short messages using stylometry. Proceedings
of 2013 International Conference on Computer, Information and Telecommunication Systems
(CITS) : Athens. Greece, 2013. P. 1–6. DOI: https://doi.org/10.1109/CITS.2013.6705711

5. Lyddy F. et al. An analysis of language in university students’ text messages.
Journal of Computer-Mediated Communication. 2014. Vol. 19, No. 3. P. 546–561.
URL: https://academic.oup.com/jcmc/article-abstract/19/3/546/4067601 (date of access:
08.06.2024).

6. Xu J. et al. Self-taught convolutional neural networks for short text clustering. Neural
Networks. 2017. Vol. 88. P. 22–31. DOI: https://doi.org/10.1016/j.neunet.2016.12.008

7. Zheng C. T., Liu C., Wong H. S. Corpus-based topic diffusion for
short text clustering. Neurocomputing. 2018. Vol. 275. P. 2444–2458. DOI:
https://doi.org/10.1016/j.neucom.2017.11.019

8. Sjarif A. N. N. et al. SMS spam message detection using term frequency-inverse document
frequency and random forest algorithm. Procedia Computer Science. 2019. Vol. 161. P. 509–515.
URL: https://www.sciencedirect.com/science/article/pii/S1877050919318617 (date of access:
08.06.2024).

9. Srinivasan L., Nalini C. An improved framework for authorship identificati-
on in online messages. Cluster Computing. 2019. Vol. 22. P. 12101–12110. DOI:
https://doi.org/10.1007/s10586-017-1563-3

10. Albalawi R., Yeap T. H., Benyoucef M. Using topic modeling methods for short-text
data: a comparative analysis. Frontiers in Artificial Intelligence. 2020. Vol. 3. P. 42. URL:
https://www.frontiersin.org/articles/10.3389/frai.2020.00042/full (date of access: 08.06.2024).

11. Qiang J. et al. Short text topic modeling techniques, applications, and performance: a survey.
IEEE Transactions on Knowledge and Data Engineering. 2022. Vol. 34, No. 3. P. 1427–1445.
URL: https://ieeexplore.ieee.org/abstract/document/9086136/ (date of access: 08.06.2024).

12. mshenoda/spam-messages · Datasets at Hugging Face
URL: https://huggingface.co/datasets/mshenoda/spam-messages (date of access: 08.06.2024).

13. Johnson N. L., Kemp A. W., Kotz S. Univariate Discrete Distributions. Hoboken, N.J. : Wiley,
2005. 646 p.

14. Bulmer M. G. On fitting the poisson lognormal distribution to species-abundance data. Bi-
ometrics. 1974. Vol. 30, No. 1. P. 101–110. DOI: https://doi.org/10.2307/2529621

15. Nakagawa T., Osaki S. The discrete Weibull distribution. IEEE Transactions on Reliability.
1975. Vol. R-24, No. 5. P. 300–301. DOI: https://doi.org/10.1109/TR.1975.5214915

16. Delignette-Muller M. L., Dutang C. fitdistrplus: An R package for fitting distributions. Journal
of Statistical Software. 2015. Vol. 64, No. 4. P. 1–34. DOI: https://doi.org/10.18637/jss.v064.i04

17. DiscreteWeibull: Discrete Weibull Distributions (Type 1 and 3).
URL: https://cran.r-project.org/package=DiscreteWeibull (date of access: 08.06.2024).

18. Feinerer I., Hornik K. (2024). tm: Text Mining Package. R package version 0.7-13. URL:
https://CRAN.R-project.org/package=tm (date of access: 08.06.2024).

19. gamlss.dist: Distributions for Generalized Additive Models for Location Scale and Shape. URL:
https://cran.r-project.org/package=gamlss.dist (date of access: 08.06.2024).

20. Prado P., Dantas Miranda M., Chalom A. sads: Maximum Likelihood Models for Species
Abundance Distributions. URL: https://CRAN.R-project.org/package=sads (date of access:
08.06.2024).

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



124 Є. В. ТУРЧИН, Ю. С. ФЕДОРЧЕНКО

Turchyn I. V., Fedorchenko Yu. S. Distribution of frequent words in short text
messages.

We consider a problem of word frequency distribution in a text corpus which consists
of short messages (the emphasis is put on frequent words). The most adequate distri-
butions were found among several distribution families (the chi-square test was used, the
distributions were compared using the AIC and BIC statistics).

Keywords: word frequency distribution, mathematical linguistics, chi-square test, AIC
criterion, BIC criterion.
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АНАЛIТИЧНИЙ РОЗВ’ЯЗОК КОНТАКТНОЇ ЗАДАЧI ДЛЯ
ПОПЕРЕДНЬО НАПРУЖЕНИХ ДВОХ ПIВПРОСТОРIВ ТА

КIЛЬЦЕВОГО ШТАМПА

В статтi представлено аналiтичний розв’язок контактної задачi для двох пружних
пiвпросторiв з початковими напруженнями та попередньо напруженого кiльцевого
штампа без врахування сил тертя. Будемо вважати, що поверхнi поза межею конта-
кту кiльцевого штампа та пiвпросторiв залишаються вiльними вiд впливу зовнiшнiх
сил, а на межi контакту перемiщення та напруження — неперервнi. Задачу розв’язано
у випадку рiвних коренiв визначального рiвняння. Дослiдження представлено у за-
гальному виглядi для теорiї великих початкових деформацiй i двох варiантiв теорiї
малих початкових деформацiй у межах лiнеаризованої теорiї пружностi при довiльнiй
структурi пружного потенцiалу.

Припускається, що початковi стани пружного кiльцевого штампа та пружних пiв-
просторiв однорiднi та рiвнi. Дослiдження проводиться в координатах початково-
го деформованого стану, якi пов’язанi з лагранжевими координатами. Крiм того,
вплив кiльцевого штампа викликає невеликi збурення вiдповiдних величин основ-
ного напружено-деформованого стану. Також передбачається, що пружний кiльце-
вий штамп та пружнi пiвпростори виготовленi з рiзних iзотропних, трансверсально-
iзотропних або композитних матерiалiв. Увипадку ортотропних тiл будемо вважати,
що пружно-еквiвалентнi напрямки спiвпадають iз напрямком осей координат у де-
формованому станi. У результатi, розв’язки поставленої задачi представленi у вигля-
дi нескiнченних рядiв, коефiцiєнти яких визначаються з нескiнченної квазiрегуляр-
ної системи алгебраїчних рiвнянь. Для дослiдження задачi використовується вели-
ка кiлькiсть фундаментальних результатiв таких як: перетворення Ханкеля, потрiйнi
iнтегральнi рiвняння, та iншi методи теорiї контактних задач лiнеаризованої теорiї
пружностi.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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У статтi також встановлено зв’язок мiж осiданням та рiвнодiючою силою наванта-
ження. Отже, за допомогою отриманих розв’язкiв можна вивчити вплив початкових
(залишкових) напружень на розподiл контактних напружень та перемiщень у двох
пружних пiвпросторах та пружному кiльцевому штампi.

Ключовi слова: лiнеаризована теорiя пружностi, початковi (залишковi) напружен-
ня, контактна задача, кiльцевий штамп, пiвпростiр, iнтегральнi рiвняння.

1. Вступ. Дослiдження та розв’язок контактних задач теорiї пружностi
є актуальним напрямком розвитку сучасної науки, враховуючи виклики та
випробування сьогодення. Значна кiлькiсть практичних завдань зводиться до
розв’язання задач механiки твердого деформованого тiла, наприклад: розра-
хунок та дослiдження напружено-деформованого стану важких фундаментних
плит i будiвельних перекриттiв, що знаходяться в межах дiї гравiтацiйних сил, а
також градирень, водонапiрних веж, димових труб та iнших iнфраструктурних
споруд та залiзобетонних конструкцiй [1–3]. Основна частина даних практичних
задач формулюється для таких тiл як пiвпростiр або шар з областями контакту
рiзноманiтної форми та складностi.

Поява нових матерiалiв, необхiднiсть пiдвищення якостi їх характеристик
також вимагає все бiльшої уваги науковцiв до напрямку дослiджень в рамках
механiки твердого деформованого тiла.

Особливу увагу в цьому напрямку, слiд придiлити впливу початкових на-
пружень на контактну взаємодiю тiл. Враховуючи те, що початковi напружен-
ня присутнi практично в усiх елементах конструкцiй, i можуть бути викликанi
рiзного роду причинами, такими як: виробничi процеси (при виготовленнi цiло-
го ряду матерiалiв), технологiчнi операцiї або складання конструкцiй. Внаслi-
док дiї геостатичних та геодинамiчних сил початковi напруження виникають у
земнiй корi. Також, вони виникають у композитних матерiалах — в результатi
технологiчних процесiв при їх створеннi. Присутнiсть початкових напружень
iснує навiть у кровоносних судинах живих органiзмiв. Початковi напружен-
ня необхiдно враховувати й при розв’язуваннi задач про деформацiю мерзлих
ґрунтiв. Крiм того, у пружно-пластичних тiлах також можуть iснувати внутрi-
шнi залишковi напруження пiсля зняття навантаження. Iнодi доречно навмисно
створювати початковi (залишковi або технологiчнi) напруження для компенса-
цiї тих напружень, якi виникають у елементах конструкцiй у процесi їх роботи.

У багатьох публiкацiях перiодичних наукових видань та працях навчального
i монографiчного характеру [4, 5] досить детально вивченi питання, що стосую-
ться контактних задач для пластичних, пружних та в’язко пружних тiл без дiї
на них початкових напружень. Але запити сучасної iнженерно-технiчної пра-
ктики висувають до науковцiв ряд задач, якi потребують використання бiльш
ускладнених моделей, що дозволятимуть враховувати вплив початкових (техно-
логiчних або залишкових) напружень, поверхневi властивостi матерiалу, вплив
тертя, жорсткiсть поверхнi, тепловидiлення, зносостiйкiсть поверхнi тiл тощо
[6–8]. Аналiз результатiв цих дослiджень дозволяє сформувати умови на межi
поверхонь контактуючих деформованих тiл, що вiдповiдають дiйсностi.

Отже, враховуючи виклик iнженерно-технiчної практики, можна пояснити
тенденцiю збiльшення кiлькостi опублiкованих робiт з нелiнiйної теорiї пружно-
стi та лiнеаризованої механiки деформованих тiл (яку застосовують при досить
великих початкових (залишкових) напруженнях). Розв’язки таких задач до-
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зволяють краще описувати та враховувати фiзичнi характеристики матерiалiв
i дiю на них сил тертя. До праць даного напрямку належать оглядовi статтi та
працi монографiчного характеру [9–13].

Фундаментальнi результати лiнеаризованої теорiї пружностi, на якiй осно-
ване дане дослiдження, були одержанi українським вченим, академiком НАН
України проф. Гузем О. М. [6, 8–10, 13]. Ним вперше було розв’язано ряд конта-
ктних задач для стисливих i нестисливих тiл одним iз найбiльш ефективних пiд-
ходiв для матерiалiв з довiльною формою пружного потенцiалу та однорiдними
початковими напруженнями, що оснований на теорiї функцiї комплексної змiн-
ної для плоских задач i теорiї потенцiалу для просторових задач. Подальшого
розвитку теорiя контактної взаємодiї тiл з початковими напруженнями отрима-
ла у працях його учнiв [8, 9, 11, 12, 14, 15] та iнших вiтчизняних i зарубiжних
вчених [7, 13, 15]. Iснує також ряд узагальнюючих публiкацiй [1–3, 5, 10–12,
14–18], якi повнiстю або частково пов’язанi з тематикою цiєї статтi.

На думку авторiв статтi, перевага пiдходу, запропонованого О. М. Гузем по-
лягає в тому, що цей пiдхiд дозволяє розв’язати поставлену контактну задачу
в єдинiй загальнiй формi для стисливих (нестисливих) попередньо напруже-
них тiл при довiльнiй структурi пружного потенцiалу. А необхiднi графiки та
числовi результати для конкретних пружних потенцiалiв можуть бути отрима-
нi лише на завершальному етапi. Це дозволяє бiльш широко використовувати
отриманi аналiтичнi залежностi.

Тому у данiй статтi дослiдження контактної задачi для попередньо напру-
жених iдентичних пiвпросторiв та пружного кiльцевого штампу з початковими
напруженнями без врахування сил тертя для випадку рiвних коренiв визна-
чального рiвняння [9] виконано у межах пiдходу запропонованого Гузем О. М.

Вiдзначимо, що усi величини, якi вiдносяться до пружного кiльцевого штам-
па позначаються верхнiм iндексом «(3)», верхнього пiвпростору — «(1)», а ни-
жнього пiвпростору — «(2)». Також зробимо припущення, що початковi напру-
жено-деформованi стани у штампi та пiвпросторах однаковi. У класичному ви-
падку (при вiдсутностi початкових напружень) подiбна контактна задача була
розглянута у [4].

2. Постановка задачi. Нехай пружний кiльцевий штамп висотою 𝐻 з по-
чатковими напруженнями (рис. 1), геометрична вiсь симетрiї якого спiвпадає з
вiссю 𝑦3 цилiндричної системи координат (𝑟, 𝜃, 𝑦3) стискається (розтягується)
двома iдентичними попередньо напруженими пiвпросторами за допомогою вi-
сесиметричного навантаження, що зводиться до рiвнодiйної сили 𝑃 . Зовнiшнє
навантаження прикладене таким чином, що точки не завантажених поверхонь
обох попередньо напружених пiвпросторiв та вiддалених вiд областi контакту
пiвпросторiв з пружним кiльцевим штампом, перемiщаються вiдносно коорди-
натної площини 𝑦3 = 0 на величину 𝜀. Величини: 𝑅1 та 𝑅2 — вiдповiдно внутрi-
шнiй та зовнiшнiй радiуси кiльцевого штампа, ℎ = 0.5𝐻.

Будемо вважати, що поверхнi поза межею контакту залишаються вiльними
вiд впливу зовнiшнiх сил, а на межi контакту перемiщення та напруження —
неперервнi. На рис. 1. величини 𝜆𝑖 (𝑖 = 1, 2, 3) — коефiцiєнти видовження, що
визначають перемiщення початкового стану, а 𝑆11

0 , 𝑆22
0 компоненти симетрично-

го тензора початкових напружень.
Також, у дослiдженнi будемо розглядати пружнi iзотропнi тiла (стисливi або
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Рис. 1. Тиск двох попередньо напружених пiвпросторiв на пружний кiльцевий
цилiндричний штамп з початковими напруженнями.

нестисливi) з довiльною формою пружного потенцiалу. Причому, пружнi по-
тенцiали — двiчi неперервно-диференцiйовнi функцiї алгебраїчних iнварiантiв
тензора деформацiй Грiна [9]. Крiм того, дiя штампа викликає у пiвпросторах
мале збурення основного напруженого стану, для якого виконуються умови

𝑆11
0 = 𝑆22

0 ̸= 0; 𝑆33
0 = 0; 𝜆1 = 𝜆2 ̸= 𝜆3. (1)

Дослiдження проведено у координатах початкового деформованого стану 𝑦𝑖,
якi пов’язанi з лагранжевими координатами (початкового стану) спiввiдношен-
нями 𝑦𝑖 = 𝜆𝑖𝑥𝑖 (𝑖 = 1, 3).

У данiй статтi обмежимося випадком нерiвних коренiв (𝜉′22 ̸= 𝜉′23) характе-
ристичного (визначального) рiвняння [9].

У системi колових цилiндричних координат (𝑟, 𝜃, 𝑧𝑖), де 𝑧𝑖 = 𝑣−1
𝑖 𝑦3,

𝑣𝑖 =
√
𝑛𝑖, (𝑖 = 1, 2), 𝑛1 = 𝜉′22, 𝑛2 = 𝜉′23 такiй постановцi вiдповiдають грани-

чнi умови:
1) на торцях пружного кiльцевого штампа в областi контакту 𝑧𝑖 = ±ℎ/𝑣𝑖, де

𝑣𝑖 =
√
𝑛𝑖, (𝑖 = 1, 2):

𝑢′
(𝑖)
3 − 𝑢′

(3)
3 = 𝜀, 𝑄′(3)

33 = 𝑄′(𝑖)
33 , 𝑄′(3)

3𝑟 = 0, 𝑄′(𝑖)
3𝑟 = 0,

(𝑅1 ≤ 𝑟 ≤ 𝑅2) (𝑖 = 1, 2),
(2)

2) на межах пружних пiвпросторiв поза дiлянкою контакту 𝑧𝑖 = ±ℎ/𝑣𝑖, де
(𝑖 = 1, 2):

𝑄′(𝑖)
33 = 0, 𝑄′(𝑖)

3𝑟 = 0, 𝑢′
(𝑖)
3 = 0, (0 < 𝑟 < 𝑅1 або 𝑟 > 𝑅2) (𝑖 = 1, 2), (3)

3) на боковiй поверхнi пружного кiльцевого штампа 𝑟 = 𝑅1 або 𝑟 = 𝑅2:

𝑄′(3)
𝑟𝑟 = 0, 𝑄′(3)

3𝑟 = 0, (|𝑧𝑖| ≤ ℎ/𝑣𝑖) (𝑖 = 1, 2), (4)
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Умова рiвноваги, яка встановлює зв’язок мiж осiданням торцiв та рiвнодiй-
ною навантаження Р має вигляд:

𝑃 = −2𝜋

𝑅2∫︁
𝑅1

𝑟|𝑄′(3)
33 |𝑑𝑟, |𝑄′(3)

33 | = |𝑄′(3)
3𝑟 |𝑧𝑖=±𝐻/𝑣𝑖 (𝑖 = 1, 2). (5)

Умова (5) закриває постановку просторової лiнеаризованої задачi про конта-
ктну взаємодiю попередньо напруженого скiнченного цилiндричного штампа iз
двома пружними пiвпросторами з початковими напруженнями.

3. Основнi спiввiдношення та метод розв’язку. Напружено-деформова-
ний стан в дiлянках контакту у попередньо напружених пiвпросторах будемо
визначати згiдно лiнеаризованих рiвнянь [9]

𝑄′(𝑖)
33 (𝜌; 0) =

𝐶44(1 +𝑚1)𝑙1(𝑠− 𝑠0)

𝑅1

∞∫︁
0

𝐹 (𝜂)𝐽0(𝜂𝜌)𝑑𝜂,

𝑄′(𝑖)
3𝑟 (𝜌; 𝜉)

⃒⃒⃒
𝜉=0

=

= −𝐶44(1 +𝑚1)

𝑣1

(︂
𝜉 − ℎ

𝑅1

)︂ ∞∫︁
0

𝜂𝐹 (𝜂)𝑒(𝜁−ℎ/𝑅1)𝜂/𝑣1𝐽1(𝜂𝜌)𝑑𝜂

⃒⃒⃒⃒
⃒⃒
𝜉=0

= 0,
(6)

𝑈 ′(𝑖)
3 (𝜌; 0) = −𝑚1(𝑠1 − 𝑠0)

𝑣1

∞∫︁
0

𝐹 (𝜂)

𝜂
𝐽0(𝜂𝜌)𝑑𝜂,

𝑈 ′(𝑖)
𝑟 (𝜌; 0) = −(1− 𝑠0)

∞∫︁
0

𝐹 (𝜂)

𝜂
𝐽1(𝜂𝜌)𝑑𝜂,

де

𝐶44 =

{︃
𝑤′

1313,

𝜅′1313.
𝑚𝑖 =

{︃
𝜔′

1111𝑛𝑖−𝜔′
3113

𝜔′
1133+𝜔′

1313
;

𝜆1𝑞1
𝜆3𝑞3

𝑛𝑖;
𝑙𝑖 =

{︃
𝜔′

1331

𝜔′
1313

+ 𝜔′
1313−𝜔′

1331

𝜔′
1313

𝜔′
1133+𝜔′

1313

𝜔′
1111𝑛𝑖+𝜔′

1133
;

𝜅′1331
𝜅′1313

+ 𝜅′1313−𝜅′1331
𝜅′1313

𝜆3𝑞3
𝜆3𝑞3+𝜆1𝑞1𝑛𝑖

;

𝜉 = 𝑧𝑖𝑣𝑖
𝑅1

, 𝜁𝑖 = 𝜉
𝑣𝑖

= 𝑧𝑖
𝑅

, 𝜂 = 𝜉𝑅1, (𝑖 = 1, 2), 𝑠 = 𝑠0𝑙2𝑙
−1
1 , 𝑠0 = (1 + 𝑚2)(1 + 𝑚1)

−1,

𝑠1 = (𝑚1 − 1)𝑚−1
1 , 𝑠2 = (𝑣1𝑚2)(𝑣2𝑚1)

−1, 𝑠3 = 𝑠0𝑣1𝑣
−1
2 , 𝐹 (𝜂) — шукана функцiя,

𝐽𝑣(𝑥) — функцiї Бесселя дiйсного аргументу.
Загальний розв’язок для визначення напружено-деформованого стану у кiль-

цевому пружному штампi з початковими напруженнями у випадку рiвних ко-
ренiв (𝜉′22 = 𝜉′23) характеристичного рiвняння [9] приймемо у виглядi:

𝜒̃ = 𝜒̃1 + 𝑣𝑖𝑧𝑖𝜒̃2, (𝑖 = 1, 2), (7)

де

𝜒̃1 = 𝐶0𝑧1(3𝑟
2 − 2𝑧21) + 𝐴0(𝑟

2 − 2𝑧21)+

+
∞∑︁
𝑘=1

[︁(︁
𝐴

(1)
𝑘 𝐼0(𝛾𝑘𝑣1𝑟) + 𝐴

(2)
𝑘 𝐾0(𝛾𝑘𝑣1𝑟)

)︁
𝑆1(𝛾𝑘𝑣1𝑧1)+

+
(︁
𝑇

(2)
𝑘 𝐽0(𝛼𝑘𝑟) + 𝑇

(1)
𝑘 𝑌0(𝛼𝑘𝑟)

)︁
𝑆2(𝛼𝑘𝑧1)

]︁
,

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика



АНАЛIТИЧНИЙ РОЗВ’ЯЗОК КОНТАКТНОЇ ЗАДАЧI . . . 131

𝜒̃2 = 𝐶0𝑧1(3𝑟
2 − 2𝑧21) + 𝐴0(𝑟

2 − 2𝑧21)+

+
∞∑︁
𝑘=1

[︁(︁
𝐵

(1)
𝑘 𝐼0(𝛾𝑘𝑣1𝑟) +𝐵

(2)
𝑘 𝐾0(𝛾𝑘𝑣1𝑟)

)︁
𝑆1(𝛾𝑘𝑣1𝑧1)+

+
(︁
𝑇

(2)
𝑘 𝐽0(𝛼𝑘𝑟) + 𝑇

(1)
𝑘 2𝑌0(𝛼𝑘𝑟)

)︁
𝑆3(𝛼𝑘𝑧1)

]︁
,

𝐼𝑣(𝑥) — функцiя Бесселя уявного аргументу, 𝑆1 = 𝐶𝑘 sin(𝛾𝑘𝑣1𝑧1)+𝐷𝑘 cos(𝛾𝑘𝑣1𝑧1),
𝑆2 = 𝐸𝑘 sh(𝛼𝑘𝑧1) + 𝐹𝑘 ch(𝛼𝑘𝑧1), 𝑆3 = 𝑁𝑘 sh(𝛼𝑘𝑧1) +𝑀𝑘 ch(𝛼𝑘𝑧1), 𝐶𝑘, 𝐷𝑘, 𝐸𝑘, 𝐹𝑘,
𝑁𝑘, 𝑀𝑘, 𝐴

(1)
𝑘 , 𝐴(2)

𝑘 , 𝐵(1)
𝑘 , 𝐵(2)

𝑘 , 𝑇 (1)
𝑘 , 𝑇 (2)

𝑘 — деякi сталi коефiцiєнти, 𝛼𝑘, 𝛾𝑘 — вла-
снi значення задачi (2)–(5). Тодi напружено-деформований стан у попередньо
напруженому кiльцевому штампi для стисливих (нестисливих) тiл та рiвних
коренiв рiвняння [14], iз врахуванням граничних умов (2)–(5), представимо у
виглядi

𝑈 ′(3)
𝑟 =

𝜀𝜔2

𝑅1

∞∑︁
𝑘=1

{︂
−2𝐴0𝑟 + 𝛼𝑘

[︂
𝑌1(𝛼𝑘𝑟)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽1(𝛼𝑘𝑟)

]︂
×

×
(︂
𝛼𝑘
𝑣1

(𝐸𝑘 ch(𝛼𝑘𝑧1) + 𝐹𝑘 sh(𝛼𝑘𝑧1)) + (1 + 𝛼𝑘𝑧1)𝑀𝑘(ch(𝛼𝑘𝑧1) + sh(𝛼𝑘𝑧1))

)︂}︂
𝑇𝑘,

𝑄′(3)
3𝑟 =

𝐶44

𝑣1

∞∑︁
𝑘=1

{︂
𝛼2
𝑘

[︂
𝑌1(𝛼𝑘𝑟)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽1(𝛼𝑘𝑟)

]︂ ⟨
(1 +𝑚1)𝛼𝑘

(︂
1

𝑣1

(︀
𝐸𝑘 sh(𝛼𝑘𝑧1)+

+𝐹𝑘 ch(𝛼𝑘𝑧1)
)︀
+
(︀
sh(𝛼𝑘𝑧1) + ch(𝛼𝑘𝑧1)

)︀
𝑀𝑘

)︂
+ (1 +𝑚2)(sh(𝛼𝑘𝑧1) + ch(𝛼𝑘𝑧1))𝑀𝑘

⟩}︂
𝑇𝑘,

𝑈 ′(3)
3 =

1

𝑛1

∞∑︁
𝑘=1

{︂
𝛼𝑘

[︂
𝑌1(𝛼𝑘𝑟)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽1(𝛼𝑘𝑟)

]︂
×

×
⟨(︀
𝑚1ℎ𝛼𝑘 − (𝑚2 − 1)𝑣1

)︀(︀
ch(𝛼𝑘𝑧1)− sh(𝛼𝑘𝑧1)

)︀
𝑀𝑘−

−𝑚1𝛼𝑘(𝐹𝑘 ch(𝛼𝑘𝑧1)− 𝐸𝑘 sh(𝛼𝑘𝑧1))+

+
4

𝑛1

[︀
𝑚1(𝛼

2
𝑘 − ℎ) + (1−𝑚2)ℎ

]︀
𝐴0

⟩}︂
𝑇𝑘,

(8)

𝑄′(3)
33 = 𝐶44

∞∑︁
𝑘=1

{︂⟨
𝛼3
𝑘

𝑣1
(1 +𝑚1)𝑙1

[︂
𝑌1(𝛼𝑘𝑟)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽1(𝛼𝑘𝑟)

]︂
×

×
(︀
𝐹𝑘 ch(𝛼𝑘𝑧1)− 𝐸𝑘 sh(𝛼𝑘𝑧1)

)︀
𝑇𝑘 + (1 +𝑚2)𝑙2𝛼

2
𝑘

(︀
sh(𝛼𝑘𝑧1)− ch(𝛼𝑘𝑧1)

)︀
𝑀𝑘

⟩
+

+4𝑙2(1 +𝑚2)𝐴0

}︂
𝑇𝑘,

де

𝜔2 =
𝑣31

𝑚1(𝑠3 − 𝑠2)
,

𝐴0 =
1

2(1 + 𝑐0 − 2𝑐1 + 2𝑐2)

∞∑︁
𝑘=1

𝛼2
𝑘

[︂
𝑌1(𝛼𝑘𝑅1)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽0(𝛼𝑘𝑅1)

]︂
,
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𝑀𝑘 =
(1 +𝑚1)

[︁
sh
(︁
𝛼𝑘ℎ
𝑣1

)︁
+ ch

(︁
𝛼𝑘ℎ
𝑣1

)︁]︁
(𝑐0 + 𝑐1)

[︁
ch
(︁
𝛼𝑘ℎ
𝑣1

)︁
− sh

(︁
𝛼𝑘ℎ
𝑣1

)︁]︁⟨
(1 +𝑚2) + (1 +𝑚1)

(︁
𝛼𝑘 − (𝑐0−𝑐1+𝛼𝑘𝑐2)

(𝑐1+𝑐0)

)︁⟩ ,
𝐹𝑘 = − 𝑣1

𝛼𝑘(𝑐0 + 𝑐1)
− 𝑣1(𝑐0 − 𝑐1 + 𝛼𝑘𝑐2)

𝛼𝑘(𝑐0 + 𝑐1)
𝑀𝑘,

𝐸𝑘 =
𝑣1

𝛼𝑘(𝑐0 + 𝑐1)
− 𝑣1(𝑐0 − 𝑐1 + 𝛼𝑘𝑐2)

𝛼𝑘(𝑐0 + 𝑐1)
𝑀𝑘,

𝑐0 =

{︃
𝜔′

1111𝜔
′−1
1122;

𝜆1𝑞1(𝜆3𝑞3)
−1(𝜅′1133 + 𝜅′1313)𝜅

′−1
1122;

𝑐𝑖 =

{︃
𝜆3𝜔

′
1133𝑚𝑖𝜔

′−1
1122𝑛

−1
𝑖 ;

(𝜅′1133𝑚𝑖 − 𝜅′3113)𝜅
′−1
1122𝑛

−1
𝑖 ;

(𝑖 = 1, 2), 𝑇𝑘 — шуканi сталi.
Використовуючи розв’язок для штампа (8) та задовольняючи третiй умо-

вi (2), другiй умовi (3), знаходимо власнi значення задачi (2)–(5) для рiвних
коренiв визначального рiвняння [9] (𝑛1 = 𝑛2):

𝛾𝑘 — розв’язок рiвняння 𝐼1(𝛾𝑘𝑣1𝑅2)𝐾1(𝛾𝑘𝑣1𝑅1)− 𝐼1(𝛾𝑘𝑣1𝑅1)𝐾1(𝛾𝑘𝑣1𝑅2) = 0,

𝛼𝑘 =
𝜇𝑘
𝑅1

(𝐽1(𝜇𝑘)𝑌1(𝜇𝑘𝑅2𝑅
−1
1 )− 𝑌1(𝜇𝑘)𝐽1(𝜇𝑘𝑅2𝑅

−1
1 ) = 0),

де 𝜇𝑘 — розв’язок рiвняння 𝐽1(𝜇𝑘) = 0.
Iз граничних умов (3) маємо 𝐶0 = 𝐶𝑘 = 0. Також, задовольнивши першу

умову (1), визначимо невiдому функцiю 𝐹 (𝜂) для (6) з потрiйних iнтегральних
рiвнянь:

∞∫︁
0

𝐹 (𝜂)𝐽0(𝜂𝑟)𝑑𝜂 = 0, (𝑅2 < 𝑟 <∞),

∞∫︁
0

𝐹 (𝜂)

𝜂
𝐽0(𝜂𝑟)𝑑𝜂 = 𝑓(𝑟), (𝑅1 < 𝑟 < 𝑅2), (9)

∞∫︁
0

𝐹 (𝜂)𝐽0(𝜂𝑟)𝑑𝜂 = 0, (0 < 𝑟 < 𝑅1),

де

𝑓(𝑟) = 𝜀+
𝛼𝑘
𝑛1

[︂(︀
𝛼𝑘ℎ𝑚1 − 𝑣1(𝑚1 − 1)

)︀(︂
ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− sh

(︂
𝛼𝑘ℎ

𝑣1

)︂)︂
𝑀𝑘−

−𝑚1𝛼𝑘

(︂
𝐹𝑘 ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− 𝐸𝑘 sh

(︂
𝛼𝑘ℎ

𝑣1

)︂)︂
·
[︂
𝑌0(𝛼𝑘𝑟)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽0(𝛼𝑘𝑟)

]︂
𝑇𝑘+

+
4

𝑛1

[︀
𝑚1(𝛼

2
𝑘 − ℎ) + (1 +𝑚2)ℎ

]︀
𝐴0𝑇𝑘.

Далi з потрiйних iнтегральних рiвнянь (9) та перших граничних умов (2)–
(3) визначимо невiдому функцiю 𝐹 (𝜂) для (6) через нескiнченну систему кон-
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стант 𝑇𝑘

𝐹 (𝜂)

𝜂
=

2

𝜋

(︃
𝜀𝜓0(𝜂, 0) +

∞∑︁
𝑘=1

⟨
𝛼𝑘
𝑚1

𝑇𝑘

[︃(︂
𝛼𝑘ℎ𝑚1−

−𝑣1(𝑚1 − 1)

(︂
ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− sh

(︂
𝛼𝑘ℎ

𝑣1

)︂)︂)︂
𝑀𝑘𝜓0(𝜂, 0)−

−𝛼𝑘𝑚1

(︂
𝐹𝑘 ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− 𝐸𝑘 sh

(︂
𝛼𝑘ℎ

𝑣1

)︂)︂]︃(︂
𝜓0(𝜂, 0)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝜓0(𝜂, 𝜇𝑘)

)︂)︃
+

+
4

𝑛1

[︀
𝑚1(𝛼

2
𝑘 − ℎ) + (1−𝑚2)ℎ

]︀
𝐴0𝑇𝑘𝜓0(𝜂, 0)

⟩
,

(10)

де

𝜓(𝜂, 0) =
sin 𝜂

𝜂
, 𝜓(𝜂, 𝜇𝑘) =

𝜂 sin 𝜂 cos𝜇𝑘 − 𝜇𝑘 sin𝜇𝑘 cos 𝜂

𝜂2 − 𝜇2
𝑘

.

З другої умови (2) отримаємо:

∞∫︁
0

𝐹 (𝜂)𝐽0(𝜂𝜌)𝑑𝜂 =
𝑅1

(1 +𝑚1)𝑙1(𝑠− 𝑠0)

∞∑︁
𝑘=1

{︂[︂
𝑌0(𝛼𝑘𝜌)−

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝐽0(𝛼𝑘𝜌)

]︂
×

×
(︂
𝛼3
𝑘(1 +𝑚1)𝑙1

𝑣1
·
[︂
𝐹𝑘 ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− 𝐸𝑘 sh

(︂
𝛼𝑘ℎ

𝑣1

)︂]︂
+

+𝛼2
𝑘(1 +𝑚2)𝑙2𝑀𝑘

[︂
sh

(︂
𝛼𝑘ℎ

𝑣1

)︂
− ch

(︂
𝛼𝑘ℎ

𝑣1

)︂]︂)︂
+ 4(1 +𝑚2)𝑙2𝐴0

}︂
𝑇𝑘,

(11)

де 𝜌 = 𝑟−𝑅1

𝑅2−𝑅1
— безрозмiрна координата.

Проiнтегруємо рiвнiсть (11) по 𝜌𝐽0(𝜇𝑛𝜌)𝑑𝜌:

1∫︁
0

𝜌𝐽0(𝜇𝑛𝜌)

∞∫︁
0

𝐹 (𝜂)𝐽0(𝜂𝜌)𝑑𝜂𝑑𝜌 =
𝑅1

(1 +𝑚1)𝑙1(𝑠− 𝑠0)

∞∑︁
𝑘=1

{︂[︂
𝑡
(1)
𝑛𝑘 −

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝑡
(2)
𝑛𝑘

]︂
×

(12)

×
(︂
𝛼3
𝑘(1 +𝑚1)𝑙1

𝑣1
·
[︂
𝐹𝑘 ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− 𝐸𝑘 sh

(︂
𝛼𝑘ℎ

𝑣1

)︂]︂
+

+𝛼2
𝑘(1 +𝑚2)𝑙2𝑀𝑘

[︂
sh

(︂
𝛼𝑘ℎ

𝑣1

)︂
− ch

(︂
𝛼𝑘ℎ

𝑣1

)︂]︂)︂
+

+4(1 +𝑚2)𝑙2𝐴0
𝑅2𝐽1(𝜇𝑛𝑅2)−𝑅1𝐽1(𝜇𝑛𝑅1)

𝜇𝑛

}︂
𝑇𝑘,

де

𝑡
(1)
𝑛𝑘 =

𝑅1𝛼𝑘𝐽0(𝜇𝑛𝑅1)𝑌1(𝛼𝑘𝑅1)−𝑅1𝜇𝑛𝐽1(𝜇𝑛𝑅1)𝑌0(𝛼𝑘𝑅1)

𝜇2
𝑛 − 𝛼2

𝑘

+

+
𝑅2𝜇𝑛𝐽1(𝜇𝑛𝑅2)𝑌1(𝛼𝑘𝑅2)−𝑅2𝛼𝑘𝐽0(𝜇𝑛𝑅2)𝑌1(𝛼𝑘𝑅2)

𝜇2
𝑛 − 𝛼2

𝑘

,
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𝑡
(2)
𝑛𝑘 =

𝑅1𝛼𝑘𝐽0(𝜇𝑛𝑅1)𝐽1(𝛼𝑘𝑅1)−𝑅1𝜇𝑛𝐽1(𝜇𝑛𝑅1)𝐽0(𝛼𝑘𝑅1)

𝜇2
𝑛 − 𝛼2

𝑘

+

+
𝑅2𝜇𝑛𝐽1(𝜇𝑛𝑅2)𝐽1(𝛼𝑘𝑅2)−𝑅2𝛼𝑘𝐽0(𝜇𝑛𝑅2)𝐽1(𝛼𝑘𝑅2)

𝜇2
𝑛 − 𝛼2

𝑘

.

При обчисленнi (12) використовуємо значення iнтегралiв:

1∫︁
0

𝜌𝐽0(𝜇𝑛𝜌)

∞∫︁
0

𝜂𝜓0(0, 𝜂)𝐽0(𝜂𝜌)𝑑𝜂𝑑𝜌 = 𝜓0(0, 𝜇𝑘),

∞∫︁
0

𝜂𝜓(𝜂, 𝜇𝑘)

1∫︁
0

𝜌𝐽0(𝜇𝑛𝜌)𝐽0(𝜂𝜌)𝑑𝜌𝑑𝜂 = 𝜓(𝜇𝑛, 𝜇𝑘).

А для вiдшукання невiдомих 𝑇𝑘, (𝑘 = 0, 1, 2, . . .), що входять до (6), (7) та
(10) отримаємо нескiнченну систему

𝛼̃𝑘𝑇𝑘 +
∞∑︁
𝑛=0

𝛼̃𝑘𝑛𝑇𝑛 = 𝛽𝑘, (𝑘 = 0, 1, 2, . . .), (13)

де

𝛽𝑘 = −2𝜀𝜛𝑘

𝜋
; 𝛼̃𝑘 =

8

𝜋𝑛1

(𝑚1(𝛼
2
𝑘 − ℎ) + (1−𝑚2))𝐴0𝜛𝑘;

𝛼̃𝑘𝑛 =
𝑅1

(1 +𝑚1)𝑙1(𝑠− 𝑠0)

∞∑︁
𝑛=1

{︂[︂
𝑡
(1)
𝑛𝑘 −

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝑡
(2)
𝑛𝑘

]︂(︂
𝛼3
𝑘(1 +𝑚1)𝑙1

𝑣1
×

×
[︂
𝐹𝑘 ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− 𝐸𝑘 sh

(︂
𝛼𝑘ℎ

𝑣1

)︂]︂
+ 𝛼2

𝑘(1 +𝑚2)𝑙2𝑀𝑘×

×
[︂
sh

(︂
𝛼𝑘ℎ

𝑣1

)︂
− ch

(︂
𝛼𝑘ℎ

𝑣1

)︂]︂)︂
+ 4(1 +𝑚2)𝑙2𝐴0

𝑅2𝐽1(𝜇𝑛𝑅2)−𝑅1𝐽1(𝜇𝑛𝑅1)

𝜇𝑛

}︂
−

− 2

𝜋

∞∑︁
𝑛=1

⟨
𝛼𝑘
𝑚1

[︂
(𝛼𝑘ℎ𝑚1 − 𝑣1(𝑚1 − 1))

(︂
ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− sh

(︂
𝛼𝑘ℎ

𝑣1

)︂)︂
𝑀𝑘𝜛𝑘−

− 𝛼𝑘𝑚1

(︂
𝐹𝑘 ch

(︂
𝛼𝑘ℎ

𝑣1

)︂
− 𝐸𝑘 sh

(︂
𝛼𝑘ℎ

𝑣1

)︂)︂]︂(︂
𝜛𝑘 −

𝑌1(𝛼𝑘𝑅1)

𝐽1(𝛼𝑘𝑅1)
𝜓0(𝜇𝑛, 𝜇𝑘)

)︂)︂⟩
,

𝜛𝑘 =
(−1)𝑘

[︁
𝑅

2(𝑘+1)
2 𝜏𝑘(𝑅2)−𝑅

2(𝑘+1)
1 𝜏𝑘(𝑅1)

]︁
22𝑛+1(𝑘 + 1)𝑘!(𝑘 + 1)

,

де

𝜏𝑘(𝑥) =
∞∑︁
𝑛−0

𝑥2𝑛Γ(2 + 𝑘)Γ(0.5 + 𝑛)Γ(𝑛+ 1 + 𝑘)

𝑛!Γ(2 + 𝑛+ 𝑘)Γ(0.5)Γ(1 + 𝑘)
.

Вiдмiтимо, що коефiцiєнти системи (13) залежать вiд величин, що визнача-
ють структуру пружного потенцiалу та висоти i радiусiв кiльцевого штампа.
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Використавши умову рiвноваги (5), встановимо зв’язок мiж осiданням та
рiвнодiйною навантаження у виглядi

𝑃 = 4𝜋𝜀𝐶44(1 +𝑚2)𝑙2(𝑅
2
1 −𝑅2

2)𝐴0𝑇0.

Визначивши невiдомi сталi 𝑇𝑘, (𝑘 = 0, 1, 2, . . .) iз системи лiнiйних алге-
браїчних рiвнянь (13), обчислимо компоненти перемiщень та напружень як у
пружних пiвпросторах, так i у пружному кiльцевому штампi за формулами (6)
та (8).

4. Висновок. В статтi представлено аналiтичнi розв’язки актуальної кон-
тактної задачi в рамках лiнеаризованої теорiї пружностi для сучасного маши-
нобудування та будiвництва споруд, машин та iнженерних конструкцiй, а саме
— задачу про тиск двох попередньо напружених пiвпросторiв на пружний кiль-
цевий цилiндричний штамп з початковими напруженнями без врахування сил
тертя. Розв’язки цiєї задачi поданi у виглядi рядiв через нескiнченну систему
сталих величин 𝜒𝑘, (𝑘 = 0, 1, 2, . . .), якi визначаються iз системи лiнiйних алге-
браїчних рiвнянь (13) методом утинання.

Отже, розв’язок даної задачi дає змогу розширити коло наукових дослi-
джень у межах механiки деформованого твердого тiла.

Список використаної лiтератури
1. Чеканович М. Г. Метод одночасного попереднього напруження i пересування залiзобетон-

них конструкцiй. Таврiйський науковий вiсник. Серiя: Технiчнi науки. № 3. С. 198–204.
DOI: https://doi.org/10.32851/tnv-tech.2022.3.22

2. Zharko L., Tarasiuk V., Ovchar V., Boretskaia N., Belokon А., Tashchilova А. Ризики та
дефекти стикування арматурних стрижнiв опресовуванням муфт. Наука та будiвництво.
Т. 18, № 4. С. 60–64. DOI: https://doi.org/10.33644/scienceandconstruction.v18i4.58

3. Veliyev Q. J., Ipek C. The Influence of the Material Properties of an Inhomogeneous Pre-
Stressed Hollow Cylinder Containing an Inviscid Fluid on the Dispersion of Quasi-Scholte
Waves. Int Appl Mech. 2023. Vol. 59. P. 619–629. DOI: https://doi.org/10.1007/s10778-024-
01246-0

4. Грилицкий Д. В., Кизыма Я. М. Осесимметричные контактные задачи теории упругости
и термоупругости. Львов : Вища шк., 1981. 136 с.

5. Semenyuk N. P., Zhukova N. B. Stability of a Sandwich Cylindrical Shell with Core Subject to
External Pressure and Pressure in the Inner Cylinder. International Applied Mechanics. 2020.
Vol. 56, No. 1. Р. 40–53. DOI: https://doi.org/10.1007/s10778-020-00995-y

6. Guz A. N. On General List of References to the Monograph “Eight Non-Classical Problems
of Fracture Mechanics”. International Applied Mechanics. 2022. Vol. 58, No. 1. Р. 1–29. DOI:
https://doi.org/10.1007/s10778-022-01131-8

7. Kaminsky A. O., Kurchakov E. E. Tensor-Nonlinear Constitutive Equations for an Elastic
Body with Primary Anisotropy. International Applied Mechanics. 2022. Vol. 58, No. 2. P. 154–
159. DOI: https://doi.org/10.1007/s10778-022-01142-5

8. Гузь А. Н., Бабич С. Ю., Глухов Ю. П. Смешанные задачи для упругого основания
с начальными напряжениями. Saarbrücken : LAPLAMBERT Academic Publishing, 2015.
468 c.

9. Гузь А. Н., Рудницкий В. Б. Основы теории контактного взаимодействия упругих тел с
начальными (остаточными) напряжениями [Текст]. Хмельницький : вид. ПП Мельник,
2006. 710 с.

10. Guz А. N. Eight Non-Classical Problems of Fracture Mechanics. Cham : Springer, 2021. 366 р.
11. Yarets’ka N. Contact Problems for Cylindrical Stamps and Elastic Bodies with Initial (Resi-

dual) Stresses : Edited by: Guz A. N., Altenbach H., Bogdanov V., Nazarenko V. M. Advances
in Mechanics. Vol. 191. Advanced Structured Materials. Springer : Cham, 2023. P. 517–546.
DOI: https://doi.org/10.1007/978-3-031-37313-8_29

12. Yaretska N. O. Mathematical model and solution of spatial contact problem for prestressed

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



136 С. Ю. БАБИЧ, Н. О. ЯРЕЦЬКА, В. Ф. ЛАЗАР , Ю. Ю. МЛАВЕЦЬ

cylindrical punch and elastic layer. Innovative paradigm of the development of modern physical-
mathematical sciences: Collective monograph. Riga, Latvia : “Baltija Publishing”, 2022. Р. 261–
295. DOI: https://doi.org/10.30525/978-9934-26-200-5-10

13. Altenbach H., Bogdanov V., Bulat A., Guz A., Nazarenko V. A Brief Review of the
Development of Mechanics in the National Academy of Sciences of Ukraine : Advances in
Mechanics. Vol. 191. Advanced Structured Materials. Springer : Cham, 2023. P. 1–19. DOI:
https://doi.org/10.1007/978-3-031-37313-8_1

14. Babich S. Yu., Glukhov Y. P. On One Dynamic Problem for a Multilayer Half-Space wi-
th Initial Stresses. International Applied Mechanics. 2021. Vol. 57, No. 1. Р. 43–52. DOI:
http://doi.org/10.1007/s10778-021-01061-x

15. Дiхтярук М. М., Кравчук О. А. Дослiдження поля впливу пружних перемiщень i на-
пружень для попередньо напруженної смуги вiд дiї зосередженої сили. Науковий вiсник
Ужгородського унiверситету. Серiя «Математика i iнформатика». 2022. Т. 40, № 1.
С. 146–154. DOI: https://doi.org/10.24144/2616-7700.2022.40(1).146-154

16. Habrusiev H., Habrusieva I., Shelestovskyi B. Simulation of a pre-deformed plate compressi-
on by two indenters of complex shape. Scientific Journal of the Ternopil National Technical
University. 2023. Vol. 112, No. 4. Р. 91–101.

17. Бабич С. Ю., Ярецька Н. О., В. Ф. Лазар, Н. П. Щекань. Аналiтичнi розв’язки статичної
задачi про тиск попередньо напружених пiвпросторiв та пружного цилiндра з початко-
вими напруженнями. Науковий вiсник Ужгородського унiверситету. Серiя «Матема-
тика i iнформатика». 2022. Т. 41, № 2. С. 91–102. DOI: https://doi.org/10.24144/2616-
7700.2022.41(2).91-102

18. Бабич С. Ю., Глухов Ю. П., Лазар В. Ф. Динамiчнi процеси в тiлах (матерiалах) з поча-
тковими напруженнями. Частина 3. Динамiчнi процеси у пружному двохшаровому пiв-
просторi з початковими напруженнями при дiї рухомих навантажень. Науковий вiсник
Ужгородського унiверситету. Серiя «Математика i iнформатика». 2021. Т. 39, № 2.
С. 116–124. DOI: https://doi.org/10.24144/2616-7700.2021.39(2).116-124

19. Шелестовський Б., Габрусєва I. Стиснення двома жорсткими кiльцевими штампами iзо-
тропного шару з наявними залишковими деформацiями. Вiсник ТНТУ. 2012. Т. 66, № 2.
С. 82–88.

Babich S. Yu., Yaretska N. O., Lazar V. F. , Mlavets Yu. Yu. Analytical
solution of the contact problem for pre-stressed two half-spaces and an ring stamp.

The article presents an analytical solution to the contact problem for two elastic half-
spaces with initial stresses and a prestressed ring stamp, without considering frictional
forces. We will assume that the surfaces outside the contact boundary of the ring stamp
and the half-spaces remain free from the influence of external forces, and at the contact
boundary displacements and stresses are continuous. The problem is solved in the case
of equal roots of the defining equation. The study is presented in a general form for the
theory of large initial strains and two variants of the theory of small initial strains within
the linearized theory of elasticity with an arbitrary structure of the elastic potential.

It is assumed that the initial states of the elastic ring stamp and the elastic bases
are homogeneous and equal. The research is carried out in the coordinates of the initial
deformed state, which are related to the Lagrangian coordinates. In addition, the influence
of the ring stamp causes small perturbations of the corresponding values of the basic
stress-strain state. It is also assumed that the elastic ring stamp and the elastic half-
spaces are made of different isotropic, transversally isotropic or composite materials. In
the case of orthotropic bodies, we will assume that the elastically equivalent directions
coincide with the direction of the coordinate axes in the deformed state. As a result, the
solutions of the given problem are presented in the form of infinite series, the coefficients of
which are determined from an infinite quasi-regular system of algebraic equations. Several
fundamental results, such as the Hankel transformation, triple integral equations, and other
methods of the theory of contact problems of the linearized theory of elasticity, are used
to study this problem.

In the article also establishes the connection between sinking and the corresponding
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burden. Therefore, with the help of the obtained solutions, it is possible to study the influ-
ence of initial (residual) stresses on the distribution of contact stresses and displacements
in two elastic half-spaces and an elastic ring stamp.

Keywords: linearized theory of elasticity, initial (residual) stresses, contact problem, ring
stamp, half-space, integral equations.
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ДИНАМIЧНI МОДЕЛI ОПТИМIЗАЦIЇ ТРАНСПОРТНИХ
ПОТОКIВ

Стаття розглядає критичнi виклики оптимiзацiї транспортних потокiв у динамi-
чних та непередбачуваних умовах, особливо пiд час воєнних дiй та порушення iн-
фраструктури, як це спостерiгається в Українi. У нiй наголошується на недолiках
традицiйних статичних моделей управлiння транспортом, якi не можуть адаптувати-
ся до змiн у реальному часi, таких як блокування дорiг, руйнування або збiльшення
трафiку через об’їзди.

Запропонований пiдхiд базується на використаннi динамiчних моделей оптимiза-
цiї, що ґрунтуються на задачi розмiщення, для врахування часової та просторової
змiнностi у транспортних мережах. Цi моделi iнтегрують зовнiшнi фактори, такi як
погоднi умови, аварiї та пошкодження iнфраструктури. Використання математичних
методiв дозволяє визначити оптимальнi вузли транспортної iнфраструктури та сприяє
оптимiзацiї маршрутiв у реальному часi з метою мiнiмiзацiї затримок i транспортних
витрат.

У дослiдженнi пiдкреслено трансформацiйний потенцiал штучного iнтелекту та
машинного навчання у аналiзi великих обсягiв даних, зокрема супутникових зобра-
жень, для адаптивного управлiння транспортними потоками. Завдяки алгоритмам,
керованим ШI, система може динамiчно коригувати маршрути, прогнозувати затори
та оперативно реагувати на змiни в iнфраструктурi. Приклади глобальних iнтеле-
ктуальних транспортних систем у мiстах, таких як Сiнгапур i Токiо, демонструють
ефективнiсть подiбних технологiй у пiдвищеннi ефективностi та безпеки руху.

Ключовi слова: динамiчнi моделi, транспортнi потоки, оптимiзацiя, дискретна за-
дача розмiщення, транспортна мережа.

1. Вступ. Оптимiзацiя транспортних потокiв в умовах сучасної вiйни та непе-
редбачуваних змiн в iнфраструктурi є одним iз найактуальнiших викликiв для
логiстики та управлiння мiськими системами. Зокрема, пiд час вiйськових дiй
в Українi, транспортнi шляхи можуть бути заблокованi, зруйнованi або тим-
часово непроїзнi внаслiдок ракетних чи дронових атак. Це створює додатковi
труднощi для забезпечення безперервностi транспортних операцiй та потребує
негайної адаптацiї транспортної мережi до нових умов.

Класичнi моделi управлiння транспортом, що ґрунтуються на статичних по-
казниках, виявляються недостатньо гнучкими, оскiльки вони не здатнi врахо-
вувати непередбачуванi змiни, такi як пошкодження iнфраструктури, раптове
перекриття шляхiв чи зростання трафiку через перенаправлення потокiв на
об’їзнi шляхи. У таких умовах постає завдання розробки новiтнiх пiдходiв до
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управлiння транспортними потоками, якi б iнтегрували можливостi штучного
iнтелекту та аналiзу супутникових знiмкiв.

Актуальним стає використання динамiчних моделей оптимiзацiї транспорт-
них потокiв, якi враховують не лише поточнi обставини, але й здатнi прогно-
зувати змiни в умовах транспортної мережi. Одним з таких пiдходiв є засто-
сування дискретної задачi розмiщення, яка дозволяє ефективно моделювати
розташування ключових вузлiв транспортної iнфраструктури (дороги, мости,
контрольнi пункти), а також оптимiзувати маршрути з урахуванням їх змiн у
реальному часi.

Враховуючи складнi умови, що склалися в Українi пiд час вiйни, проблема
оптимiзацiї транспортних потокiв стає критично важливою. Вона має страте-
гiчне значення як для забезпечення вiйськової логiстики, так i для пiдтримки
громадянської iнфраструктури. Застосування супутникових знiмкiв, проаналi-
зованих штучним iнтелектом, може суттєво покращити ефективнiсть i безпеку
транспортних операцiй, а також сприяти швидшому вiдновленню пошкоджених
шляхiв.

2. Аналiз останнiх дослiджень i публiкацiй. В останнi роки дослiдже-
ння оптимiзацiї динамiчних транспортних мереж з використанням дискретних
моделей розташування досягли значного прогресу. Декiлька вчених зробили
внесок у цю сферу, iнтегрувавши сучаснi обчислювальнi методи та пiдкрiплю-
юче навчання в iснуючi моделi для обробки динамiчних змiн у транспортних
системах у реальному часi.

Дослiдження Чена i Ванга [1] пiдкреслили обмеження статичних моделей,
просуваючи дослiдження динамiчної оптимiзацiї, де розглядаються змiни в об-
сягах трафiку та варiабельностi маршруту. Остання робота Десолньєрса [2] зо-
середжена на математичних моделях для оптимiзацiї транспортування, вносячи
ключовi iдеї щодо того, як справлятися з обчислювальною складнiстю великих
мереж.

Роботи Оладимеджи [3], пiдкреслюють важливiсть використання IoT для
управлiння транспортними потоками в розумних мiстах. Цi дослiдження вклю-
чають застосування великих даних i машинного навчання для оптимiзацiї мар-
шрутiв, управлiння паркуванням, освiтленням та виявлення аварiй.

Це особливо актуально для адаптивних систем, що працюють в реально-
му часi. Александрос Нiкiтас [4] детально дослiджують зв’язок мiж штучним
iнтелектом i транспортними системами у контекстi розумного мiста. Автори
пiдкреслюють потенцiал CAV (connected and autonomous vehicles), безпiлотних
лiтальних апаратiв та концепцiї MaaS (мобiльнiсть як послуга) для пiдвищення
ефективностi мiського транспорту. Ця робота пропонує системний аналiз то-
го, як новi технологiї можуть сприяти сталому розвитку мiських транспортних
систем.

Дослiдження Чохолаца в 2020 роцi [5] присвячено проблемам мiської логi-
стики i трендам у застосуваннi нових технологiй для оптимiзацiї мiських транс-
портних мереж. Автори систематично дослiджують тенденцiї, виклики та мо-
жливостi iнтеграцiї рiзних технологiй для пiдвищення ефективностi мiського
транспорту.

Всi цi нещодавнi досягнення мають вирiшальне значення для побудови бiльш
надiйних i адаптивних транспортних систем, але все ще iснують проблеми з

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика



ДИНАМIЧНI МОДЕЛI ОПТИМIЗАЦIЇ ТРАНСПОРТНИХ ПОТОКIВ 141

масштабуванням цих рiшень для великих мереж. Крiм того, застосування їх у
гетерогенних середовищах, таких як мультимодальнi або мiжнароднi перевезе-
ння, все ще є сферою розвитку.

Незважаючи на те, що дослiдження надали потужнi обчислювальнi iнстру-
менти, практичне застосування залишається складним i потребує подальших
дослiджень, щоб ефективно впоратися з конкретними порушеннями, такими як
змiни навколишнього середовища чи iнфраструктури. Вiдповiдно, вище зазна-
чене вказує на поступовiсть розрив мiж теоретичними моделями та практични-
ми реалiзацiями, просуваючись до бiльш ефективної та стiйкої транспортної
iнфраструктури з 2024 року.

3. Основнi результати. Сучаснi транспортнi системи перебувають пiд
постiйним тиском через швидке зростання урбанiзацiї, збiльшення обсягiв пе-
ревезень i необхiднiсть врахування багатьох змiнних факторiв, таких як погода,
затори, аварiї, коливання попиту чи якiсть дорожнього покриття.

В таких умовах важливою задачею є пошук ефективних рiшень для управлi-
ння транспортними потоками, що дозволить зменшити затримки та пiдвищити
ефективнiсть пересування.

Одним iз перспективних пiдходiв до вирiшення цього завдання є використа-
ння динамiчних моделей оптимiзацiї транспортних потокiв на основi дискретної
задачi розмiщення.

Динамiчнi моделi, що враховують змiннi фактори, такi як погоднi умови,
аварiї, сезоннi коливання, та iншi зовнiшнi впливи, стають основою для вирi-
шення цього завдання.

Дискретна задача розмiщення (FLP) є класичною математичною задачею,
в якiй потрiбно знайти оптимальнi мiсця для розташування певних об’єктiв у
мережi (наприклад, складiв, транспортних вузлiв або термiналiв) для мiнiмiза-
цiї витрат або часу транспортування. Ця модель є основою багатьох рiшень для
транспортних систем i використовується для оптимального планування транс-
портної iнфраструктури [6].

Наприклад, вона допомагає визначати, де найкраще розмiстити склади, щоб
мiнiмiзувати витрати на транспортування товарiв або максимiзувати ефектив-
нiсть доставки пасажирiв громадським транспортом.

Проте класичнi моделi дискретної задачi розмiщення не враховують змiннi
умови, що виникають у реальних транспортних системах. У таких умовах ви-
користання динамiчних моделей стає необхiдним для адаптацiї до змiни транс-
портних потокiв, трафiку та iнших факторiв.

Динамiчнi моделi дозволяють не тiльки враховувати змiни у транспортнiй
системi в реальному часi, але й передбачати можливi сценарiї розвитку подiй.
Наприклад, цi моделi можуть використовувати данi про стан дорiг, iнтенсив-
нiсть руху, погоднi умови та навiть передбачення аварiй. Це дає змогу ефектив-
но перерозподiляти транспортнi потоки, забезпечуючи мiнiмiзацiю затримок та
оптимальне використання ресурсiв.

Використання динамiчних моделей у транспортних системах має кiлька клю-
чових переваг, а саме: адаптуватися до змiн та швидко реагувати на змiни умов,
таких як аварiї або затори, i перерозподiляти транспортнi потоки вiдповiдно до
нових умов; прогнозувати можливi затори або аварiї та пропонувати альтерна-
тивнi маршрути; дозволяють зменшити витрати на транспортування шляхом
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оптимiзацiї розмiщення логiстичних об’єктiв i планування маршрутiв.
Через необхiднiсть врахування змiни попиту на перевезення, змiни стану до-

рiг, а також можливих заторiв або аварiй було розроблено математичну модель,
що поєднує елементи класичної дискретної задачi розмiщення iз часопросторо-
вими обмеженнями.

Розглянемо на прикладi формули транспортну мережу, яка складається з
множини вузлiв 𝑁 та множини ребер 𝐸, що з’єднують цi вузли. Кожен вузол
𝑖 ∈ 𝑁 може бути кандидатом для розмiщення транспортного центру. Нехай
𝑓(𝑖, 𝑡) описує функцiю вартостi перевезення вiд вузла i до iнших вузлiв у момент
часу 𝑡, а 𝑑𝑖𝑗(𝑡) — функцiя попиту на перевезення мiж вузлами 𝑖 та 𝑗 у момент
часу 𝑡. Метою є мiнiмiзацiя загальних витрат перевезень протягом перiоду часу
𝑇 , що записується як:

min
𝑇∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓(𝑖, 𝑡) * 𝑑𝑖𝑗(𝑡).

До моделi можна iнтегрувати зовнiшнi фактори, такi як погоднi умови або
аварiї, через коригування функцiї вартостi 𝑓(𝑖, 𝑡). Наприклад, за умови заторiв
або аварiй, значення 𝑓(𝑖, 𝑡) збiльшується, що дозволяє динамiчно перерозподi-
ляти потоки через iншi вузли мережi.

Моделi дискретної задачi розмiщення (Facility Location Problem, FLP) засто-
совуються для визначення оптимальних локацiй транспортних вузлiв, таких як
склади або станцiї. Ця модель є важливою для проектування ефективних логi-
стичних систем, оскiльки дозволяє зменшити витрати на транспортування.

𝑍 =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗,

де 𝑍 — загальнi витрати на транспортування, 𝑐𝑖𝑗 — вартiсть транспортування
мiж точками 𝑖 та 𝑗, 𝑥𝑖𝑗 — бiнарна змiнна (1, якщо об’єкт розмiщено в точцi 𝑖
для обслуговування точки 𝑗, iнакше 0).

Основна мета моделi FLP полягає в оптимiзацiї витрат на транспортування
товарiв до кiнцевих споживачiв. Це досягається шляхом визначення оптималь-
них мiсць для розмiщення логiстичних центрiв. За допомогою математичних
моделей i алгоритмiв (таких як алгоритм гiлок i меж) можна швидко знаходи-
ти оптимальнi рiшення.

Використання FLP дозволяє зменшити загальнi витрати на логiстику, пiд-
вищити швидкiсть доставки та зменшити затори. Впровадження моделей ма-
шинного навчання в даному контекстi дозволяє адаптувати розмiщення вузлiв
в залежностi вiд змiни попиту, прогнозуючи, де будуть найбiльшi потреби.

Однак, моделi FLP можуть бути чутливими до змiн вхiдних параметрiв (на-
приклад, змiна витрат на транспортування). Крiм того, необхiднiсть у великiй
кiлькостi даних для моделювання може ускладнити їх застосування в мiстах з
нестабiльною iнфраструктурою.

Однiєю з найважливiших задач у процесi оптимiзацiї транспортних потокiв
є врахування впливу реальних умов, таких як погода, дорожнi роботи, аварiї
та iншi непередбачуванi фактори. Це значно ускладнює процес моделювання та

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика



ДИНАМIЧНI МОДЕЛI ОПТИМIЗАЦIЇ ТРАНСПОРТНИХ ПОТОКIВ 143

вимагає вiд моделей здатностi адаптуватися до змiни параметрiв у реальному
часi.

Для прикладу, адаптивна транспортна модель може включати змiннi, що
враховують перешкоди на дорогах або коливання в iнтенсивностi трафiку в рi-
зний час доби чи року. Таким чином, рiшення щодо оптимального розподiлу
потокiв можуть оновлюватися в реальному часi, забезпечуючи ефективне фун-
кцiонування транспортної мережi.

На основi аналiзу реальних даних було створено модель адаптацiї транспорт-
них потокiв для великого мiста, що враховує сезоннi коливання iнтенсивностi
руху, а також погоднi умови. На рисунку 1.1 наведено графiк змiни iнтенсив-
ностi трафiку протягом року у рiзних клiматичних умовах

Рис. 1. Змiна iнтенсивностi транспортного трафiку в столицi протягом 2023
року.

На графiку видно певнi сезоннi коливання iнтенсивностi транспортного тра-
фiку протягом року. Пояснимо, чим може бути спричинено зростання i падiння:

• Сiчень — Лютий: Iнтенсивнiсть трафiку низька через святковий сезон.
Новорiчнi та рiздвянi свята призводять до зниження дiлової активностi, а
багато людей беруть вiдпустки або проводять бiльше часу вдома, що змен-
шує кiлькiсть поїздок.

• Березень — Травень: Поступове зростання iнтенсивностi руху пояснює-
ться закiнченням зимових свят i вiдновленням економiчної активностi. Вже
в березнi помiтне збiльшення поїздок через повернення до роботи, навчан-
ня, а також покращення погодних умов.

• Червень — Серпень: Найвищi значення iнтенсивностi трафiку спостерi-
гаються в лiтнi мiсяцi. Це може бути пов’язано з вiдпустками, подорожами,
а також зростанням дiлової активностi. Важливо, що в цей перiод багато
людей вибираються за межi мiст, що також може впливати на пiдвищення
трафiку в певних напрямках.
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• Вересень: Легке зниження пiсля лiтнього пiку. Це пояснюється заверше-
нням вiдпусток i поверненням людей до роботи та навчання. Однак актив-
нiсть ще залишається високою через початок навчального року та поверне-
ння дiлової активностi.

• Жовтень — Листопад: У цi мiсяцi спостерiгається подальше зниження
iнтенсивностi руху через зниження туристичної активностi та пiдготовку
до зимового перiоду.

• Грудень: Невелике пiдвищення в груднi може бути зумовлене передсвя-
тковим перiодом, коли люди здiйснюють бiльше поїздок для покупок i пiд-
готовки до свят.

Таким чином, коливання на графiку є типовими для багатьох великих мiст
i пояснюються поєднанням сезонних, економiчних та соцiальних факторiв.

Оптимiзацiя транспортних потокiв за допомогою моделей лiнiйного програ-
мування є ще одним важливим аспектом, який дозволяє пiдвищити ефектив-
нiсть транспортних систем. Це передбачає визначення оптимального маршруту
для перевезення вантажiв або пасажирiв.

Основна мета оптимiзацiї полягає в мiнiмiзацiї загальних витрат на пере-
везення, що включає в себе як фiнансовi витрати, так i час у дорозi. Моделi
дозволяють планувати маршрути, що враховують не лише вiдстань, але й iншi
фактори, такi як затори, дорожнi роботи та погоднi умови.

Використання таких моделей дозволяє зменшити час очiкування та час у
дорозi, а також покращити загальну ефективнiсть транспортної системи. Впро-
вадження штучного iнтелекту дозволяє модифiкувати маршрути в реальному
часi, реагуючи на змiни в дорожнiй ситуацiї.

Однак, як i в попередньому випадку, моделi лiнiйного програмування мо-
жуть вимагати великої кiлькостi даних для точних розрахункiв. Крiм того,
реальнi умови можуть бути настiльки складними, що їх важко точно моделю-
вати.

Однак оптимiзацiя транспортних потокiв є важливою складовою сучасної
логiстики та управлiння транспортними системами. У зв’язку з рiзноманiтнiстю
умов та обмежень, що виникають у реальних транспортних системах, застосу-
вання рiзних методiв розв’язання ДЗР є вкрай складним, тому було проведено в
таблицi 1.1 порiвняльний аналiз кiлькох алгоритмiв, якi використовуються для
розв’язання дискретної задачi розмiщення. Серед них: алгоритм гiлок i меж,
евристичнi алгоритми та методи машинного навчання. Кожен з цих пiдходiв
має свої переваги та недолiки, що визначає їхню доцiльнiсть у залежностi вiд
специфiки задачi.

Алгоритм гiлок i меж (Branch and Bound, B&B) є класичним методом для
розв’язання задач оптимiзацiї, зокрема дискретних задач розмiщення. Цей пiд-
хiд базується на систематичному дослiдженнi всiх можливих варiантiв рiшень
шляхом роздiлення проблеми на пiдзадачi (гiлки) i визначення меж для можли-
вих оптимальних рiшень. Основна перевага алгоритму полягає в тому, що вiн
може знаходити оптимальнi рiшення, але зростання обчислювальної складностi
в разi великої кiлькостi змiнних робить його менш ефективним для масштабних
задач. Дослiдження показують, що алгоритм гiлок i меж є особливо ефектив-
ним для задач з невеликою кiлькiстю можливих рiшень, але вимагає значних
ресурсiв при вирiшеннi бiльш складних випадкiв [7].
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Евристичнi алгоритми пропонують практичнi рiшення, коли точне рiшення
є занадто затратним у часi. Цi алгоритми використовують наближенi методи
для швидкого отримання рiшень, якi можуть не бути оптимальними, але доста-
тньо близькими до нього. Прикладами є жадiбний алгоритм, генетичнi алгори-
тми та алгоритми симульованого вiдпалу. Вони демонструють високу швидкiсть
обчислень i можуть бути адаптованi до специфiки задачi, що робить їх дуже
корисними в умовах реального часу. Проте, оскiльки цi алгоритми не гаранту-
ють досягнення оптимального рiшення, їх використання вимагає обережностi i
глибокого аналiзу результатiв [8].

Методи машинного навчання, зокрема алгоритми класифiкацiї, регресiї та
нейроннi мережi, все бiльше впроваджуються в оптимiзацiю транспортних по-
токiв. Цi методи можуть аналiзувати великi обсяги даних, виявляти законо-
мiрностi та передбачати змiни в транспортних потоках на основi iсторичних
даних. Їх використання дозволяє забезпечити адаптивнiсть моделей, оскiльки
алгоритми можуть автоматично вдосконалюватися в процесi навчання, спира-
ючись на новi данi. Це робить їх особливо ефективними для складних систем,
де традицiйнi пiдходи можуть бути недостатнiми. Проте, вони також вимага-
ють значних обчислювальних ресурсiв i якiсних даних для навчання, що може
бути обмеженням для їх застосування [9].

Таблиця 1.
Порiвняння ефективностi методiв оптимiзацiї дискретної задачi розмiщення

Метод Основнi
характеристики Переваги Недолiки Приклади

застосування

Алгоритм гiлок
i меж

Використовує
систематичний

пiдхiд до
розв’язання

задачi.

Роздiляє
проблему на
пiдзадачi та

обмежує можливi
рiшення.
Гарантує

знаходження
оптимального

рiшення.

Пiдходить для
задач з

обмеженою
кiлькiстю

варiантiв.
Висока

обчислювальна
складнiсть при

великих розмiрах
задачi.

Час виконання
може бути

значним.
Оптимiзацiя
розмiщення
складiв у
логiстицi.

Евристичнi
алгоритми

Використовує
наближенi методи

для швидкого
отримання

рiшень.

Використовує
жадiбнi або
генетичнi

алгоритми.
Швидкiсть
обчислень.

Може працювати
з великими
даними.
Не гарантує
знаходження
оптимального

рiшення.

Результати
можуть

варiюватися.
Плани розподiлу

ресурсiв у
реальному часi.

Методи
машинного
навчання

Аналiзує великi
обсяги даних для

виявлення
закономiрностей.

Може
адаптуватися на

основi нових
даних. Висока

адаптивнiсть та
точнiсть.

Може працювати
з динамiчними
системами.

Потребує великої
кiлькостi

навчальних
даних.

Висока
обчислювальна
складнiсть.

Прогнозування
транспортних

потокiв у мiстах.

Вибiр методу для розв’язання дискретної задачi розмiщення залежить вiд
специфiки задачi та ресурсiв, доступних для її вирiшення. Кожен метод має
свої сильнi та слабкi сторони, якi слiд враховувати при розробцi оптимiзацiйних
рiшень у транспортних системах.

Протне як видно з таблицi, методи машинного навчання демонструють най-
вищу ефективнiсть при мiнiмальних затратах часу на обчислення. Однак, во-
ни вимагають значної кiлькостi навчальних даних та адаптацiї до конкретної
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транспортної системи.
Моделi машинного навчання, зокрема алгоритми, що використовуються для

прогнозування трафiку, є потужним iнструментом для адаптацiї моделей до
реальних умов. З їх допомогою можна аналiзувати великi обсяги даних, що
надходять з рiзних джерел, включаючи супутниковi знiмки, данi про затори та
погоду.

Основна мета використання машинного навчання полягає в пiдвищеннi то-
чностi прогнозiв. Алгоритми можуть враховувати безлiч факторiв, що впли-
вають на транспортнi потоки, i автоматично коригувати моделi в реальному
часi.

Переваги машинного навчання включають здатнiсть до самооптимiзацiї та
адаптацiї. Це дозволяє зменшити затори на дорогах, пiдвищити ефективнiсть
перевезень i зменшити викиди вуглекислого газу.

Проте, iснують ризики, пов’язанi з недостатньою надiйнiстю моделей, що
базуються на неповних або неточних даних. Крiм того, алгоритми можуть ви-
магати значних обчислювальних ресурсiв для навчання та застосування.

Хочеться зазначити, що прогресом у галузi оптимiзацiї транспортних пото-
кiв можна вважати впровадженням штучного iнтелекту (ШI).

У сучасних умовах, коли в Українi тривають вiйськовi дiї, це питання стає
особливо актуальним, адже перекриття або пошкодження дорiг значно ускла-
днюють пересування транспорту. Завдяки супутниковим даним i їх аналiзу ШI
можна отримати оперативну iнформацiю про стан дорiг, наявнiсть перешкод
або аварiйнi ситуацiї, що дозволяє приймати швидкi рiшення для маршрутиза-
цiї транспортних потокiв.

Враховуючи складнi умови, що склалися в Українi пiд час вiйни, проблема
оптимiзацiї транспортних потокiв стає критично важливою. Вона має страте-
гiчне значення як для забезпечення вiйськової логiстики, так i для пiдтримки
громадянської iнфраструктури. Застосування супутникових знiмкiв, проаналi-
зованих штучним iнтелектом, може суттєво покращити ефективнiсть i безпеку
транспортних операцiй, а також сприяти швидшому вiдновленню пошкоджених
шляхiв.

ШI здатен не лише виявляти реальнi проблеми, такi як пошкодження iнфра-
структури, але й на основi цих даних генерувати динамiчнi маршрути, оптимi-
зованi в реальному часi. Це особливо важливо для екстрених служб, вiйськових
перевезень та гуманiтарної допомоги, де кожна хвилина може бути вирiшаль-
ною.

Адже ШI-алгоритми дозволяють аналiзувати великi масиви даних у реаль-
ному часi, прогнозувати затори та аварiї, а також забезпечувати адаптивне
управлiння транспортними потоками. За допомогою технологiй машинного на-
вчання можна динамiчно коригувати маршрути, перерозподiляти транспортнi
потоки та покращувати функцiонування транспортної iнфраструктури.

Використання динамiчних моделей оптимiзацiї транспортних потокiв вже
продемонструвало свою ефективнiсть у багатьох мiстах свiту. Наприклад, у та-
ких мiстах, як Сiнгапур та Токiо, активно застосовуються iнтелектуальнi транс-
портнi системи (ITS), якi на основi динамiчних моделей та ШI прогнозують
затори, коригують сигнали свiтлофорiв та надають рекомендацiї щодо вибору
маршрутiв для водiїв у режимi реального часу. В таблицi 1.2 наведемо бiльш
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детальний опис iнтелектуальних транспортних систем в рiзних мiстах свiту.

Таблиця 2.
Новiтнi iнтелектуальнi транспортнi системи (ITS) в найбiльших мiстах свiту

Мiсто Iнтелектуальнi транспортнi системи (ITS)

Сiнгапур

Smart Traffic Management System: автоматичне управлiння до-
рожнiм рухом на основi даних в режимi реального часу [10].

Electronic Road Pricing (ERP): система автоматичної оплати за
проїзд в центральних районах, що зменшує затори [11].

Токiо

Tokyo Traffic Control System: iнтегрована система монiторингу
та управлiння трафiком, що використовує данi вiд сенсорiв [12].

VICS (Vehicle Information and Communication System): надає во-
дiям iнформацiю про стан дорiг i затори [13].

Барселона

Smart Traffic Lights: адаптивнi свiтлофори, якi коригують час
змiни сигналiв на основi реального трафiку [14].

Public Transport Management System: система, що оптимiзує
маршрути громадського транспорту на основi даних про пасажи-
рiв [15].

Лондон

Congestion Charge Zone: система, що стягує плату за в’їзд у
центр мiста в години пiк для зменшення заторiв [16].

TfL Traffic Information: надає данi про затори i дорожнi роботи
в реальному часi [17].

Нью-Йорк

NYC Traffic Management Center: централiзоване управлiння до-
рожнiм рухом з використанням аналiтики даних та вiдеонагляду
[18].

Waze for Cities: спiвпраця з додатком Waze для отримання да-
них про трафiк i рекомендацiй щодо маршруту [19].

Сеул

Smart Traffic Management System: система, що використовує сен-
сори для монiторингу трафiку та корекцiї свiтлофорiв [20].

Public Transport Operation System: оптимiзацiя роботи громад-
ського транспорту на основi пасажиропотоку [21].

Сучасний розвиток iнтелектуальних транспортних систем (ITS) у великих
мiстах, таких як Сiнгапур, Токiо, Барселона, Лондон, Нью-Йорк та Сеул, де-
монструє значний прогрес у сферi оптимiзацiї транспортних потокiв. Цi систе-
ми використовують рiзноманiтнi технологiї, такi як автоматизоване управлiн-
ня дорожнiм рухом, адаптивнi свiтлофори та монiторинг стану дорiг у режи-
мi реального часу. Всi цi методи є частиною динамiчних моделей оптимiзацiї
транспортних потокiв, якi забезпечують ефективнiсть i зручнiсть для водiїв та
пасажирiв.

Проте, в умовах непередбачуваних ситуацiй, з якими стикається Україна,
стає очевидним, що традицiйнi моделi, якi базуються на дискретних задачах
розмiщення, вже не здатнi адекватно реагувати на динамiку сучасного доро-
жнього руху. Рiзнi фактори, такi як природнi катастрофи, аварiї, змiни в мар-
шрутнiй мережi або навiть соцiально-полiтичнi обставини, можуть раптово змi-
нити трафiк i ускладнити прогнозування.

Для того щоб ефективно вирiшувати цi виклики, необхiдно впроваджувати
новi технологiї, якi не лише збирають данi, але й обробляють їх у реальному
часi. Застосування машинного навчання i штучного iнтелекту може суттєво по-
кращити адаптивнiсть моделей до постiйно змiнюваних умов. Наприклад, си-
стеми, якi використовують супутниковi знiмки та данi з мобiльних додаткiв,
можуть автоматично коригувати маршрути i управляти свiтлофорами, змен-
шуючи затори та час очiкування.

Ми пропонуємо розробити комплексну систему, що базується на динамiчних
моделях оптимiзацiї транспортних потокiв, яка включатиме:
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• Системи збору даних у реальному часi: Використання сенсорiв, каме-
ри спостереження та мобiльних додаткiв для збору даних про стан дорiг,
затори та пасажиропотоки.

• Алгоритми обробки даних: Розробка алгоритмiв на основi машинного
навчання, якi зможуть аналiзувати великi обсяги даних i виявляти патерни,
що дозволить швидко реагувати на змiни в транспортних потоках.

• Адаптивнi моделi управлiння: Запровадження адаптивних моделей, якi
можуть самостiйно коригувати алгоритми управлiння транспортними по-
токами на основi отриманих даних. Це дозволить оптимiзувати сигнали
свiтлофорiв, управлiння громадським транспортом та маршрути для при-
ватних автомобiлiв.

• Супутниковi технологiї: Використання супутникових знiмкiв для монi-
торингу дорожнього руху i виявлення проблемних зон, що дозволить про-
водити швидкi корекцiї в управлiннi трафiком.

Також динамiчнi моделi активно використовуються в логiстицi для планування
транспортування товарiв. Наприклад, великi логiстичнi компанiї застосовують
цi моделi для оптимiзацiї маршрутiв доставки, що дозволяє зменшити витрати
на перевезення та пiдвищити ефективнiсть управлiння складськими запасами.

Однiєю з ключових переваг iнтеграцiї ШI в рiшення ДЗР є можливiсть по-
єднувати традицiйнi методи оптимiзацiї, такi як алгоритм гiлок i меж, з поту-
жностями сучасних алгоритмiв машинного навчання. Штучний iнтелект може
використовуватися для генерування оптимальних початкових рiшень на основi
аналiзу iсторичних даних. Це, в свою чергу, може прискорити процес знаходже-
ння оптимальних рiшень та знизити загальнi витрати часу.

Нейроннi мережi, якi є одним з елементiв штучного iнтелекту, можуть вико-
ристовуватися для прогнозування змiн у транспортних потоках. Завдяки зда-
тностi аналiзувати великi обсяги даних, ШI може передбачати попит на транс-
портнi послуги, а також виявляти патерни в даних про затори, аварiї та iншi
подiї. Це дозволяє системам адаптуватися до нових умов у режимi реально-
го часу, що є критично важливим для ефективного управлiння транспортними
потоками.

Важливим аспектом впровадження ШI в дискретнi задачi розмiщення є мо-
жливiсть оптимiзацiї в реальному часi. Штучний iнтелект може постiйно ана-
лiзувати данi з рiзних джерел, таких як сенсори, камери та мобiльнi додатки,
щоб виявляти аномалiї та коригувати маршрути або управлiнськi рiшення. Це
дозволяє системi швидко реагувати на змiни у транспортному середовищi, за-
безпечуючи бiльш ефективне управлiння потоками.

Ще одним важливим напрямком є використання ШI для створення нових
евристичних алгоритмiв, що вiдповiдають специфiцi дискретних задач. Алго-
ритми машинного навчання можуть навчатися на iсторичних даних, виявляти
патерни i використовувати їх для прийняття рiшень, якi оптимiзують розмiще-
ння ресурсiв. Цей пiдхiд може суттєво пiдвищити якiсть рiшень, адже системи
на основi ШI можуть адаптуватися до специфiчних умов та вимог.

Iнтеграцiя штучного iнтелекту в дискретнi задачi розмiщення несе в собi
безлiч переваг. По-перше, це покращення ефективностi — ШI може забезпечити
бiльш оптимальнi рiшення за менший час. По-друге, адаптивнiсть систем, що
базуються на ШI, робить їх бiльш стiйкими до змiн у середовищi. По-третє,
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автоматизацiя процесiв знижує потребу в людськiй участi, що також зменшує
ймовiрнiсть помилок.

Проте реалiзацiя таких систем також пов’язана з певними викликами. Одним
iз них є складнiсть iнтеграцiї ШI у вже iснуючi системи, що може вимагати зна-
чних зусиль та ресурсiв. Крiм того, ефективнiсть ШI значною мiрою залежить
вiд наявностi якiсних та об’ємних даних для навчання. Технiчнi проблеми, такi
як високi вимоги до обчислювальних потужностей i необхiднiсть у фахiвцях
для реалiзацiї таких рiшень, також не варто iгнорувати.

Таким чином, впровадження штучного iнтелекту в дискретнi задачi розмi-
щення є не лише можливим, але й доцiльним кроком у напрямку пiдвищен-
ня ефективностi транспортних систем. Синергiя мiж традицiйними методами
оптимiзацiї та новими технологiями ШI може суттєво зменшити час та ресур-
си, необхiднi для оптимiзацiї транспортних потокiв. Це, в свою чергу, дозволить
досягти бiльшої стiйкостi та адаптивностi системи, що є критично важливим у
свiтi, де змiни вiдбуваються з величезною швидкiстю. Застосування штучно-
го iнтелекту не лише покращить управлiння транспортними потоками, але й
створить новi можливостi для розвитку та iнновацiй у сферi транспорту.

4. Висновки. У статтi було представлено пiдхiд до вирiшення проблеми
оптимiзацiї транспортних потокiв у динамiчних умовах на основi дискретної за-
дачi розмiщення. Запропонована математична модель дозволяє враховувати ча-
совi та просторовi змiни в транспортних мережах, що є важливим для реальних
логiстичних систем. Запропонованi моделi використання динамiчних моделей
оптимiзацiї транспортних потокiв, заснованих на дискретнiй задачi розмiщен-
ня, якi є ключовими для пiдвищення ефективностi управлiння транспортом.

Цi моделi дозволяють адаптуватися до реальних змiн, таких як погоднi умо-
ви та трафiк, що пiдвищує точнiсть прогнозiв i знижує затримки. Додатково,
iнтеграцiя елементiв машинного навчання сприяє оптимiзацiї розмiщення логi-
стичних об’єктiв i покращує оперативнiсть реакцiй на змiни в попитi та доро-
жнiх умовах.

Приклад адаптацiї транспортних потокiв в умовах великого мiста демон-
струє, як сезоннi коливання i погоднi фактори можуть бути iнтегрованi в мо-
делi для ефективного управлiння. Використання алгоритмiв, таких як методи
машинного навчання та алгоритми оптимiзацiї, дозволяє не лише полiпшити
управлiнськi рiшення, а й iстотно зменшити витрати на транспортування.

У контекстi сучасних викликiв, зокрема вiйськових дiй в Українi, важли-
вiсть оптимiзацiї транспортних потокiв стає критичною. Iнтелектуальнi транс-
портнi системи, що використовують динамiчнi моделi, здатнi забезпечити ефе-
ктивну логiстику, зменшити ризики та покращити безпеку перевезень. Зага-
лом, iнтеграцiя сучасних технологiй в транспортнi системи є важливим кроком
у досягненнi їхньої ефективностi та надiйностi в умовах швидко змiнюваного
середовища.

Перспективи подальших дослiджень полягають у розширеннi моделi для
мультиагентних систем та iнтеграцiї штучного iнтелекту для прогнозування
транспортних потокiв.
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ture, as observed in Ukraine. It highlights the inadequacies of traditional static trans-
portation management models in adapting to real-time changes such as road blockages,
destruction, or increased traffic due to detours.

The article underscores the transformative potential of artificial intelligence and ma-
chine learning in analyzing large datasets, including satellite imagery, for adaptive trans-
port flow management. By employing AI-driven algorithms, the system can dynamically
adjust routes, predict traffic congestion, and provide rapid responses to infrastructural
changes. Examples from global intelligent transport systems in cities like Singapore and
Tokyo demonstrate the efficacy of similar technologies in enhancing traffic efficiency and
safety.

The proposed approach leverages dynamic optimization models rooted in the facility
location problem to account for temporal and spatial variability in transport networks.
These models integrate external factors like weather conditions, accidents, and infrastruc-
ture damage. The use of mathematical frameworks enables the identification of optimal
transport infrastructure nodes and facilitates real-time route optimization to minimize
transportation delays and costs.

Keywords: dynamic models, traffic flows, optimization, discrete facility location problem,
transport network.
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ДИНАМIЧНИЙ ПIДХIД ДО ФОРМУВАННЯ ТЕСТОВИХ
ЗАВДАНЬ

У статтi запропоновано динамiчний пiдхiд до оцiнювання рiвня знань, що дозволяє
безпосередньо пiд час проходження тесту виявити слабкi та сильнi сторони вступника
в процесi навчання та майбутнього освоєння професiї. Динамiчне оцiнювання знань
дозволяє з точки зору теорiї ймовiрностей та математичної статистики визначити, яка
частка вiдповiдей, даних вступником, базується не на конкретних знаннях, а на фа-
кторi вгадування. Також придiлено увагу математичному моделюванню наближеного
оцiнювання знань при виконаннi тестових завдань.

Ключовi слова: автоматизована система оцiнювання, якiсть оцiнювання рiвня знань,
динамiчний пiдхiд до оцiнки рiвня знань, вступник, здобувач вищої освiти.

1. Вступ. Автоматизована система оцiнювання знань здобувачiв вищої освiти
дозволяє об’єктивно визначити рiвень знань та вмiнь, що можуть бути необ-
хiдними та ефективними при подальшiй професiйнiй дiяльностi. В загальному
автоматизований пiдхiд дозволяє оцiнити знання та навички вступника незале-
жно вiд людського фактору. Використання автоматизованого пiдходу суттєво
знижує ймовiрнiсть помилкового рiшення щодо оцiнки правильностi вiдповiдi
та адекватностi суджень, що до неї привели.

2. Основний результат. Постановка завдання. Головною метою даної
наукової роботи є дослiдження динамiчного пiдходу до формування тестових
завдань для перевiрки знань та навикiв вступникiв. Розглядається iноземний
досвiд використання тестового автоматизованого пiдходу до оцiнювання знань,
його ефективнiсть на практицi.

Запропоновано статистико-математичний метод аналiзу даних щодо резуль-
татiв тестового контролю знань.

Аналiз останнiх дослiджень та публiкацiй. Дослiдженням автомати-
зованого пiдходу займалися такi вiтчизнянi дослiдники, як Т. В. Ковалюк,
С. В. Король, О. О. Недiлько, А. Я. Архангельський, В. Яковина, О. С. Шкiль,
В. I. Шинкаренко, А. Н. Шиков, Є. Я. Швець, Л. В. Пшенична.

Серед дослiджень закордонних вчених варто вiдмiтити роботи А. З. Броде-
ра, Дж. Д. Брауна, Т. Хоффмана, Ч. Клапчама, Д. Уолла та iнших.

У дослiдженнях вказаних авторiв розглядається не тiльки сама ефектив-
нiсть застосування автоматизованого пiдходу до оцiнювання рiвня знань, проте
також i психологiчна складова процесу тестування.
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Основнi результати даних дослiджень присвяченi:
• оцiнцi рiвня складностi пропонованих завдань задля визначення рiвня знань

вступника;
• принципу порiвняння рiвня складностi тестiв при переходi вiд одного блоку

завдань до наступного;
• оцiнюванню завдань творчого характеру (наприклад, для гуманiтарних ди-

сциплiн);
• дослiдженню ймовiрностi вгадування правильних вiдповiдей в тестових зав-

даннях та його впливу на кiнцевий результат тестування;
• аналiзу вагових балових коефiцiєнтiв балiв залежно вiд блоку, до якого

належить завдання, також безпосередньо вiд предмету.
У загальному випадку поняття «ефективнiсть виконання завдання» можли-

во звести до твердження, що весь процес оцiнки рiвня знань зводиться до таких
комплексних рис, як:

• вмiння застосовувати для вирiшення запропонованих завдань знань, здобу-
тих пiд час процесу попереднього навчання;

• здатнiсть компонувати мiж собою вiдомi алгоритми для пошуку правильної
вiдповiдi;

• прояв творчого нестандартного пiдходу у поєднаннi зi стандартними спосо-
бами вирiшення завдання.

Головною причиною введення стандартного тестування є виключення люд-
ського фактору допущення помилки пiд час перевiрки отриманих даних. Оскiль-
ки для складання тестiв, як i для пiдрахунку балiв, використовують комп’ютернi
програми, процедура є повнiстю автоматизованою.

Здобувачi пiд час тестування перебувають у рiвних умовах, умови завдань
однаковi. Тести охоплюють усi розглядуванi пiд час навчання теми, тому всi
отримують рiвнi можливостi незалежно вiд мiсця проживання чи типу освi-
тнього закладу, в якому вони навчались.

Практично усi вивченi теми навчальних дисциплiн включаються до тестува-
ння. У той час, як здача усного iспиту зазвичай передбачає вiдповiдь на певну
кiлькiсть теоретичних питання i виконання кiлькох практичних завдань, те-
стування дозволяє перевiрити знання вступника з усього курсу, виключивши
елемент випадковостi.

Тестування є бiльш точним, нiж звичайний iспит, методом оцiнки рiвня
знань, оскiльки дозволяє оцiнити як знання конкретних фактiв, окремих те-
оретичних та практичних тверджень, так i вмiння їх використовувати за умов,
коли завдання не має наперед завданого алгоритму точного вирiшення. Таким
чином, деякi блоки завдань передбачають знання виключно теоретичної части-
ни вивченого матерiалу, iншi — практичне їх застосування. Кiлькiсть питань
достатньо велика, щоб поступово покрити весь курс вивченого матерiалу.

При розробцi тесту, що є зрозумiлим здобувачу, необхiдно залучати досвiдче-
них фахiвцiв та проводити пробнi тестування на фокус-групах [5]. Це дозволить
отримати попереднi данi про ефективнiсть використання розроблених завдань
при майбутньому тестуваннi вступникiв.

Загалом витрати пiд час тестування припадають на розробку якiсного мате-
рiалу. При цьому витрати на проведення тесту значно нижчi, нiж при письмо-
вому чи усному проведеннi iспиту.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Безпосередньо тестування та контроль результатiв займає пiвтори-двi го-
дини (iнодi бiльше) та потребує присутностi кiлькох спостерiгачiв. Усний чи
письмовий iспит триває щонайменше чотири години i навiть кiлька днiв, а для
обговорення та оцiнювання результатiв необхiдним є створення компетентної
комiсiї. Автоматизована система оцiнювання дозволяє зменшити термiн пере-
вiрки вiдповiдей у кiлька разiв, що дозволить пiдвищити ефективнiсть обробки
результатiв, що вiдображають якiсть знань здобувачiв вищої освiти.

Тестування ставить всiх здобувачiв у однаковi умови, використовуючи стан-
дартну процедуру та єдинi критерiї оцiнки, що дозволяє знизити рiвень хвилю-
вання та стресу серед них [7]. З психологiчної точки зору важливо роздiляти
два види стресу — дистрес та еустрес, оскiльки перший вид стресу провокує
негативне ставлення до iспиту, iнший — створює позитивне, що за певних умов
сприятливо вплинути на iнтенсивнiсть процесу мислення.

Використання тестового контролю є ефективним при перевiрцi основних,
базових знань на основi виконання стандартних завдань. Данi, отриманi в ре-
зультатi тестування, є статистичним вiдображенням проблем в розумiннi учнем
конкретних тем. З iншого боку, також є ймовiрнiсть того, що умова завдання
була неоднозначною, i тестований не зрозумiв сутi питання, чи не розiбрався,
як заповнювати тестовий бланк та переплутав вiдповiдi.

Вищезгаданi переваги тестового контролю рiвня знань призвели до широко-
го його розповсюдження в багатьох країнах свiту (див. табл. 1), що обумовлено
неупередженiстю системи перевiрки готових результатiв, швидкiстю обробки
кiнцевих даних та зниженням ймовiрностi допущення помилки пiд час перевiр-
ки виконаних завдань до мiнiмального значення.

Як свiдчить мiжнародний досвiд впровадження тестового контролю пере-
вiрки якостi знань вступникiв, його формат зводиться не тiльки до пiдготовки
безпосередньо до здачi iспиту, але також i до принципу «навчання протягом
життя», тобто, на вiдмiну вiд традицiйних iспитiв, при здачi яких необхiдно
давати «розгорнутi» вiдповiдi на поставленi запитання та вирiшувати невелику
кiлькiсть практичних завдань, тестовий формат дозволяє охопити майже весь
навчальний матерiал та перевiрити вмiння вступника мислити нестандартно i
приймати обдуманi рiшення у складних ситуацiях.

Джерело: складено автором на основi [3].
Загалом пiдходи, що використовуються при розробцi алгоритмiв проведення

контролю знань, переважно унiфiкованi та спрямованi на:
• якомога ширше охоплення теоретичного матерiалу за предметами;
• перевiрку вмiння використовувати знання на практицi;
• вмiння мислити нестандартно та поєднувати мiж собою для вирiшення зав-

дань рiзноманiтних (навiть рiзнорiдних) засобiв та методiв, що свiдчитиме
про нестандартнiсть мислення вступника.

Головним недолiком тестування є неможливiсть повнiстю перевiрити та оцi-
нити високi, продуктивнi рiвнi знань, пов’язанi з творчiстю, тобто iмовiрнiснi,
абстрактнi та методологiчнi знання.

Процес тестування мiстить в собi елемент випадковостi. Типовою є ситуацiя,
за якої вступник, який не вiдповiв на просте запитання, може дати правильну
вiдповiдь на складнiше. Така випадкова подiя (ймовiрнiсть її настання незна-
чна) спотворює пiдсумковi результати тесту.
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Таблиця 1.
Формат проведення тестових перевiрок знань, аналогiчних ЗНО/НМТ в

країнах свiту
Країна Аналоги ЗНО/НМТ

Польща

Найближчим аналогом є «Матура» (Egzamin maturalny), що є
комплексною перевiркою знань з польської та iноземної мов, ма-
тематики. Мови складають усно, математика та додатковий iспит
письмово.

Iспити проходять у школах за присутностi викладачiв з iнших
учбових закладiв.

Для отримання отримати атестату зрiлостi, достатньо набрати
лише третину правильних вiдповiдей.

Такий формат перевiрки рiвня знань обов’язковий для вступни-
кiв до ВНЗ та випускникiв лiцеїв.

Велика
Британiя

General Certificate of Secondary Education.
Шкiльна освiти триває 13 рокiв; два останнiх присвячуються

пiдготовцi до вступу до ВНЗ.
А-level (GCE Advanced Exam, просунутий рiвень iспиту GCE

рiвня А) — результати є пiдставою для вступу до обраного ВНЗ.

Нiмеччина
Zeugnis der allgemeinen Hochschulreife (Abiturzeugnis, Абiтур).
Оскiльки вступних iспитiв немає, в їх ролi виступають результа-

ти Абiтур разом iз сертифiкатом, що пiдтверджує достатнє знання
нiмецької чи ангдiйської мов для iншомовних громадян.

Францiя
Єдиного вступного iспиту немає. Для перевiрки знань викорис-

товується тест для випускникiв, що отримали повну середню освi-
ту — Baccalaureat Francais.

В атестат, що видається (Le BAC), вказана спецiалiзацiя: лiте-
ратура, природничi науки, економiка (лiтери L, S, EC).

США

При вступi можна проходити двi перевiрки рiвня знань:
SAT (Scholastic Assessment Test), оцiнювальний академiчний

тест;
ACT (American College Testing), тест для американських ко-

леджiв.
Обидва можна складати кiлька разiв на рiк, обидва є платними

(близько 50 доларiв). При вступi до уваги беруться максимально
вдалi результати одного з тестiв.

Японiя
Пiд час оцiнки знань складаються шкiльнi випускнi випробува-

ння, i вступнi екзамени. Вступ вiдбувається в два етапи. Спочатку
вступник складає загальний для всiх тест, потiм окремо — тести
в обраний вуз. Єдине тестування проводить Нацiональний центр
з прийому студентiв до унiверситетiв.

Китай
Гаокао — всекитайський державний вступний iспит до вузiв;

дводенний, включає тестування i твiр з китайської мови.
Обов’язковими предметами, крiм рiдної мови, є англiйська мо-

ва, математика i предмети за вибором. Зарахування майбутнiх
студентiв до ВУЗу здiйснюється на основi отриманих результатiв

Для усунення елементу випадковостi (вгадування) система має поступово
оцiнювати рiвень знань вступника, що складається з попереднiх вiдповiдей на
поставленi питання.

За умови застосування автоматизованої системи оцiнювання рiвня її ефе-
ктивностi є полiморфною, оскiльки, залежно вiд характеру системи, кiнцевий
результат може бути рiзноманiтним. У випадку використання блокового ком-
понування завдань вся тестова система подiлена на частини, рiвень складностi
яких для кожної окремо є приблизно рiвним, або поступово збiльшується, в
залежностi вiд предмету. В цьому випадку здiйснюється оцiнювання не тiль-
ки рiвня знань здобувачiв вищої освiти, проте також їх стресостiйкiсть пiд час
вирiшення завдань.

Такий пiдхiд дозволяє оцiнити швидкiсть прийняття рiшень в реальних умо-
вах, що забезпечує ефективнiсть здiйснюваної ними дiяльностi. Суть динамi-
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чного пiдходу зводиться до того, що система оцiнювання враховує ймовiрнiсть
помилки у наступному завданнi залежно вiд результату вiдповiдi на попере-
днiй тест. За допомогою такого пiдходу можливо дiзнатися приблизну межу
складностi завдань, якi може вирiшити тестований.

Алгоритм побудови тестової системи дозволяє оцiнити середнiй рiвень знань
вступникiв, а також сортувати їх за тим рiвнем знань, що вони мали перед
вступом до закладу вищої освiти.

Такий формат динамiчної тестової перевiрки знань дозволяє здiйснити при-
близний розподiл майбутнiх студентiв за групами, в яких рiвень знань прибли-
зно однаковий, що дозволить формувати iндивiдуальнi програми пiдготовки та
графiк навчання, також скласти графiк проведення лекцiйних, семiнарських
та практичних занять залежно вiд тих результатiв, що були отриманi в процесi
попереднього тестування рiвня знань.

Одним iз варiантiв, що може бути альтернативним до вже створеної системи
оцiнювання, є динамiчний, що дозволяє оцiнити рiвень знань бiльш ефективно.

У випадку покрокової системи, коли складнiсть завдання залежить вiд ре-
зультату рiшення попереднiх тестiв, рiвень ефективностi вiдбору здобувачiв ви-
щої освiти зростає. Це зумовлене тим, що сама програма регулює рiвень скла-
дностi завдань, оцiнюючи можливий результат на основi попереднiх вiдповiдей,
даних вступником.

Це дозволяє розподiлити вступникiв за певними об’єктивними критерiями,
що не впливатиме на подальше оцiнювання.

Важливим аспектом в системi оцiнювання якостi знань є сам процес форму-
вання тестових завдань. На це впливає:

• структура завдання;
• рiвень його складностi;
• покрокова побудова тестiв для вирiшення.
Найважливiше при пiдготовцi завдань, що виносяться на тестування – про-

стота формулювання умови, без чого неможливе їх правильне вирiшення та
попередня оцiнка рiвня складностi.

Поряд з почерговим оцiнюванням знань альтернативою є дискретне про-
понування завдань для вирiшення: вступник може демонструвати показники
успiшностi, що вiдрiзняються мiж собою за правильнiстю, незалежно вiд того,
якi саме завдання пропонує система в залежностi вiд попереднiх вiдповiдей.

Оцiнити поточну систему зовнiшнього незалежного оцiнювання можливо ви-
ключно з точки зору теорiї ймовiрностей та математичної статистики [2].

Оскiльки для тестiв з однiєю правильною вiдповiддю в бiльшостi випад-
кiв вiрогiднiсть того, що обрана вiдповiдь є правильною, становить 25% (кiль-
кiсть пропонованих варiантiв дорiвнює 4), то в першому блоцi, що пропонується
для вирiшення здобувачевi вищої освiти, ймовiрнiсть вгадування всiх вiдповiдей
правильно дорiвнюватиме:

𝑁 = 0,25𝑘,

де:
𝑁 — ймовiрнiсть того, що всi правильнi варiанти вiдповiдей до завдань бу-

дуть послiдовно вiдгаданi;
𝑘 — кiлькiсть тестiв з чотирма варiантами вiдповiдей.
Графiчне представлення даної моделi вигляду (рис. 1) є:
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Рис. 1. Ймовiрнiсть вгадування правильної вiдповiдi у блоцi з 4-ма варiантами
правильної вiдповiдi.

Враховуючи, що ймовiрнiсть вгадування певну кiлькiсть разiв пiдряд апро-
ксимативно прямує до 0, то можна стверджувати, що такий варiант перевiрки
знань є ефективним, оскiльки дозволяє оцiнити саме рiвень знань, а не iнтуїцiю
здобувачiв вищої освiти.

Наступний блок у системi оцiнювання знань є тестовi завдання на зiстав-
лення кiлькох вiдповiдей iз запитаннями, що задаються. До чотирьох завдань
тесту пропонуються п’ять варiантiв з вiдповiдями. В самому тестовому завданнi
наперед закладається одна хибна вiдповiдь.

Iмовiрнiсть послiдовного вгадування, за умови виключення з перелiку зав-
дань, вiдповiдi на якi були данi, становитиме:

1-ша спроба — 0,2 або 20%;
2-га спроба — 0,25, або 25%;
3-тя спроба — 0,333, або 33,3%;
4-та спроба — 0,5, або 50%.
В кiнцевому результатi навiть для одного тесту на зiставлення питань i вiд-

повiдей отримаємо кiнцеве значення ймовiрностi вгадування правильних пар:
𝐿 = 0,2 · 0,25 · 0,33 · 0,5 = 0,00825, що є еквiвалентним значенню вгадування
0,825%. Такий показник дозволяє стверджувати про низьку ймовiрнiсть вгаду-
вання всiх правильних пар (спiввiдношень «завдання — варiант вiдповiдi») при
вирiшеннi чергового завдання.

Якщо врахувати кiлькiсть тестiв, що працюють за принципом пар «завдання
— вiдповiдь», то ймовiрнiсть вгадування при послiдовному вирiшеннi завдань
складатиме:

𝐿 = 0,00825𝑛,

де:
𝐿 — загальна ймовiрнiсть вгадування всiх правильних вiдповiдей у всiх те-

стових завданнях пiдряд;
𝑛 — кiлькiсть завдань.
Оскiльки основа степеня є надто малою, порiвняно з 1, величиною, то, як

i в попередньому випадку, ймовiрнiсть, що наближається до 0, свiдчить про
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ефективнiсть такої системи оцiнювання рiвня знань здобувачiв вищої освiти та
знижує вiрогiднiсть вгадування пар «питання — вiдповiдь».

За умови використання виключно стандартного екзаменацiйного порядку,
кiлькiсть неправильно врахованих як правильнi, неправильних вiдповiдей, за-
лежать вiд екзаменатора.

Незважаючи на те, що iснує можливiсть виникнення ймовiрної комбiнацiї
з правильних та неправильних вiдповiдей, iмовiрнiсть, що послiдовнiсть буде
правильною, також становить нескiнченно малу величину.

Для формування тестового завдання необхiдно враховувати певну кiлькiсть
факторiв [1]:

• адекватне формулювання умови завдання;
• пiдбiр варiантiв вiдповiдей, що дозволяють виявити вгадування;
• оцiнювання загальної системи блокiв завдання.
Тест, що має адекватно вiдображати знання вступника, повинен задоволь-

няти наступним вимогам:
• ступiнь складностi завдань повинен пiдвищуватися поступово, проте не

стрибкоподiбно;
• завдання мають поєднувати у собi теми за матерiалами програми у при-

близно рiвних пропорцiях;
• рiвень складностi вирiшення завдання має залежати вiд блоку, в якому це

завдання подається для розв’язку.
При моделюваннi блокiв завдань можливо застосувати пiдхiд, при якому

кiлька варiантiв вiдповiдей є вiрогiдними, а один з них — неправильний a priori.
Це дозволить зменшити ймовiрнiсть вгадування за рахунок введення додатко-
вого елемента в поле ймовiрних вiдповiдей.

Таким чином, за умови, якщо кiлькiсть варiантiв вiдповiдi у першому те-
стовому блоцi складала 0,25, або 25%, то при введеннi додаткового питання
складатиме 0,2, або 20%. Ймовiрнiсть вгадування при збiльшеннi кiлькостi ва-
рiантiв зображена на графiку (рис. 2):

Рис. 2. Iмовiрнiсть вгадування правильної вiдповiдi залежно вiд кiлькостi
пропонованих вiдповiдей.

Додатковим варiантом перевiрки рiвня знань здобувачiв вищої освiти є вве-
дення автоматичного перепитування за принципом: «Чи Ви впевненi у правиль-
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ностi даної вiдповiдi?» Це дозволить виявити впевненiсть вступника у правиль-
ностi власної вiдповiдi за допомогою парадоксу Монтi-Голла.

Парадокс Монтi Голла [9] — одна з вiдомих задач теорiї ймовiрностей, ро-
зв’язок якої, на перший погляд, суперечить здоровому глузду. Задача форму-
люється як опис гiпотетичної гри, заснованої на американському телешоу «Let’s
Make a Deal».

Ця задача названа на честь ведучого цiєї передачi Монтi Голла. Найбiльш
розповсюджена версiя гри була опублiкована в 1990 роцi в журналi Parade
Magazine i звучить так: «Уявiть себе на телегрi, де вам потрiбно обрати однi
з трьох дверей: за одними з них автомобiль; за двома iншими по козi. Ви оби-
раєте однi дверi, наприклад, першi, ведучий вiдчиняє однi з двох iнших, напри-
клад, третi, за якими коза. Тодi вiн каже вам: «Бажаєте змiнити вибiр на другi
дверi?», «Чи отримаєте ви перевагу, якщо змiните свiй вибiр?».

Аналогiчне питання можливо ввести i в тестову систему оцiнювання знань.
З одного боку, це змусить засумнiватися у тому, що кiнцева вiдповiдь точно є
правильною, перевiрити свої висновки, й або змiнити вже дану вiдповiдь, або
залишити ту, що була дана. Така додаткова перевiрка впевненостi у тому, що
вiдповiдь є правильною, також перевiряє вступника на стресостiйкiсть.

Може виникнути проблема iз автоматичним оцiнюванням рiвня знань здо-
бувачiв вищої освiти, що вступають на гуманiтарнi спецiальностi, оскiльки самi
завдання, що пропонується, є такими, що тестуванню не пiддаються. Одним з
таких типових завдань є написання твору на задану тему.

Оскiльки твiр має бути унiкальним за своїм складом та змiстом, необхiдно
оцiнювати його саме за такими параметрами. Найбiльш дiєвим способом, що
може усунути суб’єктивнiсть оцiнювачiв та саму новизну тексту, є перевiрка на
плагiат [6] — а саме запозичення чужих думок.

На основi множини статистичних даних щодо успiшностi виконання тесто-
вих завдань з навчальних дисциплiн, можливо на основi математичного iнстру-
ментарiю сформувати модель, що приблизно описуватиме кумулятивну пове-
дiнку загальної кiлькостi балiв, набраних вступником за тест. При цьому варто
враховувати характер завдання, його складнiсть та iмовiрнiсть надання пра-
вильної вiдповiдi за допомогою випадкового вгадування.

Крива набраних балiв (див. рис. 3) вiдображає успiшнiсть виконання зав-
дань, що даються послiдовно i подiленi на блоки за складнiстю.

Завдання невисокого рiвня складностi. Пiд час їх виконання кiлькiсть
балiв зростає достатньо швидко, оскiльки, незважаючи на велику кiлькiсть зав-
дань, вони потребують вирiшення iз розв’язанням, що здiйснюється у кiлька
вiдносно простих, послiдовно застосовуваних та логiчно взаємопов’язаних мiж
собою логiчних та математичних дiй.

Завдання середнього рiвня складностi. Їх вирiшення займає бiльше ча-
су, нiж виконання завдань вiдносно легкого рiвня складностi. У деяких випад-
ках необхiдно комбiнувати мiж собою пiдходи та методи, характернi не тiльки
для тем, не завжди явно пов’язаних одна з одною, проте використовувати ло-
гiчний iнструментарiй, що не завжди явний для пошуку правильної вiдповiдi.

Завдання з пiдвищеним рiвнем складностi вимагають вiд вступника
зорiєнтуватися в тому, з чого необхiдно почати їх вирiшення, оскiльки вибiр
правильного пiдходу дозволить уникнути тривалого та громiздкого «вишуко-
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Рис. 3. Сумарна кiлькiсть набраних балiв при послiдовному виконаннi
тестових завдань.

вування» правильної вiдповiдi, що дозволить зекономити час на вiдведений на
тест. У той же час, результати виконання завдань найвищого рiвня складностi
можуть демонструвати «ефект плато» [8] (plateau effect), за якого досягається
максимальна кумулятивна кiлькiсть набраних за виконання завдань тесту ба-
лiв. Кiлькiсть набраних балiв за кожне завдання, рiвень складностi якого пiд-
вищується, навпаки — знижується.

Досягнення умовного «плато балiв» демонструє граничне значення, якого
може досягти об’єктивно вимiрюваний обсяг знань при проходженнi тестової
перевiрки з рiзноманiтних предметiв. Динамiка ефективностi пропонованих те-
стових завдань (рис. 4) демонструє iнтенсивнiсть приросту показника набраних
пiд час виконання тесту балiв. Пiсля досягнення певної межi, рiвень набраних
балiв рiзко знижується при переходi до кожного наступного завдання.

Рис. 4. Динамiка ефективностi виконання тестових завдань.

В якостi статистичного прикладу, на рис. 5 наведено розподiл результатiв
оцiнювання з математики у 2018-му та 2019-му роках за даними вiдповiдних
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звiтiв Українського центру оцiнювання якостi освiти. Спостерiгається «дзер-
кальний ефект плато», за якого пiсля досягнення певного критичного порогу
набраних балiв, кiлькiсть учасникiв, що розв’язали завдання високої складно-
стi, неухильно зменшується.

Рис. 5. Розподiл результатiв оцiнювання тестiв з математики за 2018–2019 рр.
[4].

За умови ретельної пiдготовки показник «стелi плато» може бути пiдвище-
ний до певного граничного рiвня, значення якого залежить вiд iндивiдуальних
(психологiчних) факторiв. Значення iндивiдуальної «стелi плато» залежить та-
кож вiд природжених схильностей до вивчення предметiв та дисциплiн певного
спрямування, що обумовлюється специфiчнiстю способу мислення вступника.

3. Висновки. Зважаючи на рiвень статистичної ефективностi для оцiню-
вання якостi знань здобувачiв вищої освiти, можливим є його впровадження в
систему оцiнювання знань загалом. Статичний метод є стацiонарною системою,
що не реагує на вiдповiдi вступника, проте динамiчний пiдхiд до складання бло-
кiв тестових завдань та використання системою методу «зворотного зв’язку»
мiж рiвнем складностi пропонованого завдання та умовами наступного тесту,
дозволить скласти бiльш точне уявлення про знання та навички вступника.

Динамiчний метод дозволяє не тiльки оцiнити поточний рiвень знань, проте
також дає можливiсть спрогнозувати його подальшу успiшнiсть пiд час про-
ходження освiтнього процесу: оцiнити навички, схильностi до вивчення певних
дисциплiн, рiвень уваги та сконцентрованостi.
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ХВИЛI КРУЧЕННЯ В ШАРУВАТИХ КОМПОЗИТНИХ
НЕСТИСЛИВИХ МАТЕРIАЛАХ З ПОЧАТКОВИМИ
НАПРУЖЕННЯМИ ПРИ ПРОКОВЗУВАННI ШАРIВ

В рамках лiнеаризованої теорiї пружностi для тiл з початковими напруженнями
розглянутi постановка та метод розв’язку задач про поширення хвиль кручення в
шаруватих композитних нестисливих заздалегiдь напружених матерiалах при про-
ковзуваннi шарiв. Дослiджено випадок поширення хвиль вздовж шарiв. Отриманi
дисперсiйнi рiвняння для симетричних i антисиметричних хвиль та їх довгохвильовi
наближення.

Ключовi слова: шаруватий композитний нестисливий матерiал, початковi напруже-
ння, пружнi хвилi, дисперсiйне рiвняння, довгохвильове наближення.

1. Вступ. Концепцiя хвильового руху — одне з найширших наукових по-
нять. Хвилi можна вивчати на будь-якому науково-технiчному рiвнi. Важливи-
ми в практичному аспектi є дослiдження закономiрностей поширення пружних
хвиль в тiлах з початковими напруженнями.

Огляд наявних в цiй областi робiт i детальний аналiз отриманих результатiв
до певної мiри представлений в оглядових статтях [1, 2] та iнших, а також в
узагальнюючих монографiях [3–5] та iнших.

Для композитних матерiалiв перiодичної структури в рамках тривимiрної
лiнеаризованої теорiї пружностi для тiл з початковими напруженнями отрима-
ла розвиток теорiя поширення пружних хвиль у випадку однорiдного початко-
вого напружено-деформованого стану. Для дослiдження задач застосовувалися
загальнi розв’язки, що приведенi в монографiях [3–6] та iнших.
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Вiдповiдно до класифiкацiї О. М. Гузя [1], отриманi результати можна об’єд-
нати в три групи.

До першої групи вiдносяться публiкацiї O. M. Гузя [3] та iншi, в яких роз-
глянутi методи приведення шаруватих композитних матерiалiв з початковими
напруженнями до однорiдного середовища.

До другої групи вiдносяться публiкацiї O. M. Гузя, Ле Мiнь Кханя та
O. M. Панасюка [7–9] та iншi, в яких розглянутi питання поширення плоских
хвиль в шаруватих матерiалах.

До третьої групи вiдносяться публикацiї O. M. Гузя, O. M. Жука, Н. А. Сi-
тенка, А. Ю. Глухова [10–14] та iншi про поширення в радiальному напрямку
вiсесиметричних хвиль та хвиль кручення в шаруватих композитних матерiа-
лах перiодичної структури.

В роботах [7, 9–12] результати отриманi для випадку повного контакту ша-
рiв.

У найбiльш повнiй формi вищевказанi результати представленi в моногра-
фiях O. M. Гузя [3, 5].

В реальних композитних матерiалах, як правило, iснують рiзного роду дефе-
кти на межi роздiлу шарiв. Для оцiнки впливу таких дефектiв на закономiрностi
поширення плоских гармонiчних хвиль в композитних матерiалах О. М. Пана-
сюк [8] розглянув такий граничний випадок контакту шарiв як повне проков-
зування.

Задача про поширення вiсесиметричних пружних хвиль у шаруватих ком-
позитних матерiалах з однорiдними початковими напруженнями при проковзу-
ваннi шарiв дослiджувалась в робота [13, 14].

З огляду лiтератури можна зробити висновок про те, що поширення плоских
та вiсесиметричних гармонiчних хвиль у шаруватих композитних матерiалах
з початковими напруженнями вивчено достатньо повно. Дослiдження даного
класу задач проведенi для випадку повного контакту шарiв та для випадку
повного проковзування шарiв.

Для хвиль кручення аналогiчнi задачi розглядалися тiльки для випадку пов-
ного контакту шарiв.

В данiй роботi дослiджуються закономiрностi поширення пружних хвиль
кручення в шаруватих нестисливих композитних матерiалах з початковими на-
пруженнями при проковзуваннi шарiв.

2. Постановка задачi i метод дослiджень. Розглядається шаруватий
композитний матерiал з початковими напруженнями, який складається з шарiв
двох типiв, що чергуються, в кожному з яких матерiали i початковi напружено-
деформованi стани є однаковими для розглянутого типу шарiв.

При дослiдженнi будемо застосовувати лагранжевi координати 𝑦𝑛 ≡ 𝑦𝑛, якi
в початковому напружено-деформованому станi збiгаються з декартовими ко-
ординатами, i лагранжевi координати 𝑟′, 𝜃, 𝑦3, якi в початковому напружено-
деформованому станi збiгаються з круговими цилiндричними координатами.

Декартову систему координат (𝑦1, 𝑦2, 𝑦3) в початковому напружено-дефор-
мованому станi вибираємо таким чином, щоб вiсь була спрямована по нормалi
до площин роздiлу шарiв.

Матерiали шарiв вважатимемо гiперпружними iзотропними з довiльною стру-
ктурою пружних потенцiалiв; у разi трансверсально-iзотропних гiперпружних

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



166 A. Ю. ГЛУХОВ, С. Ю. БАБИЧ, Ю. Ю. МЛАВЕЦЬ, О. К. РЕЙТIЙ

матерiалiв шарiв будемо вважати, що вiсь iзотропiї спрямована уздовж осi 𝑂𝑦3.
Пiд хвилями кручення будемо розумiти нормальнi хвилi, що поширюються

в радiальному напрямку i вiдповiдають крутильним коливанням нескiнченного
шару.

Вважаємо початковий напружений стан однорiдним

𝑢0𝑚 = (𝜆𝑚 − 1)𝑥𝑚; 𝜆𝑚 = 𝑐𝑜𝑛𝑠𝑡. (1)

Також приймаємо, що для кожного з шарiв реалiзується вiсесиметричний
напружено-деформований стан

𝑆
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22 ̸= 𝑆
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0(𝑗)
11 = 𝜎

0(𝑗)
22 ̸= 𝜎
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0(𝑗)
11 = 𝜀

0(𝑗)
22 ; 𝜆
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(𝑗)
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(2)

При вище вказаних умовах будемо дослiджувати перемiщення, що вiдповiд-
ають умовам [3, 4]

𝑢
(𝑗)
𝑟′ ≡ 0; 𝑢

(𝑗)
𝜃 = 𝑢

(𝑗)
𝜃 (𝑟′, 𝑦3, 𝜏) ; 𝑢

(𝑗)
3 ≡ 0; 𝑢

(𝑗)
4 ≡ 𝑝(𝑗) ≡ 0. (3)

У цьому випадку в поданнi спiльних рiшень просторових динамiчних лiне-
аризованих задач теорiї пружностi стосовно до загального рiшення задачi в
цилiндричних координатах можна прийняти

Ψ′(𝑗) = Ψ′(𝑗) (𝑟′, 𝑦3, 𝜏) ; X′(𝑗) ≡ 0. (4)

У розглянутому випадку для визначення перемiщень 𝑢(𝑗)𝜃 в кожному з шарiв
маємо наступнi спiввiдношення [3, 4]

𝑢
(𝑗)
𝜃 = − 𝜕

𝜕𝑟′
Ψ′(𝑗). (5)

Для складових тензора напружень 𝑄′(𝑗) при 𝑦3 = 𝑐𝑜𝑛𝑠𝑡 отримуємо вирази

𝑄′(𝑗)
3𝜃 = 𝜅′

(𝑗)
3113

𝜕

𝜕𝑦3
𝑢
(𝑗)
𝜃 . (6)

В спiввiдношеннях (5) функцiї Ψ′(𝑗) визначаються iз рiвнянь(︂
∆′ + 𝜅′

(𝑗)
3113𝜅

′(𝑗)−1
1221

𝜕2

𝜕𝑦23
− 𝜌′(𝑗)𝜅′

(𝑗)−1
1221

𝜕2

𝜕𝜏 2

)︂
Ψ′(𝑗) = 0. (7)

Тут ∆′
1 = 𝜕2

𝜕𝑟′2
+ 1

𝑟′
𝜕
𝜕𝑟′

; 𝜌′(𝑗) — щiльнiсть матерiалiв кожного з шарiв в попе-
редньо напруженому станi; 𝜏 — час. Складовi тензорiв 𝜅′(𝑗) визначаються для
конкретних постановок задач [3, 5].

Таким чином, вiдповiдно до вище викладеного дослiдження закономiрностей
поширення хвиль кручення у нестисливих шаруватих композитних матерiалах з
початковими напруженнями зводиться до побудови розв’язкiв рiвняння (7) при
виконаннi умов неперервностi в площинах роздiлу шарiв i умов перiодичностi,
вiдповiдно теорiї Флоке.
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Розглянемо поширення хвиль кручення в радiальному напрямку вздовж ша-
рiв. У цьому випадку за аналогiєю з [3, 5] для визначення “iстинної” фазової
швидкостi поширення хвиль кручення у шаруватому композитному матерiалi з
початковими напруженнями приймемо

Ψ′(𝑗) (𝑟′, 𝑦3, 𝜏) = Ψ′(𝑗)(0) (𝑦3)𝐻
(1)
0 (𝑟′𝑘) 𝑒−𝑖𝜔𝜏 ; 𝐶 = 𝜔𝑘−1; 𝑗 = 1, 2. (8)

В (8) 𝑘 i 𝜔 — хвильове число i кругова частота; 𝐶 — “iстина” фазова швид-
кiсть хвиль кручення; 𝐻(1)

0 (𝑥) — функцiя Ханкеля нульового порядку першого
роду, що забезпечує поширення хвиль кручення, що йдуть на “нескiнченнiсть”;
Ψ′(𝑗)(0) (𝑦3) — амплiтудна функцiя. Надалi iндексами (0) вiдзначенi всi амплiту-
днi величини при представленнях типу (8).

Пiдставляючи (8) в (5), для визначення перемiщень отримуємо наступнi ви-
рази:

𝑢
(𝑗)
𝜃 (𝑟′, 𝑦3, 𝜏) = 𝑢

(𝑗)(0)
𝜃 (𝑦3)

𝜕

𝜕𝑟′
𝐻

(1)
0 (𝑟′𝑘) 𝑒−𝑖𝜔𝜏 ;

𝑢
(𝑗)(0)
𝜃 (𝑦3) = −Ψ′(𝑗)(0) (𝑦3) .

(9)

Аналогiчно, пiдставляючи (8) в (6), для визначення складових тензора на-
пружень 𝑄̃′(𝑗), при 𝑦3 = 𝑐𝑜𝑛𝑠𝑡 отримуємо

𝑄′(𝑗)
3𝜃 (𝑟

′, 𝑦3, 𝜏) = 𝑄′(𝑗)(0)
3𝜃 (𝑦3)

𝜕

𝜕𝑟′
𝐻

(1)
0 (𝑟′𝑘) 𝑒−𝑖𝜔𝜏 ;

𝑄′(𝑗)(0)
3𝜃 (𝑦3) = −𝜅′(𝑗)3113

𝜕

𝜕𝑦3
Ψ′(𝑗)(0) (𝑦3) .

(10)

Пiдставлючи (8) в рiвняння (7), отримаємо рiвняння для визначення функцiї
Ψ′(𝑗)(0) в наступному виглядi(︂

𝜅′
(𝑗)
3113𝜅

′(𝑗)−1
1221

𝑑2

𝑑𝑦23
+ 𝜌′(𝑗)𝜔2𝜅′

(𝑗)−1
1221 − 𝑘2

)︂
Ψ′(𝑗) = 0. (11)

Оскiльки в (8)–(11) всi спiввiдношення представленi через амплiтуднi вели-
чини, то умови на границi контакту шарiв i умови перiодичностi також запи-
шемо для амплiтудних величин. Для цього видiлимо два сусiднi шари i буде-
мо вважати, що шар, величини якого вiдмiченi iндексом 1, займає по вiсi 𝑂𝑦3
область 0 ≤ 𝑦3 ≤ ℎ′(1) i шар, всi величини якого вiдмiченi iндексом 2, займає по
вiсi 𝑂𝑦3 область −ℎ′(2) ≤ 𝑦3 ≤ 0.

За умови проковзування при 𝑦3 = 0 повиннi виконуватися умови неперерв-
ностi

𝑄′(1)(0)
3𝜃 (0) = 0; 𝑄

(2)(0)
3𝜃 (0) = 0; (12)

i умови перiодичностi

𝑄′(1)(0)
3𝜃

(︀
ℎ(1)
)︀
= 0; 𝑄

(2)(0)
3𝜃

(︀
−ℎ(2)

)︀
= 0. (13)

Таким чином, для нестисливого тiла необхiдно знайти розв’язок звичайного
диференцiального рiвняння (11), що задовольнить умовам (12) i (13) з ураху-
ванням позначень (9) i (10).
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За аналогiєю з результатами, викладеними в [1], розв’язок рiвняння (11)
представимо в такiй формi:

Ψ′(𝑗)(0) (𝑦3) = 𝐴
(𝑗)
5 𝑒𝑖𝑘𝛼

(𝑗)
3 𝑦3 + 𝐴

(𝑗)
6 𝑒−𝑖𝑘𝛼

(𝑗)
3 𝑦3 ; 𝐴(𝑗)

𝑛 = 𝑐𝑜𝑛𝑠𝑡. (14)

Введемо в розв’язок (14) для кожного шару новi константи 𝐵(𝑗)
𝑛 i запишемо

його вiдносно середини кожного iз шарiв. В цьому випадку (14) можна записати
у формi

Ψ′(1)(0) (𝑦3) = 𝐵
(1)
5 𝑒𝑖𝑘𝛼

(1)
3 (𝑦3− 1

2
ℎ′(1)) +𝐵

(1)
6 𝑒−𝑖𝑘𝛼

(1)
3 (𝑦3− 1

2
ℎ′(1));

Ψ′(2)(0) (𝑦3) = 𝐵
(2)
5 𝑒𝑖𝑘𝛼

(2)
3 (𝑦3+ 1

2
ℎ′(2)) +𝐵

(2)
6 𝑒−𝑖𝑘𝛼

(2)
3 (𝑦3+ 1

2
ℎ′(2)).

(15)

В (14) i (15) через 𝛼(𝑗)
3 вiдповiдно до (11) позначенi наступнi величини

𝛼
(𝑗)
3 =

√︂
𝜅′

(𝑗)−1
3113

(︁
𝜌′(𝑗)𝐶2 − 𝜅′

(𝑗)
1221

)︁
; 𝐶 = 𝜔𝑘−1. (16)

У розглянутому випадку для шаруватих композитних нестисливих мате-
рiалiв з початковими напруженнями вихiдну задачу можна роздiлити на двi
незалежнi задачi: симетрична хвиля кручення (в кожному шарi 𝑢(𝑗)𝜃 симетричнi
вiдносно середини кожного шару), що поширюється уздовж вiсi 𝑂𝑟′; антисиме-
трична хвиля кручення (в кожному шарi 𝑢(𝑗)𝜃 антисиметричнi вiдносно середини
кожного шару), що поширюється уздовж вiсi 𝑂𝑟′. Надалi розглянемо окремо
симетричнi та антисиметричнi хвилi кручення.

Симетричнi хвилi кручення. Для розглянутого випадку в (15) приймемо та-
кi залежностi:

𝐵
(𝑗)
5 = 𝐵

(𝑗)
6 . (17)

Iз (17), (15) i (9) випливає, що 𝑢(𝑗)𝜃 будуть симетричними вiдносно середини
кожного iз шарiв.

В цьому випадку iз (17), (15), (9), (10), (12), (13) слiдує, що умови неперерв-
ностi i перiодичностi спiвпадають.

У випадку нежорсткого контакту мiж шарами композитного матерiалу умо-
ви неперервностi i перiодичностi мають вигляд

𝐵
(1)
5 𝑘𝛼

(1)
3 𝜅′

(1)
3113 sin

1

2
𝑘𝛼

(1)
3 ℎ′(1) = 0;

𝐵
(2)
5 𝑘𝛼

(2)
3 𝜅′

(2)
3113 sin

1

2
𝑘𝛼

(2)
3 ℎ′(2) = 0.

(18)

Дисперсiйне рiвняння при нежорсткому контактi має вигляд

𝛼
(1)
3 𝛼

(2)
3 𝜅′

(1)
3113𝜅

′(2)
3113 sin

1

2
𝑘𝛼

(1)
3 ℎ′(1) sin

1

2
𝑘𝛼

(2)
3 ℎ′(2) = 0. (19)

Рiвняння (19) можна розв’язати аналiтично. Чотири розв’язки рiвняння (19)
мають вигляд

𝐶
(1)
1 =

√︃
𝜅′

(1)
1221

𝜌′(1)
; 𝐶

(2)
1 =

√︃
𝜅′

(2)
1221

𝜌′(2)
; 𝐶

(1)
2 =

√︃
𝜅′

(1)
1221

𝜌′(1)
+

4𝜋2𝑛2𝜅′
(1)
3113

𝜌′(1)𝑘2ℎ′(1)2
;

𝐶
(2)
2 =

√︃
𝜅′

(2)
1221

𝜌′(2)
+

4𝜋2𝑛2𝜅′
(2)
3113

𝜌′(2)𝑘2ℎ′(2)2
; 𝑛 = 0, 1, ...

(20)
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Iз (19) i (20) слiдує, що мiж шарами композитного матерiалу у випадку
проковзування не вiдбувається взаємодiї. Швидкостi розповсюдження симетри-
чних хвиль кручення в кожному iз шарiв залежать вiд механiчних параметрiв
матерiалу шару, товщини шару та початкових напружень.

Для довгохвильового наближення швидкостi поширення симетричних хвиль
кручення для кожного з шарiв будуть визначатися першими двома формулами
(20).

Вiдзначимо, що першi вирази у формулах (20) визначають швидкостi поши-
рення поперечних хвиль в однорiдному матерiалi з початковими напруженнями
вiдповiдно першого i другого шарiв.

Антисиметричнi хвилi кручення. Для розглянутого випадку в представ-
леннi розв’язку у формi (17) для двох сусiднiх шарiв приймемо наступнi зале-
жностi

𝐵
(𝑗)
5 = −𝐵(𝑗)

6 . (21)

За умови (21) з (15) i (9) випливає, що 𝑢(𝑗)𝜃 будуть антисиметричними вiдно-
сно середини вiдповiдних шарiв.

В цьому випадку iз (21), (15), (9), (10), (12), (13) слiдує, що умови неперерв-
ностi i перiодичностi спiвпадають.

У випадку нежорсткого контакту мiж шарами композитного матерiалу умо-
ви неперервностi i перiодичностi мають вигляд

𝐵
(1)
5 𝑘𝛼

(1)
3 𝜅′

(1)
3113 cos

1

2
𝑘𝛼

(1)
3 ℎ′(1) = 0;

𝐵
(2)
5 𝑘𝛼

(2)
3 𝜅′

(2)
3113 cos

1

2
𝑘𝛼

(2)
3 ℎ′(2) = 0.

(22)

Дисперсiйне рiвняння при нежорсткому контактi має вигляд

𝛼
(1)
3 𝛼

(2)
3 𝜅′

(1)
3113𝜅

′(2)
3113 cos

1

2
𝑘𝛼

(1)
3 ℎ′(1) cos

1

2
𝑘𝛼

(2)
3 ℎ′(2) = 0. (23)

Рiвняння (23) можна розв’язати аналiтично. Чотири розв’язки рiвняння (23)
мають вигляд

𝐶
(1)
1 =

√︃
𝜅′

(1)
1221

𝜌′(1)
; 𝐶

(2)
1 =

√︃
𝜅′

(2)
1221

𝜌′(2)
; 𝐶

(1)
2 =

√︃
𝜅′

(1)
1221

𝜌′(1)
+
𝜅′

(1)
3113

𝜌′(1)
𝜋2 (1 + 2𝑛)2

𝑘2ℎ′(1)2
;

𝐶
(2)
2 =

√︃
𝜅′

(2)
1221

𝜌′(2)
+
𝜅′

(2)
3113

𝜌′(2)
𝜋2 (1 + 2𝑛)2

𝑘2ℎ′(2)2
; 𝑛 = 0, 1, ...

(24)

Iз (23) i (24) слiдує, що мiж шарами композитного матерiалу у випадку
проковзування не вiдбувається взаємодiї. Швидкостi розповсюдження антиси-
метричних хвиль кручення в кожному iз шарiв залежать вiд механiчних пара-
метрiв матерiалу шару, товщини шару та початкових напружень.

Для довгохвильового наближення швидкостi поширення симетричних хвиль
кручення для кожного з шарiв будуть визначатися першими двома формулами
(24).

Вiдзначимо, що першi вирази у формулах (24) визначають швидкостi поши-
рення поперечних хвиль в однорiдному матерiалi з початковими напруженнями
вiдповiдно першого i другого шарiв.
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3. Висновки. Таким чином, в данiй роботi проведенi дослiдження законо-
мiрностей поширення хвиль кручення у нестисливих шаруватих композитних
матерiалах з початковими напруженнями при проковзуваннi шарiв. Розгляну-
то поширення хвиль кручення в радiальному напрямку вздовж шарiв. Задача
зводиться до побудови розв’язкiв рiвняння вiдносно амплiтудної функцiї при
виконаннi умов неперервностi в площинах роздiлу шарiв i умов перiодичностi,
вiдповiдно теорiї Флоке. Для симетричних i антисиметричних хвиль кручення
отриманi дисперсiйнi рiвняння та їх довгохвильовi наближення.

Мiж шарами композитного матерiалу у випадку проковзування не вiдбу-
вається взаємодiї. Швидкостi розповсюдження хвиль кручення в кожному iз
шарiв залежать вiд механiчних параметрiв матерiалу шару, товщини шару та
початкових напружень. При довгохвильовому наближеннi швидкостi поширен-
ня симетричних i антисиметричних хвиль кручення для кожного з шарiв рiвнi
швидкостям поширення поперечних хвиль в однорiдному матерiалi з початко-
вими напруженнями вiдповiдно першого i другого шарiв.

РЕЗЮМЕ. Дослiджено поширення хвиль кручення у шаруватих компози-
тних нестисливих матерiалах з початковими напруженнями при проковзуваннi
шарiв. Розглянуто випадок поширення хвиль уздовж шарiв. Отримано диспер-
сiйнi рiвняння для симетричних i антисиметричних хвиль, а також їх довгохви-
льовi наближення.
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МЕТОД ВИЗНАЧЕННЯ НЕЧIТКИХ ЗНАЧЕНЬ ВIДНОСНОЇ
ВАЖЛИВОСТI ХАРАКТЕРИСТИК АЛЬТЕРНАТИВ З

ВИКОРИСТАННЯМ СПОСОБУ НАШАРУВАННЯ

Дослiдження присвячене розробцi iнструментарiю, призначеного для аналiзу та
агрегування iнтервальних значень вагових коефiцiєнтiв характеристик альтернатив.
Слабкоструктурованi предметнi областi характеризуються невизначенiстю i у конкре-
тних ситуацiях прийняття рiшень це проявляється в розмитому оцiнюваннi експертами
характеристик альтернатив у виглядi iнтервальних значень. У статтi пропонується
метод агрегування iнтервальних значень вагових коефiцiєнтiв характеристик, одер-
жаних вiд групи експертiв, у виглядi функцiї належностi нечiткiй множинi. В основу
методу покладено запропонований авторами спосiб нашарування. Описано алгоритм
визначення кiлькостi шарiв при дослiдженнi взаємного попарного розташування iн-
тервалiв на прямiй. Наводяться також результати експерименту виявлення вiдносної
важливостi ролей керiвникiв органiзацiйної системи для забезпечення її функцiональ-
ної стiйкостi.

Ключовi слова: iнтервальнi значення, ваговi коефiцiєнти, функцiя належностi, ана-
лiз розташування iнтервалiв, важливiсть ролей в органiзацiї, функцiональна стiйкiсть.

1. Вступ. У багатьох практичних ситуацiях особа, яка приймає рiшення, зако-
номiрно змушена дiяти в слабкоструктурованих предметних областях. До того
ж, побудова структури переваг у формалiзованому виглядi є складною задачею
для людини [1, 2]: для експертiв у предметних областях складно будувати ме-
тризованi вiдношення на множинi об’єктiв. Зокрема, людина не може задавати
достовiрнi ваговi коефiцiєнти вiдносної важливостi характеристик альтернатив
чи критерiїв, коефiцiєнти компетентностi експертiв, числовi значення елементiв
метризованих матиць попарних порiвнянь, побудувати обґрунтовану достовiр-
ну функцiю належностi тощо. Тим часом такi проблеми регулярно виникають у
багатьох практичних ситуацiях прийняття рiшень в рiзних напрямках людської
життєдiяльностi i вимагають свого вирiшення.

Багатоатрибутний вибiр є одним з напрямкiв, який сприяє адекватнiй фор-
малiзацiї ситуацiй прийняття рiшень та допомагає експертам i особам, що при-
ймають рiшення, вирiшувати слабкоструктурованi та неструктурованi пробле-
ми, якi характеризуються значною кiлькiстю критерiїв, атрибутiв та цiлей. При
описi процесу прийняття рiшень зазвичай розглядаються:

• альтернативи — набiр об’єктiв, варiантiв, продуктiв, дiй, виборiв, планiв,
проєктiв, стратегiй тощо;
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• атрибути — набiр характеристик, ознак, показникiв, факторiв тощо, якi
визначають кожну альтернативу;

• цiлi — бажаний стан альтернативи, бажанi значення набору атрибутiв аль-
тернативи, якi обриться особою, що приймає рiшення;

• ваги — вiдноснi коефiцiєнти важливостi, значущостi кожного атрибуту аль-
тернатив, вiдносної важливостi критерiїв, вагомостi альтернатив, числовi
показники компетентностi експертiв.

Зазвичай розрiзняють багатоцiльове прийняття рiшень, багатоатрибутне
прийняття рiшень та багатокритерiальне прийняття рiшень. Багатоцiльове
прийняття рiшень мiстить набiр конфлiктуючих цiлей, якi можуть бути дося-
гнутi одночасно. Багатоатрибутне прийняття рiшень здiйснюється для завдань
вибору набору альтернатив, що характеризуються їх атрибутами, найчастiше
за наявностi однiєї мети. Багатокритерiальним прийняттям рiшень зазвичай
вважається прийняття рiшень при багатьох атрибутах i за наявностi кiлькох
конфлiктуючих критерiїв.

Часто експерти мають неоднозначну iнформацiю про переваги, нерiдко бу-
вають не впевненi у своїх оцiнках та не можуть визначити їх точнi числовi зна-
чення. Тому реальнiший пiдхiд для вираження переваг полягає у використаннi
вербальних тверджень замiсть числових величин.

При груповому прийняттi рiшень процес розвивається з використанням згор-
тки, яка агрегує узагальненi переваги окремих експертiв або за одержаними усе-
редненими оцiнками вибирається найкраща альтернатива. Водночас практично
завжди iснує проблема узгодження оцiнок при груповому прийняттi рiшень та
визначеннi властивостей об’єктiв. Судження експертiв найчастiше є рiзними i
мають бути агрегованi для того, щоб отримати єдиний висновок, який був би в
якомусь сенсi близький до усiх експертних значень. Нечiткi моделi використову-
ються як основний засiб для агрегування iндивiдуальної експертної iнформацiї
в рiзних практичних ситуацiях прийняття рiшень.

2. Аналiз останнiх дослiджень i публiкацiй. Дослiдженню та ана-
лiзу методiв вирiшення проблеми визначення структури переваг на множинi
об’єктiв, зокрема, вагових коефiцiєнтiв характеристик альтернатив, присвяче-
но значну кiлькiсть робiт у вiтчизнянiй та зарубiжнiй лiтературi. В деяких ро-
ботах [1, 3] вiдзначається складнiсть отримання безпосередньої несуперечливої
iнформацiї вiд експерта про числовi значення вагових коефiцiєнтiв атрибутiв
альтернатив. На основi проведених дослiджень [1] доводиться, що експерт мо-
же адекватно визначити ваговi коефiцiєнти, тобто, коефiцiєнти значущостi, у
випадках, коли кiлькiсть атрибутiв, що характеризують альтернативи, не пере-
вищує трьох. У випадках, коли альтернативи характеризуються бiльшою кiль-
кiстю атрибутiв, можливе застосування непрямих методiв, в яких структура
переваг вiдновлюється на основi попередньо прийнятих експертних рiшень.

Серед поширених способiв представлення значень вагових коефiцiєнтiв слiд
вiдзначити такi [1]:

• довiльнi дiйснi чи натуральнi числа −∞ < 𝑥𝑖 <∞, 𝑖 ∈ 𝐼;

• дiйснi числа з врахуванням обмежень (одностороннiх чи двостороннiх), на-
приклад, 𝑥𝑖 > 0, 𝑖 ∈ 𝐼; −5 ≤ 𝑥𝑖 ≤ 5, 𝑖 ∈ 𝐼; 0 < 𝑥𝑖 < 1, 𝑖 ∈ 𝐼;
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• дiйснi чи натуральнi числа з урахуванням умови центрованостi:∑︁
𝑖∈𝐼

𝑥𝑖 = 0, −∞ < 𝑥𝑖 <∞, 𝑖 ∈ 𝐼;

• дiйснi числа з урахуванням умови нормованостi:∑︁
𝑖∈𝐼

𝑥𝑖 = 1, 𝑥𝑖 > 0, 𝑖 ∈ 𝐼.

Поширеною формою представлення нормованих вагових коефiцiєнтiв є iн-
тервальна форма — гiперпаралелепiпед вагових коефiцiєнтiв [1]

𝑥 ∈
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
, 𝑖 ∈ 𝐼, 0 < 𝑥𝐻𝑖 ≤ 𝑥𝐵𝑖 < 1, 𝑖 ∈ 𝐼.

Причому, 𝐼 = {1, . . . , 𝑘} — множина iндексiв експертiв, 𝑘 — кiлькiсть екс-
пертiв.

Методи визначення iнтервальних значень вагових коефiцiєнтiв розглядали-
ся, зокрема, в роботах [1, 4]. В роботi [7] запропоновано крiм фiксованих та
iнтервальних значень вагових коефiцiєнтiв розглядати також вiдноснi коефiцi-
єнти важливостi чи впливовостi деяких величин.

На сьогоднi пiдходи, якi використовують методи теорiї нечiтких множин,
дозволяють проводити обробку розмитих експертних оцiнок, але такi пiдходи
не враховують особливостей сприйняття експертами кiлькiсних значень фiзи-
чних величин. Для обгрунтування та подальшого викладення матерiалу введе-
мо кiлька додаткових евристик.

Евристика Е1. Iнтервали або сегменти значень бiльшою мiрою вiдобра-
жують судження експертiв про вiдношення переваги, нiж точковi значення
вагових коефiцiєнтiв.

Евристика Е2. Функцiя належностi нечiткiй множинi мiстить бiль-
ше iнформацiї про вiдношення переваги групи експертiв, нiж iнтервали або
сегменти, i краще вiдображає колективне судження групи експертiв.

Таким чином, акумульована (агрегована, узагальнена, узгоджена тощо) iн-
формацiя, одержана вiд групи експертiв, не втрачається, хоч i трансформується
в iнший аналiтичний вигляд з деякими неминучими i закономiрними похибка-
ми.

Наголосимо також на основному моментi для такого роду експертиз. Екс-
перти працюють у звичнiй для себе предметнiй областi i визначення iнтервалiв
чи сегментiв значень вiдносної важливостi характеристик альтернатив здiйсню-
ється непрямими методами.

В роботi [8] розглянуто спосiб нашарування для агрегування iнтервалiв або
сегментiв значень вагових коефiцiєнтiв та визначення структури переваг екс-
пертiв у виглядi функцiй належностi нечiткiй множинi.

3. Постановка задачi. Основна мета цього дослiдження полягає у роз-
робцi пiдходу, який дозволяв би агрегувати заданi експертами iнтервали або
сегменти вiдносної важливостi характеристик альтернатив i, за можливостi, мi-
нiмiзував би при цьому втрати iнформацiї про переваги мiж характеристиками
альтернатив, тобто максимально вiдображав би судження групи експертiв про
рiвень впливу на прийняття рiшення кожної характеристики альтернативи. В
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багатьох випадках експертовi зручнiше задавати переваги в нечiткiй, розмитiй
формi у виглядi iнтервалiв змiни коефiцiєнтiв вiдносної важливостi об’єктiв,
тобто гiперпаралелепiпеда значень у просторi вагових коефiцiєнтiв.

Постановки задач визначення вiдносної важливостi критерiїв, ваги альтер-
натив, впливовостi їх характеристик та компетентностi експертiв у бiльшостi
випадкiв схожi i вiдрiзняються лише iнтерпретацiєю. Тому будемо розглядати
визначення вагових коефiцiєнтiв взагалi, маючи на увазi те, що ця задача може
iнтерпретуватися у будь-якому з чотирьох зазначених аспектiв.

Нехай задано множину альтернатив (об’єктiв, варiантiв, планiв, проєктiв
тощо) 𝑎𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼 = {1, . . . , 𝑛} , кожна з яких характеризується 𝑚 ознаками
(атрибутами, характеристиками, факторами тощо) 𝑎𝑖 = (𝑎1𝑖 , . . . , 𝑎

𝑚
𝑖 ), 𝑖 ∈ 𝐼.

Для побудови моделi конкретної задачi нерiдко виникає необхiднiсть у ви-
значеннi вiдносної вагомостi характеристик та їх впливу на прийняття рiшен-
ня — для збiльшення визначеностi та пiдвищення структурованостi предметної
областi. Оскiльки людина у бiльшостi випадкiв не спроможна адекватно при-
значати вiдносну вагу [1], перспективним напрямком для вирiшення проблеми
визначення вагових коефiцiєнтiв характеристик є непрямi методи.

У практичних випадках нерiдко iснує iсторiя переваг мiж об’єктами (грав-
цями, проектами, пiдроздiлами тощо) — проведення серiї турнiрiв, за результа-
тами неодноразового вимiрювання переваг експертiв, будь-якої iншої природної
iнформацiї. На основi одержаної таким чином iнформацiї необхiдно визначити
вiдноснi рiвнi впливу одержаних в результатi експертизи iнтервальних значень
в числовому вираженнi. При цьому слiд забезпечити максимальне збереження
початкової iнформацiї про вiдношення переваги, яка надiйшла вiд експертiв.

4. Математична модель. Для побудови математичної моделi визначення
нечiтких значень вiдносних вагових коефiцiєнтiв розглянемо ситуацiю прийня-
ття рiшення.

Нехай за участi кожного експерта непрямими методами задано iнтервали
вiдносної важливостi вагових коефiцiєнтiв:[︁

𝑥𝐻𝑗𝑖 , 𝑥𝐵𝑗𝑖

]︁
, 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . ,𝑚,

де:
𝑘 — кiлькiсть експертiв;
𝑚 — кiлькiсть атрибутiв альтернатив.

При цьому слiд зазначити, що є не важливою конфiгурацiя заданих iнтерва-
лiв. Тобто, iнтервали можуть спiвпадати, перетинатися, бути вкладеними один
в одного. Деякi iнтервали можуть бути представленi єдиною точкою, коли

∃𝑖, 𝑗 : 𝑥𝐻𝑗𝑖 = 𝑥𝐵𝑗𝑖 , 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . ,𝑚.

Задача полягає у здiйсненнi агрегування iнтервалiв, заданих або обчисле-
них за участi експертiв. Тобто, iнформацiя про вiдношення переваги експертiв,
представлена у виглядi К наборiв iнтервалiв, має бути представлена у виглядi
функцiї належностi нечiткiй множинi, яка б зберiгала iнформацiю про заданi
експертами вiдношення, на скiльки це можливо.

Евристика Е3. Множина значень вiдносної важливостi характеристик
альтернатив, утворена на основi iнтервалiв значень вагових коефiцiєнтiв,
одержаних вiд експертiв, є нечiткою.
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Введемо такi позначення вiдповiдно для сегментiв та iнтервалiв вагових зна-
чень коефiцiєнтiв:

𝑃 𝑖 =

[︂
min

𝑗=1,...,𝑘
𝑥𝐻𝑗𝑖 , max

𝑗=1,...,𝑘
𝑥𝐵𝑗𝑖

]︂
, 𝑖 = 1, . . . ,𝑚, (1)

𝑃 𝑖 =

(︂
min

𝑗=1,...,𝑘
𝑥𝐻𝑗𝑖 , max

𝑗=1,...,𝑘
𝑥𝐵𝑗𝑖

)︂
, 𝑖 = 1, . . . ,𝑚. (2)

Означення 1. Для множин 𝑃 𝑖, 𝑖 = 1, . . . ,𝑚 та функцiй належностi
𝜇𝑖 : 𝑃 𝑖 → [0, 1] нечiткi множини визначаються як

𝐴𝑖 =
{︀(︀
𝑥, 𝜇𝑖𝐴 (𝑥)

)︀ ⃒⃒
𝑥 ∈ 𝑃 𝑖

}︀
, 𝑖 = 1, . . . ,𝑚.

Функцiї належностi для вагових коефiцiєнтiв, якi вiдображують нечiтку ва-
жливiсть характеристик альтернатив, будемо будувати з урахуванням того, що
з ними асоцiюється властивiсть вiдображати мiру належностi вагових коефiцi-
єнтiв до деяких визначених значень, тобто властивiсть мати кiлькiсно заданий
рiвень вiдносної важливостi.

Для кожного вагового коефiцiєнта 𝑥𝑖, 𝑖 = 1, . . . ,𝑚 унiверсумом є iнтервал
𝑋 = (0, 1). Функцiя 𝜇𝑖 (𝑥) , 𝑖 = 1, . . . ,𝑚 є функцiєю належностi, а її значення —
ступенем належностi значення 𝑥𝑖, 𝑖 = 1, . . . ,𝑚 нечiткiй множиi 𝐴𝑖 ⊂ 𝑋, 𝑖 =
1, . . . ,𝑚. Носiєм нечiткої множини 𝐴𝑖, 𝑖 = 1, . . . ,𝑚, називається така множина,
яка мiстить лише тi елементи множини 𝐴𝑖, 𝑖 = 1, . . . ,𝑚, ступiнь належностi
яких 𝜇𝑖 (𝑥) > 0, 𝑖 = 1, . . . ,𝑚, тобто носiєм нечiткої множини значень вагових
коефiцiєнтiв 𝑥𝑖, 𝑖 = 1, . . . ,𝑚 є сегменти або iнтервали виду (1) чи (2).

Евристика Е4. Будемо вважати, що нечiткi множини значень вагових
коефiцiєнтiв та вiдповiдних функцiй належностi є унiмодальними.

Евристика Е5. Вважатимемо, що функцiї належностi для усiх вагових
коефiцiєнтiв є нормальними, тобто 𝜇𝑖 (𝑥) = 1, 𝑖 = 1, . . . ,𝑚.

4.1. Спосiб нашарування. Коротко розглянемо суть iдеї нашарування.
Будемо умовно вважати, що кожному заданому чи обчисленому iнтервалу або
сегменту вiдповiдає деяка геометрична фiгура з такими ж координатами, але
ця фiгура має деяку товщину. При визначеннi чергового iнтервалу чи сегмен-
ту для кожного вагового коефiцiєнта характеристик альтернатив такi фiгури
нашаровуються одна на одну. Але таке нашарування здiйснюється особливим
чином — як при грi в «Тетрiс». Фрагменти iнтервалiв заповнюють порожнини
мiж шарами так, що чергова утворена конфiгурацiя шарiв є цiлiсною, без поро-
жнин. В результатi на основi нашарування 𝑘 шарiв утворюється деяка фiгура,
яка може бути для зручностi використання апроксимована функцiєю належно-
стi усталеного виду — трикутною, трапецiєподiбною, S-подiбною, Z-подiбною,
П-подiбною, Гаусовою тощо.

5. Одержанi результати дослiдження.
5.1. Аналiз варiантiв взаємного попарного розташування iнтерва-

лiв на прямiй. Розглянемо та проiлюструємо можливi комбiнацiї взаємного
попарного розташування iнтервалiв вагових коефiцiєнтiв на прямiй. Для реалi-
зацiї пiдходу нашарування слiд врахувати ситуацiї, якi можуть виникнути при
включеннi в систему кожного чергового iнтервалу.
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Зрозумiло, що оскiльки експерти вiльнi у визначеннi значень вiдносної ва-
жливостi характеристик альтернатив, то вони можуть запропонувати найрiзно-
манiтнiшi варiанти власних iндивiдуальних уявлень про нормованi ваговi кое-
фiцiєнти. Для загального аналiзу визначення комплексного розташування усiх
iндивiдуальних розташувань експертних вагових iнтервалiв, розглянемо усi мо-
жливi варiанти взаємного попарного розташування цих iнтервалiв.

Рис. 1. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
не перетинаються,

[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
<
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
.

Рис. 2. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
не перетинаються,

[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
<
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
.

Рис. 3. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
дотичнi, 𝑥𝐵𝑖 = 𝑥𝐻𝑗 .

Рис. 4. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
дотичнi, 𝑥𝐵𝑗 = 𝑥𝐻𝑖 .

Рис. 5. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
перетинаються, 𝑥𝐻𝑗 = 𝑥𝐵𝑖 .
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Рис. 6. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
перетинаються, 𝑥𝐻𝑖 = 𝑥𝐵𝑗 .

Рис. 7. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
перетинаються, 𝑥𝐻𝑖 = 𝑥𝐻𝑗 , 𝑥𝐵𝑖 < 𝑥𝐵𝑗 .

Рис. 8. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
перетинаються, 𝑥𝐻𝑖 = 𝑥𝐻𝑗 , 𝑥𝐵𝑗 < 𝑥𝐵𝑖 .

Рис. 9. Iнтервал
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
включається в iнтервал

[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
,
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
⊂
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
.

Рис. 10. Iнтервал
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
включається в iнтервал

[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
,[︀

𝑥𝐻𝑗 , 𝑥
𝐵
𝑗

]︀
⊂
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
.
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Рис. 11. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
перетинаються, 𝑥𝐻𝑗 < 𝑥𝐻𝑖 , 𝑥𝐵𝑖 = 𝑥𝐵𝑗 .

Рис. 12. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
перетинаються, 𝑥𝐻𝑖 < 𝑥𝐻𝑗 , 𝑥𝐵𝑖 = 𝑥𝐵𝑗 .

Рис. 13. Iнтервали
[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
та
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
спiвпадають,

[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
=
[︀
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︀
.

Вилучення iнтервалу з iндексом 𝑗.

Зведемо в таблицю 1 усi можливi варiанти взаємного розташування iнтер-
валiв i визначимо змiни у нашаруваннях залежно вiд попарної конфiгурацiї
iнтервалiв.

Таблиця 1.
Усi можливi варiанти взаємного розташування сегментiв

№
рисунка Умови Лiчильник

сегментiв
Новi значення

границь
Нова
висота

Рис. 1 𝑥𝐻𝑖 < 𝑥𝐻𝑗 & 𝑥𝐵𝑖 < 𝑥𝐻𝑗 𝑠 = 𝑠

[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
,
[︁
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︁
без змiн

ℎ𝑖, ℎ𝑗
без змiн

Рис. 2 𝑥𝐻𝑗 < 𝑥𝐻𝑖 & 𝑥𝐵𝑗 < 𝑥𝐻𝑖 𝑠 = 𝑠

[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
,
[︁
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︁
без змiн

ℎ𝑖, ℎ𝑗
без змiн

Рис. 3 𝑥𝐻𝑖 < 𝑥𝐻𝑗 & 𝑥𝐵𝑖 = 𝑥𝐻𝑗 𝑠 = 𝑠+ 1 𝑥𝐻𝑠 = 𝑥𝐵𝑠 = 𝑥𝐵𝑖 ℎ𝑠 = ℎ𝑖+ℎ𝑗[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
,
[︁
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︁
без змiн

ℎ𝑖, ℎ𝑗
без змiн

Рис. 4 𝑥𝐻𝑗 < 𝑥𝐻𝑖 & 𝑥𝐵𝑗 = 𝑥𝐻𝑖 𝑠 = 𝑠+ 1 𝑥𝐻𝑠 = 𝑥𝐵𝑠 = 𝑥𝐵𝑗 ℎ𝑠 = ℎ𝑖+ℎ𝑗[︀
𝑥𝐻𝑖 , 𝑥

𝐵
𝑖

]︀
,
[︁
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︁
без змiн

ℎ𝑖, ℎ𝑗
без змiн

Рис. 5 𝑥𝐻𝑖 < 𝑥𝐻𝑗 & 𝑥𝐻𝑗 < 𝑥𝐵𝑖 𝑠 = 𝑠+ 1 𝑥𝐻𝑠 = 𝑥𝐻𝑗 , 𝑥𝐵𝑠 = 𝑥𝐵𝑖 ℎ𝑠 = ℎ𝑖+ℎ𝑗
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𝑥𝐻𝑖 = 𝑥𝐻𝑖 , 𝑥𝐵𝑖 = 𝑥𝐻𝑗 ,
𝑥𝐻𝑗 = 𝑥𝐵𝑖 , 𝑥𝐵𝑗 = 𝑥𝐵𝑗

ℎ𝑖, ℎ𝑗
без змiн

Рис. 6 𝑥𝐻𝑗 < 𝑥𝐻𝑖 & 𝑥𝐻𝑖 < 𝑥𝐵𝑗 𝑠 = 𝑠+ 1 𝑥𝐻𝑠 = 𝑥𝐻𝑖 , 𝑥𝐵𝑠 = 𝑥𝐵𝑗 ℎ𝑠 = ℎ𝑖+ℎ𝑗
𝑥𝐻𝑗 = 𝑥𝐻𝑗 , 𝑥𝐵𝑗 = 𝑥𝐻𝑖 ,

𝑥𝐻𝑖 = 𝑥𝐵𝑗 , 𝑥𝐵𝑖 = 𝑥𝐵𝑖

ℎ𝑖, ℎ𝑗
без змiн

Рис. 7 𝑥𝐻𝑖 = 𝑥𝐻𝑗 & 𝑥𝐻𝑖 < 𝑥𝐵𝑗 𝑠 = 𝑠 𝑥𝐻𝑗 = 𝑥𝐵𝑖 , 𝑥𝐵𝑗 = 𝑥𝐵𝑗
ℎ𝑗 = ℎ𝑗
без змiн[︀

𝑥𝐻𝑖 , 𝑥
𝐵
𝑖

]︀
,
[︁
𝑥𝐻𝑗 , 𝑥

𝐵
𝑗

]︁
без змiн

ℎ𝑖 = ℎ𝑖+ℎ𝑗

Рис. 8 𝑥𝐻𝑖 = 𝑥𝐻𝑗 & 𝑥𝐻𝑗 < 𝑥𝐵𝑖 𝑠 = 𝑠
𝑥𝐻𝑖 = 𝑥𝐻𝑖 , 𝑥

𝐵
𝑖 = 𝑥𝐵𝑖

без змiн ℎ𝑖 = ℎ𝑖+ℎ𝑗

𝑥𝐻𝑗 = 𝑥𝐵𝑗 , 𝑥
𝐵
𝑗 = 𝑥𝐵𝑖

ℎ𝑗 = ℎ𝑗
без змiн

Рис. 9 𝑥𝐻𝑗 < 𝑥𝐻𝑖 & 𝑥𝐵𝑖 < 𝑥𝐵𝑗 𝑠 = 𝑠+ 1 𝑥𝐻𝑠 = 𝑥𝐻𝑖 , 𝑥
𝐵
𝑠 = 𝑥𝐵𝑖 ℎ𝑠 = ℎ𝑖+ℎ𝑗

𝑥𝐵𝑖 = 𝐵, 𝑥𝐻𝑖 = 𝑥𝐻𝑗 ,
𝑥𝐵𝑖 = 𝑥𝐻𝑖

ℎ𝑖 = ℎ𝑖
без змiн

𝑥𝐻𝑗 = 𝐵, 𝑥𝐵𝑗 = 𝑥𝐵𝑗
ℎ𝑗 = ℎ𝑗
без змiн

Рис. 10 𝑥𝐻𝑖 < 𝑥𝐻𝑗 & 𝑥𝐵𝑗 < 𝑥𝐵𝑖 𝑠 = 𝑠+ 1 𝑥𝐻𝑠 = 𝑥𝐻𝑗 , 𝑥
𝐵
𝑠 = 𝑥𝐵𝑗 ℎ𝑠 = ℎ𝑖+ℎ𝑗

𝑥𝐵𝑖 = 𝐵, 𝑥𝐻𝑖 = 𝑥𝐻𝑖 ,
𝑥𝐵𝑖 = 𝑥𝐻𝑗

ℎ𝑖 = ℎ𝑖
без змiн

𝑥𝐻𝑗 = 𝑥𝐵𝑗 ,𝑥𝐵𝑗 = 𝐵
ℎ𝑗 = ℎ𝑗
без змiн

Рис. 11 𝑥𝐻𝑗 < 𝑥𝐻𝑖 & 𝑥𝐵𝑖 = 𝑥𝐵𝑗 𝑠 = 𝑠 𝑥𝐻𝑗 = 𝑥𝐻𝑗 , 𝑥𝐵𝑖 = 𝑥𝐻𝑖
ℎ𝑗 = ℎ𝑗
без змiн

𝑥𝐻𝑖 = 𝑥𝐻𝑖 , 𝑥𝐵𝑖 = 𝑥𝐵𝑗 ℎ𝑖 = ℎ𝑖+ℎ𝑗

Рис. 12 𝑥𝐻𝑖 < 𝑥𝐻𝑗 & 𝑥𝐵𝑖 = 𝑥𝐵𝑗 𝑠 = 𝑠 𝑥𝐻𝑗 = 𝑥𝐻𝑖 , 𝑥𝐵𝑗 = 𝑥𝐵𝑖
ℎ𝑗 = ℎ𝑗
без змiн

𝑥𝐻𝑖 = 𝑥𝐻𝑗 , 𝑥𝐵𝑖 = 𝑥𝐵𝑗 ℎ𝑖 = ℎ𝑖+ℎ𝑗

Рис. 13 𝑥𝐻𝑖 = 𝑥𝐻𝑗 & 𝑥𝐵𝑖 = 𝑥𝐵𝑗

𝑠 = 𝑠− 1
вилучення
сегмента з
iндексом 𝑗

𝑥𝐻𝑖 = 𝑥𝐻𝑖 , 𝑥
𝐵
𝑖 = 𝑥𝐵𝑖

без змiн ℎ𝑖 = ℎ𝑖+ℎ𝑗

На наступному етапi застосування методу нашарувань слiд використати за-
кономiрностi, представленi в Таблицi 1, для побудови єдиної цiлiсної фiгури
з заданими координатами, про яку йшлося в пiдпунктi 4.1 при описаннi iдеї
способу нашарування. Розглянемо алгоритм, який реалiзує такий пiдхiд.

5.2. Алгоритм визначення кiлькостi шарiв при дослiдженнi вза-
ємного розташування сегментiв на прямiй. Для ситуацiї, коли виникла
необхiднiсть аналiзу взаємного розташування одночасно кiлькох сегментiв 𝑘,
можна застосувати такий алгоритм.

1. Цикл по 𝑙 = 1, . . . ,𝑚, тобто, органiзацiя повторюваностi дiй для кожного
окремого вагового коефiцiєнта характеристик альтернатив.

2. Встановити лiчильник поточної кiлькостi сегментiв 𝑠 = 𝑘.
3. Цикл по 𝑖 = 1, . . . , 𝑘 − 1.
4. Вкладений цикл 𝑗 = 𝑖+ 1, . . . , 𝑘.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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5. Визначення попарної конфiгурацiї сегментiв та побудова системи нашару-
вання залежно вiд наявної iнформацiї.

6. Завершення циклiв по 𝑗 та по 𝑖.
7. Вилучення сегментiв з iндексами, якi виявлено для ситуацiї, вiдображеної

на Рис. 13, та переiндексацiя номерiв сегментiв.
8. Присвоєння нового значення кiлькостi сегментiв 𝑘 = 𝑠.
9. Упорядкування сегментiв за неспаданням нижнiх границь та зростанням

верхнiх границь.
10. Завершення циклу по 𝑙.

5.3. Обчислювальний експеримент. Для перевiрки роботи описаного у
цiй роботi методу нашарування було проведено обчислювальний експеримент
за участi експертiв та менеджерiв однiєї з бiзнесових компанiй.

Множина ролей, якими для забезпечення функцiональної стiйкостi форма-
лiзується дiяльнiсть пiдроздiлiв органiзацiйної системи та взаємодiя мiж еле-
ментами системи складається з ролей, якi будемо позначати:

𝑅 = {𝑟1, . . . , 𝑟𝑝1} , (3)

де 𝑝1 — кiлькiсть ролей елементiв системи, якi будуть використанi при моделю-
ваннi забезпечення функцiональної стiйкостi органiзацiйної системи та визна-
ченнi рiвня критичностi її елементiв.

Множину елементiв органiзацiйної системи позначимо через:

𝐵 = {𝑏1, . . . , 𝑏𝑝2} , (4)

де 𝑝2 — кiлькiсть елементiв органiзацiйної системи, якi забезпечують виконання
множини функцiй i, вiдповiдно, забезпечують їй властивiсть функцiональної
стiйкостi;

Φ = {𝜙1, . . . , 𝜙𝑝3} , (5)

де 𝑝3 — кiлькiсть функцiй, якi виконуються елементами системи з множини (5),
i якi слiд пiдтримувати заради функцiональної стiйкостi органiзацiї.

Зазначимо, що потужнiсть множини елементiв органiзацiйної системи (4) у
загальному випадку є значно бiльшою, нiж потужнiсть множини ролей (3), якi
виконуються елементами системи для забезпечення пiдтримки функцiональної
стiйкостi i виконання множини функцiй (5), тобто 𝑝3 >> 𝑝1.

Евристика Е6. Будемо виходити з припущень, що для кожної конкретної
функцiї виду (5), яка виконується елементами системи, можна визначити:

• ролi (3) елементiв системи (4), завдяки яким виконується функцiя (5);
• важливiсть ролей (3) для кожної функцiї (5) у виглядi iнтервалiв вагових

коефiцiєнтiв, а вiдтак, вiдносну важливiсть кожного елемента системи
(4) для виконання кожної функцiї та функцiональної стiйкостi.

Тобто, вiдносна важливiсть ролей (3) в органiзацiйнiй системi не є констан-
тою, а має змiнний характер, залежно вiд того, яка роль виконується елемен-
тами системи (4) для забезпечення функцiональної стiйкостi.

Експерти надають свої висновки про вiдношення переваги мiж ролями у
звичних для них термiнах предметної областi. Iнтервали вагових коефiцiєнтiв
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ролей обчислюються на основi непрямих методiв визначення вiдносної важли-
востi ролей [8, 9].

Евристика Е7. При визначеннi вагових коефiцiєнтiв непрямими метода-
ми може бути збiльшена точнiсть обчислення значень, оскiльки у цьому ви-
падку експерт надає iнформацiю про його переваги у звичнiй для нього ситуацiї
прийняття рiшень в знайомiй предметнiй областi. Такi рiшення експерт або
осола, що приймає рiшення, приймають щодня i при цьому не прикладають
зусиль для їх оцифровки. Числовi значення вагових коефiцiєнтiв знаходяться
шляхом застосування спецiально розроблених, дослiджених та обгрунтованих
алгоритмiв.

Евристика Е8. Обмеження на ширину iнтервалу не встановлюються: iн-
тервали можуть бути як достатньо широкими, так i вироджуватися в то-
чку. Величина визначеного iнтервалу вiдображує не тiльки компетентнiсть
експертiв, але i його психологiчнi характеристики — схильнiсть до ризику,
темперамент тощо, особливостi предметної областi та деякi iншi аспекти
ситуацiї прийняття рiшення.

При цьому не порушуються вимоги теорiї вимiрювання для типiв шкал ви-
мiрювання. Водночас немає вимог щодо ранжування альтернатив, тобто iнтер-
вали можуть перетинатися, як це проiлюстровано на рисунках 1–13.

Оцiнювалися 4 ролi топ-менеджерiв (𝑝1 = 4) компанiї на основi непрямої
iнформацiї про переваги, одержаної в темiнах предметної областi управлiння
персоналом вiд 10 експертiв (𝑘 = 10). На основi вiдношень переваги, заданих
10 експертами у звичнiй для них предметнiй областi, було обчислено нижнi
та верхнi границi вагових коефiцiєнтiв ролей топ-менеджерiв у компанiї, у якiй
проводився консалтинг. Причому, рiвень виконання ролей та їх вiдносної важли-
востi є частиною загальної моделi оцiнювання дiяльностi персоналу компанiї.

Основнi вимоги до iнтервалiв вагових коефiцiєнтiв альтернатив, визначених
на основi експертних висновкiв у термiнах предметної областi, є природними i
не обтяжливими:

• нижнi границi iнтервалiв чи сегментiв 𝑥𝐻𝑖 , 𝑖 = 1, . . . ,𝑚 мають бути в межах
0 < 𝑥𝐻𝑖 ≤ 1, 𝑖 = 1, . . . ,𝑚;

• верхнi границi iнтервалiв чи сегментiв 𝑥𝐵𝑖 , 𝑖 = 1, . . . ,𝑚 також мають бути в
межах 0 < 𝑥𝐵𝑖 ≤ 1, 𝑖 = 1, . . . ,𝑚;

• верхнi границi iнтервалiв чи сегментiв 𝑥𝐵𝑖 , 𝑖 = 1, . . . ,𝑚 мають бути не мен-
шими вiд нижнiх границь iнтервалiв 0 < 𝑥𝐻𝑖 ≤ 𝑥𝐵𝑖 ≤ 1, 𝑖 = 1, . . . ,𝑚;

• сума верхнiх границь iнтервалiв чи сегментiв має задовольняти умовi:

1−
𝑚∑︀
𝑗=1

𝑥𝐵𝑗 < min
𝑗=1,...,𝑚

𝑥𝐻𝑗 ;

• сума нижнiх границь iнтервалiв чи сегментiв має задовольняти умовi:

1−
𝑚∑︀
𝑗=1

𝑥𝐻𝑗 < min
𝑗=1,...,𝑚

𝑥𝐵𝑗 .

Причому, слiд зазначити, що експертам не нав’язуються зайвi обмеження —
вони встановлюють свої вiдношення переваги на множинi характеристик аль-
тернатив у звичнiй для них предметнiй областi. Методи визначення iнтервалiв
або сегментiв вагових коефiцiєнтiв передбачають виконання наведених вище
вимог до границь зазначених iнтервалiв чи сегментiв.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Результати визначення iнтервалiв вагових коефiцiєнтiв важливостi ролей у
органiзацiї на основi iнформацiї, одержаної вiд експертiв, представлено в табли-
цi 2.

Таблиця 2.
Результати визначення iнтервалiв вагових коефiцiєнтiв важливостi ролей у

органiзацiї на основi iнформацiї, одержаної вiд експертiв
Роль 1

НВ ВВ
Роль 2

НВ ВВ
Роль 3

НВ ВВ
Роль 4

НВ ВВ
СУМА

НВ ВВ
Експерт 1 0,12 0,23 0,27 0,39 0,21 0,24 0,24 0,31 0,84 1,17
Експерт 2 0,15 0,25 0,31 0,34 0,24 0,35 0,18 0,19 0,88 1,13
Експерт 3 0,14 0,18 0,21 0,33 0,18 0,23 0,32 0,37 0,85 1,11
Експерт 4 0,11 0,16 0,33 0,33 0,15 0,25 0,24 0,27 0,83 1,01
Експерт 5 0,15 0,18 0,31 0,35 0,22 0,29 0,23 0,25 0,91 1,07
Експерт 6 0,11 0,14 0,22 0,36 0,32 0,33 0,3 0,34 0,95 1,17
Експерт 7 0,13 0,21 0,23 0,25 0,19 0,23 0,36 0,4 0,91 1,09
Експерт 8 0,17 0,17 0,26 0,3 0,25 0,26 0,2 0,29 0,88 1,02
Експерт 9 0,17 0,18 0,32 0,35 0,13 0,25 0,35 0,35 0,97 1,13
Експерт 10 0,16 0,27 0,3 0,3 0,3 0,31 0,2 0,23 0,96 1,11

У таблицi 2 в назвах стовпчикiв лiтерами позначено:
НВ — нижнi границi вагових коефiцiєнтiв ролей;
ВВ — верхнi границi вагових коефiцiєнтiв ролей топ-менеджерiв компанiї.
5.4. Алгоритм побудови функцiї належностi нечiткiй множинi на

основi на основi гранулювання унiверсуму. Для вирiшення проблеми
агрегування iнтервалiв вагових коефiцiєнтiв можна також застосувати алго-
ритм дискретизацiї, який є дещо спрощеним, але менш точним вiд попереднього
алгоритму.

1. Розбиття унiверсуму 𝑋 = (0, 1) на деяку кiлькiсть малих сегментiв 𝐷, на-
приклад 𝐷 = 100 або 𝐷 = 200. Довжина кожного сегмента: 𝛿 = 1/𝐷.

2. Нумерацiя малих сегментiв вiд 1 до 𝐷: 𝑐𝑗 = 𝑗/𝐷, 𝑗 = 1, . . . , 𝐷.
3. Визначаємо мiнiмальнi та максимальнi границi значень вагових коефiцiєн-

тiв сегментiв (1) чи iнтервалiв (2).
4. Здiйснюємо трансформацiю iнтервалiв чи сегментiв в характеристичнi ма-

трицi 𝐵𝑙 =
(︀
𝑏𝑙𝑖𝑗
)︀
, 𝑙 = 1, . . . ,𝑚; 𝑖 = 1, . . . , 𝑘; 𝑗 = 1, . . . , 𝐷, якi визначають

для кожної характеристики альтернативи з iндексами 𝑙 = 1, . . . ,𝑚, чи спiв-
падають значення вагових коефiцiєнтiв сегментiв (1) або iнтервалiв (2) iз
значеннями малих сегментiв за такими умовами:

𝑏𝑙𝑖𝑗 =

{︂
0, ∀𝑖 = 1, . . . , 𝑘, 𝑗 < 𝑥𝐻𝑗 · 𝛿 ∨ ∀𝑖 = 1, . . . , 𝑘, 𝑗 > 𝑥𝐵𝑗 · 𝛿;

1, ∀𝑖 = 1, . . . , 𝑘, 𝑥𝐻𝑗 · 𝛿 ≤ 𝑗 ≤ 𝑥𝐵𝑗 · 𝛿

}︂
.

5. На основi визначених на кроцi 4 матриць 𝐵𝑙, 𝑙 = 1, . . . ,𝑚 побудуємо та-
бличнi значення функцiй належностi вагових коефiцiєнтiв i зведемо їх в
таблицю 3, де

𝜇𝑙𝑗 =
𝑘∑︁
𝑖=1

𝑏𝑙𝑖𝑗, 𝑙 = 1, . . . ,𝑚; 𝑗 = 1, . . . , 𝐷.
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6. На основi аналiзу табличних значень функцiй належностi вiдновлюємо по-
чатковi координати вагових коефiцiєнтiв за формулою 𝑥𝑗 = 𝑐𝑗 ·𝛿 i здiйснює-
мо апроксимацiю трикутними чи трапецiєподiбними функцiями належностi
в аналiтичному виглядi.

7. Перетворюємо обчисленi на попередньому кроцi функцiї належностi у нор-
мальну форму.

Таблиця 3.
Табличнi значення функцiй належностi вагових коефiцiєнтiв на унiверсумi

𝑋 = (0, 1)

𝑐𝑗 1 2 · · · 𝐷
𝜇1
𝐴 (𝑥) 𝜇1

1 𝜇1
1 · · · 𝜇1

𝐷
...

...
... . . . ...

𝜇𝑚𝐴 (𝑥) 𝜇𝑚1 𝜇𝑚1 · · · 𝜇𝑚𝐷

Скориставшись наведеними у цiй роботi алгоритмами, на основi таблицi 2,
побудованої за результатами обчислювального експерименту, обчислимо аналi-
тичнi значення функцiй належностi вагових коефiцiєнтiв 4 ролей в органiзацiї
i зведемо їх в таблицю 4.

Таблиця 4.
Числовi показники агрегованих у виглядi функцiй належностi iнтервальних

значень вагових коефiцiєнтiв характеристик альтернатив

Нижня
границя Максимум Верхня

границя
Роль 1 0,11 0,17 0,27
Роль 2 0,21 0,33 0,39
Роль 3 0,13 0,22 0,35
Роль 4 0,18 0,24 0,40
СУМА 0,63 0,96 1,41

Таким чином, при апроксимацiї результатiв обчислювального експеримента
трикутними функцiями належностi одержимо такi значення вагових коефiцi-
єнтiв в аналiтичному виглядi:

𝜇1
(︀
𝑥1;𝑥

𝐻
1 ;𝑥

max
1 ;𝑥𝐵1

)︀
=

⎧⎪⎪⎨⎪⎪⎩
0; 𝑥1 ≤ 0, 11

(𝑥1 − 0, 11) /0, 06; 0, 11 ≤ 𝑥1 ≤ 0, 17
(0, 27− 𝑥1) /0, 1; 0, 17 ≤ 𝑥1 ≤ 0, 27

0; 0, 27 ≤ 𝑥1

⎫⎪⎪⎬⎪⎪⎭ ,

𝜇2
(︀
𝑥2;𝑥

𝐻
2 ;𝑥

max
2 ;𝑥𝐵2

)︀
=

⎧⎪⎪⎨⎪⎪⎩
0; 𝑥2 ≤ 0, 21

(𝑥2 − 0, 21) /0, 12; 0, 21 ≤ 𝑥2 ≤ 0, 33
(0, 39− 𝑥2) /0, 06; 0, 33 ≤ 𝑥2 ≤ 0, 39

0; 0, 39 ≤ 𝑥2

⎫⎪⎪⎬⎪⎪⎭ ,
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𝜇3
(︀
𝑥3;𝑥

𝐻
3 ;𝑥

max
3 ;𝑥𝐵3

)︀
=

⎧⎪⎪⎨⎪⎪⎩
0; 𝑥3 ≤ 0, 13

(𝑥3 − 0, 22) /0, 09; 0, 13 ≤ 𝑥3 ≤ 0, 22
(0, 35− 𝑥3) /0, 13; 0, 22 ≤ 𝑥3 ≤ 0, 35

0; 0, 35 ≤ 𝑥3

⎫⎪⎪⎬⎪⎪⎭ ,

𝜇4
(︀
𝑥4;𝑥

𝐻
4 ;𝑥

max
4 ;𝑥𝐵4

)︀
=

⎧⎪⎪⎨⎪⎪⎩
0; 𝑥4 ≤ 0, 18

(𝑥4 − 0, 24) /0, 06; 0, 18 ≤ 𝑥4 ≤ 0, 24
(0, 4− 𝑥4) /0, 06; 0, 24 ≤ 𝑥4 ≤ 0, 4

0; 0, 4 ≤ 𝑥4

⎫⎪⎪⎬⎪⎪⎭ .

Зауваження 1. Апроксимацiя одержаних з використанням описаного ме-
тоду характеристичних матриць може здiйснюватися для S-подiбних,
Z-подiбних, Гаусових та iнших функцiй належностi.

Зауваження 2. Якiсть апроксимацiї може визначатися не тiльки за кри-
терiєм середньоквадратичних вiдхилень, а й з використанням iнших крите-
рiїв, якi доцiльно застосовувати за логiкою розв’язання задачi.

Зауваження 3. Описаний спосiб визначення функцiй належностi нечi-
ткiй множинi вагових коефiцiєнтiв характеристик альтернатив доцiльно за-
стосовувати для узгоджених експертних оцiнок при наявностi великої кiль-
костi результатiв вимiрювання.

6. Висновки та перспективи подальших дослiджень. У цiй роботi
ми обгрунтовано агрегували великий масив iнформацiї з незначними втратами
i представили у виглядi, зручному для подальшого використання. Запропоно-
ваний у цiй роботi пiдхiд до визначення нечiтких вагових коефiцiєнтiв хара-
ктеристик альтернатив має широкi перспективи. Вiн може бути застосований
для визначення функцiй належностi нечiткiй множинi вагових коефiцiєнтiв не
тiльки атрибутiв альтернатив, але й для визначення вiдносної важливостi самих
альтернатив, критерiїв або коефiцiєнтiв компетентностi експертiв у нечiткому
виглядi. Для апроксимацiї одержаних агрегованих значень iнтервалiв можуть
бути застосованi iншi аналiтичнi види функцiй належностi нечiткiй множинi:
трапецiєподiбнi, S-подiбнi, Z-подiбнi, П-подiбнi, Гаусовi тощо. Зрозумiло, що мо-
жуть бути використанi комбiнацiї цих функцiй — для рiзних iндексiв вагових
коефiцiєнтiв слiд застосовувати тi види функцiй, якi найкращим чином апро-
ксимують одержану в результатi обчислень агреговану множину експертних
значень коефiцiєнтiв.

Список використаної лiтератури
1. Гнатiєнко Г. М., Снитюк В. Є. Експертнi технологiї прийняття рiшень: Монографiя. Київ :

ТОВ «Маклаут», 2008. 444 с.
2. Волошин О. Ф., Лавер В. О. Нечiтка математика: навч. посiб. Київ : Київськ. нац. ун-т iм.

Тараса Шевченка, 2023. 111 с. URL: https://csc.knu.ua/media/filer_public/8f/e6/8fe65834-
9cf5-4fec-a8ab-953c7745734d/fuzzy_metodichka.pdf (дата звернення: 12.04.2024).

3. Kadenko S. Defining Relative Weights of Data Sources during Aggregation of Pair-wise
Comparisons. In CEUR Workshop Proceedings. 2017. Vol. 2067. P. 47–55. URL: https://ceur-
ws.org/Vol-2067/paper7.pdf (date of access: 12.04.2024).

4. Маляр М. М. Моделi i методи багатокритерiального обмежено-рацiонального вибору: Мо-
нографiя. Ужгород : РА “АУТДОР-ШАРК”, 2016. 222 с.

5. Гнатiєнко Г. М., Маляр М. М., Полiщук А. В. Знаходження вагових коефiцiєнтiв для мо-
делей задач багатокритерiального лiнiйного програмування. Обчислювальний iнтелект

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



186 Г. М. ГНАТIЄНКО, О. Г. ГНАТIЄНКО

(результати, проблеми, перспективи) : працi мiжнар. наук.-практ. конф. Київ-Черкаси :
Київ ВПЦ «Київський унiверситет», 16–18 травня 2017 р. С. 230–231.

6. Мавренков О., Матвiйчук С. Вибiр методу визначення коефiцiєнтiв вагомостi показникiв
технiчної досконалостi при оцiнюваннi технiчного рiвня зразкiв озброєння та вiйсько-
вої технiки. Збiрник наукових праць Державного науково-дослiдного iнституту авiацiї.
2023. Вип. 19, № 26. С. 71–79. URL: https://znp.dndia.org.ua/index.php/znp/issue/view/3
(дата звернення: 12.04.2024).

7. Гнатiєнко Г. М. Визначення вагових коефiцiєнтiв критерiїв задачi багатокритерiальної
оптимiзацiї у виглядi функцiй належностi нечiткiй множинi. Матерiали доповiдей V
Мiжнародної науково-практичної конференцiї «Iнформацiйнi технологiї та взаємодiї»
: (IT&I — 2018). Київ : Київ ВПЦ «Київський унiверситет», 2018. С. 29–30.

8. Гнатiєнко О. Г., Гнатiєнко Г. М. Метод побудови функцiї належностi нечiткiй множинi на
основi iнтервальних значень ознак об’єктiв. Iнформацiйнi технологiї в культурi, мисте-
цтвi, освiтi, науцi, економiцi та бiзнесi : матерiали IX Мiжнародної науково-практичної
конференцiї. М-во освiти i науки України. Київськ. нац. ун-т культури i мистецтв. Київ :
Видавничий центр КНУКiМ, 2024. С. 100–102.

9. Bozóki S., and Tsyganok V. The (logarithmic) least squares optimality of the arithmetic
(geometric) mean of weight vectors calculated from all spanning trees for incomplete addi-
tive (multiplicative) pairwise comparison matrices. International Journal of General Systems.
2019. Vol. 48, No. 3–4. P. 362–381 DOI: https://doi.org/10.1080/03081079.2019.1585432

10. Saaty T. L. Multicriteria Decision Making: The Analytic Hierarchy Process. RWS Publicati-
ons : Pittsburgh, 1988.

11. Гнатiєнко О. Г. Метод визначення вiдносної важливостi працiвникiв органiзацiї на осно-
вi аналiзу їх ролей. Мiжнародний науковий симпозiум «Iнтелектуальнi рiшення-С».
Обчислювальний iнтелект (результати, проблеми, перспективи). Теорiя прийняття
рiшень : працi мiжнар. наук. симпозiуму. Київ-Ужгород, Україна / М-во освiти i науки
України, КНУ iменi Тараса Шевченка та [iн.]. Київ : Видавництво «Каравела», 28 вересня
2023. C. 123–128.

12. Hnatiienko O., Druzhynin V. A Web Application for Describing the Structure of Roles and
Performers of an Organizational System to Ensure its Functional Sustainability. Proceedings of
the 1st international scientific and practical conference "Information Systems and Technology:
Results and Prospects" : (IST 2024). Kyiv: FIT TSNUK, March 6, 2024. P. 136–139.

Hnatiienko H. M., Hnatiienko O. H. Method of Determining Fuzzy Values of
the Relative Importance Characteristics of Alternatives Using the Layering Method.

The study is devoted to the development of tools intended for the analysis and aggrega-
tion of interval values of the weighting coefficients of the characteristics of the alternatives.
Weakly structured subject areas are characterized by uncertainty, and in specific decision-
making situations, this is manifested in a blurred assessment by experts of the characteris-
tics of alternatives in the form of interval values. The article considers some approaches to
the expert assignment of interval values of the characteristics of alternatives. A method of
aggregating the interval values of the weighting coefficients of the characteristics obtained
from a group of experts in the form of a function of belonging to a fuzzy set is proposed.
The basis of the method is the method of layering proposed by the authors. The algorithm
for determining the number of layers during the study of the mutual location of intervals
determined by experts on a straight line is described. The results of the experiment to
identify the relative importance of the roles of managers of the organizational system to
ensure its functional stability are also given.

Keywords: interval values, weighting factors, membership function, analysis of the loca-
tion of intervals, relative importance of roles in the organization, functional stability.
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ОЦIНКА КIЛЬКОСТI ПОЗОВIВ, ЩО ФОРМУЮТЬСЯ ЗА
СХЕМАМИ ЛАНЦЮГОВОЇ РЕАКЦIЇ ТА ГIЛЛЯСТОГО

ПРОЦЕСУ

Сумарна величина клiєнтських позовiв за певний промiжок часу важлива для пра-
вильного менеджменту страхової компанiї. У роботi розглядається випадок, коли кiль-
кiсть позовiв наростатиме згiдно iз ланцюговою реакцiєю або у вiдповiдностi до гiл-
лястого процесу. Таке збiльшення кiлькостi позовiв, зазвичай, пов’язано iз випадками
стихiйного лиха (буревiями, великими повенями) або воєнними дiями. Якщо позови
формуються за схемою ланцюгової реакцiї, тобто кожний позов може бути задоволе-
ний iз ймовiрнiстю 𝑞 або перетворитися у 𝑚 аналогiчних позовiв з ймовiрнiстю 𝑝, то на
𝑛 етапi середня кiлькiсть позовiв дорiвнюватиме (𝑝𝑚)

𝑛
. Якщо позови формуються за

схемою гiллястого процесу, наведена формула для 𝐸𝑥𝑍𝑛 , де 𝑍𝑛 — очiкувана кiлькiсть
позовiв на 𝑛-му етапi.

Ключовi слова: випадкова величина, що не залежить вiд майбутнього, ланцюгова
реакцiя, гiллястий процес, моделювання кiлькостi позовiв, середня величина кiлькостi
позовiв.

1. Вступ. Для страхової компанiї ключовим поняттям слугує тарифна ставка,
тобто адекватне грошове вираження зобов’язань страховика за укладеним дого-
вором страхування. Тарифна ставка, по якiй укладається договiр страхування,
називається брутто-ставкою. В свою чергу, вона складається з нетто-ставки i на-
вантаження. Саме нетто-ставка виражає цiну страхового ризику. Вона повинна
бути побудована так, щоб забезпечити еквiвалентнiсть вiдносин мiж страхови-
ком i страхувальником [7]. Сумарна величина клiєнтських позовiв за певний
промiжок часу важлива для правильного менеджменту страхової компанiї. Iн-
шими словами, страхова компанiя повинна зiбрати стiльки страхових премiй,
скiльки має бути потiм виплачено страхувальникам. Нехай випадкова величина
𝑆 означає сумарнi виплати, тобто сумарну величину позовiв, що належать до
даного ризику. Нехай випадкова величина 𝑌𝑖 — позначає величину 𝑖-го позову,
а випадкова величина 𝑁 — кiлькiсть позовiв протягом перiоду страхування.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Тодi 𝑆 =
∑︀𝑁

1 𝑌𝑖, де суму вважають рiвною 0, коли 𝑁 = 0. Фактори, якi
впливають на величини позовiв та на їх кiлькiсть, можуть бути рiзними.

Вводять такi припущення:
– Кiлькiсть позовiв не впливає на величини iндивiдуальних позовiв.
– На величину окремого позову не впливають величини iнших позовiв.
– Розподiл величини iндивiдуальних позовiв не змiнюється протягом термiну

дiї полiсу.
У бiльш строгому математичному сенсi припускаємо, що:

– Випадковi величини {𝑌𝑖}𝑁𝑖=1 є незалежними й однаково розподiленими.
– Випадкова величина 𝑁 не залежить вiд {𝑌𝑖}𝑁𝑖=1.

У роботах [1, 3] розглядаються оцiнки величин сумарних позовiв, коли 𝑁 має
розподiл Пуассона з параметром 𝜆 > 0, (𝑁 ∼ 𝑃𝑜𝑖𝑠 (𝜆)), тодi 𝑆 має складний
розподiл Пуассона з параметрами 𝜆 i 𝐹 (𝑥) (𝐹 (𝑥) — функцiя розподiлу величини
позову 𝑌𝑖. Якщо 𝑁 розподiлено за бiномiальним законом з параметрами 𝑛 i 𝑞
(N∼ 𝑏 (𝑛, 𝑞)), 𝑆 має складний бiномiальний розподiл. Коли 𝑁 має вiд’ємний бi-
номiальний розподiл (𝑁 ∼ 𝑁𝐵 (𝑘, 𝑝)), 𝑆 — має складний вiд’ємний бiномiальний
розподiл. Якщо вiдбулася страхова подiя, власник страхового полiсу (або упов-
новажена ним особа) звертається до страхової компанiї з позовом (вимогою)
про вiдшкодування збиткiв. У деяких випадках, наприклад, при страхуваннi
життя, один полiс може привести до одного позову, а в iнших (наприклад, при
страхуваннi автотранспорту) — протягом дiї договору може виникнути кiлька
позовiв. [6]. У роботi [5] використовуються статистичнi методи оцiнювання ве-
личин збиткiв в залежностi вiд видiв ризикiв. У роботi [2] представленi прикла-
ди стохастичних моделей прийняття рiшень в умовах ризику i особлива увага
придiляється «портфельному» пiдходу в теорiї грошей. Але даний розгляд не
враховує специфiку страхової дiяльностi.

Iнодi у роботах придiляють увагу екстремальним випадкам при формуван-
нi клiєнтських позовiв. Так, у роздiлi 3.6.3 [6] розглядається змiна кiлькостi
позовiв при страхуваннi домашнього майна за припущенням, що кiлькiсть бу-
ревiїв, якi їх спричиняють, має розподiл Пуассона iз визначеним параметром.
При цьому кiлькiсть позовiв, викликаних окремим буревiєм, у свою чергу, теж
має розподiл Пуассона iз наперед вiдомим параметром.

2. Постановка завдання. Оцiнити середню кiлькiсть позовiв, якщо вони
виникають за схемою ланцюгової реакцiї або гiллястого процесу. Таке збiльше-
ння кiлькостi позовiв, зазвичай, пов’язано iз випадками стихiйного лиха (бу-
ревiями, великими повенями) або воєнними дiями, якi, на жаль, теж можуть
трапитися.

3. Огляд лiтератури. При формуваннi страхової полiтики особливу ува-
гу привертає мiнливiсть фiнансового стану домогосподарства внаслiдок рiзних
життєвих негараздiв. Виконуються статистичнi дослiдження, що дозволяють
визначити змiни у демографiчному, гендерному складi; моделюються рiзнi си-
туацiї, провадяться ймовiрнiснi пiдрахунки для окреслення ситуацiй, коли чле-
ни домогосподарств потребуватимуть допомоги. Для пiдкрiплення фiнансового
стану домогосподарств пропонуються додатковi страховi продукти для промi-
жного страхування (bridging insurance) [8]. Оскiльки фiнансовi труднощi до-
могосподарства доволi часто пов’язанi одне з одним, при формуваннi таких
продуктiв слiд враховувати характер цього зв’язку.
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Загальновiдомо, що у розвинутих суспiльствах спостерiгається пiдвищення
попиту на медичнi послуги. Цей процес обумовлений не тiльки феноменом «ста-
рiння» населення, але й значним технологiчним прогресом у царинi медицини.
Як наслiдок, пiдвищуються соцiальнi витрати на охорону здоров’я, якi вже не-
можливо задовольнити без додаткової платнi з боку пацiєнта. Один з пiдходiв
полягає у розвитку приватного медичного страхування, особливо, для пiдтрим-
ки лiтнiх пацiєнтiв з хронiчними хворобами. Розглядаються перспективи розви-
тку страхових продуктiв медичної спрямованостi, призначених саме для таких
категорiй клiєнтiв [9, 10].

У статтi [11] для опису подiбних ситуацiй вводиться множинна маркiвська
модель станiв, яка дозволяє класифiкувати рiзнi життєвi випадки. Такий пiдхiд
доповнює вже доволi розповсюджений механiзм прижиттєвих ануїтетiв, який
широко застосовується на практицi. При оцiнцi перспектив застосування цьо-
го пiдходу слiд враховувати ланцюговий або гiллястий характер наростання
позовiв з боку клiєнта.

4. Основний результат. У данiй роботi розглядається випадок, коли кiль-
кiсть позовiв 𝑁 наростатиме згiдно iз ланцюговою реакцiєю або у вiдповiдно-
стi до гiллястого процесу. Нехай на ймовiрнiсному просторi ⟨Ω, 𝐹, 𝑃 ⟩ задана
послiдовнiсть {𝜉𝑘, 𝑘 = 1, 2, . . .} незалежних випадкових величин i цiлочислова
випадкова величина 𝜇 ≥ 0. Нехай 𝐹𝑘,𝑛 = 𝜎 {𝜉𝑘, . . . , 𝜉𝑛} позначає 𝜎-алгебру, яка
породжується 𝑛− 𝑘 + 1 випадковими величинами 𝜉𝑘, . . . , 𝜉𝑛 [2].

Кажуть, що випадкова величина 𝜇 не залежить вiд майбутнього, якщо подiя
{µ ≤ 𝑛} не залежить вiд 𝐹𝑘,∞.

Довiльна випадкова величина 𝜇, яка не залежить вiд послiдовностi 𝜉1, 𝜉2, . . .
(не залежать 𝜎(𝜇) та 𝐹1,∞), буде випадковою величиною, яка не залежить вiд
майбутнього.

Введемо поняття суми випадкового числа випадкових величин [4]:

𝑆𝜇 = 𝜉1 + 𝜉2 + . . .+ 𝜉𝜇.

Стосовно математичного сподiвання суми випадкового числа випадкових ве-
личин вiдома тотожнiсть Вальда [1]: Якщо випадковi величини 𝜉1, 𝜉2, . . . неза-
лежнi i однаково розподiленi, 𝐸 |𝜉𝑘| < ∞, випадкова величина 𝜇 не залежить
вiд майбутнього, 𝐸𝜇 <∞, то 𝐸𝑆𝜇 = 𝐸𝜉1 · 𝐸𝜇.

Тобто, якщо ввести обмеження на кiлькiсть позовiв за допомогою випадкової
величини 𝜇, можна обчислити середнє значення сумарного позову як добуток
середнього значення одного позову та середнього значення цiєї випадкової ве-
личини [3, 6].

Розглянемо детально характеристики для кiлькостi позовiв. Вважається, що
позови виникають згiдно з моделлю, яка описує появу подiй протягом певного
промiжку часу. Для моделювання кiлькостi позовiв застосуємо схему ланцюго-
вої реакцiї [1].

Якщо припустити, що величини збиткiв мають вигляд послiдовностi випад-
кових величин {𝑌𝑗, 𝑗 = 1, 2 . . .}, причому 𝜇 — номер першої випадкової величи-
ни у послiдовностi, котра бiльше, або дорiвнює 𝑁 , тобто,

𝜇 = inf {𝑘 : 𝑌𝑘 ≥ 𝑁} .

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Тодi, якщо 𝑌𝑗 — незалежнi випадковi величини, то 𝜇 не залежить вiд май-
бутнього, оскiльки подiя

{𝜇 ≤ 𝑛} =
𝑛⋃︁
𝑘=1

{𝑌𝑘 ≥ 𝑁} ∈𝐹1,𝑛.

Значення 𝑁 можна трактувати як порогове значення для величини фiнан-
сового збитку, починаючи з якого страхова компанiя розглядає можливiсть вiд-
шкодування.

Спочатку маємо один позов, котрий або задовольняється з ймовiрнiстю 𝑞,
або на його основi формується 𝑚 позовiв з ймовiрнiстю 𝑝 = 1−𝑞. Кожний позов
нового поколiння поводить себе аналогiчно. Оцiнимо математичне сподiвання
кiлькостi позовiв у 𝑛-му поколiннi.

Розглянемо оцiнку середньої кiлькостi позовiв за схемою ланцюгової реакцiї.
Введемо подвiйну послiдовнiсть{︁

𝑋
(𝑛)
𝑘

}︁
, 𝑘 = 1, 2, . . . ; 𝑛 = 1, 2, . . . ;

незалежних однаково розподiлених випадкових величин, якi приймають значе-
ння 𝑚 та 0 iз ймовiрностями 𝑝 та 𝑞, причому 𝑝 = 1− 𝑞. Тодi елементи послiдов-
ностей {︁

𝑋
(1)
𝑘

}︁
, 𝑘 = 1, 2, . . . ;

{︁
𝑋

(2)
𝑘

}︁
, 𝑘 = 1, 2, . . . ; . . . ;

де змiнюється верхнiй iндекс — будуть незалежними мiж собою. Якщо ввести
нову послiдовнiсть випадкових величин {𝑍𝑛}, (𝑍0 = 1) як суму елементiв вiд-
повiдних послiдовностей, одержимо:

𝑍1 = 𝑋
(1)
𝑍0

= 𝑋
(1)
1 ,

𝑍2 = 𝑋
(2)
1 +𝑋

(2)
2 + . . .+𝑋

(2)
𝑍1
,

. . . . . . . . .

𝑍𝑛 = 𝑋
(𝑛)
1 +𝑋

(𝑛)
2 + . . .+𝑋

(𝑛)
𝑍𝑛−1

.

Оскiльки послiдовнiсть
{︁
𝑋

(𝑛)
𝑘

}︁
не залежить вiд 𝑍𝑛−1 та

𝐸𝑋
(𝑛)
𝑘 = 𝑝𝑚, 𝑘 = 1, 2, . . .,

за тотожнiстю Вальда одержимо:

𝐸𝑍𝑛 = 𝐸𝑋
(𝑛)
1 · 𝐸𝑍𝑛−1 = 𝑝𝑚 · 𝐸𝑍𝑛−1 = (𝑝𝑚)𝑛.

Подiбний розгляд дозволяє оцiнювати середню кiлькiсть позовiв на кожному
етапi, якщо позови формуються згiдно з наданою моделлю.

При оцiнцi дисперсiї одержимо:

𝑉
[︁
𝑋

(𝑛)
𝑘

]︁
= 𝐸

[︁
𝑋

(𝑛)
𝑘 − 𝐸𝑋

(𝑛)
𝑘

]︁2
= 𝐸

[︁
𝑋

(𝑛)
𝑘 − 𝑝𝑚

]︁2
=
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= (𝑚− 𝑝𝑚)2𝑝+ (0− 𝑝𝑚)2𝑞 = 𝑚2𝑞𝑝 (𝑞 − 𝑝) ,

звiдки
𝐸
[︁
𝑋

(𝑛)
𝑘

]︁2
= 𝑉

[︁
𝑋

(𝑛)
𝑘

]︁
+ (𝑝𝑚)2 = 𝑚2𝑝

(︀
𝑞2 + 𝑝2

)︀
. (1)

Отже, якщо позови формуються за схемою ланцюгової реакцiї, тобто кожний
позов може бути задоволений iз ймовiрнiстю 𝑞 або перетворитися у 𝑚 аналогi-
чних позовiв з ймовiрнiстю 𝑝, то на 𝑛 етапi середня кiлькiсть позовiв дорiвню-
ватиме (𝑝𝑚)𝑛.

Тепер розглянемо бiльш складний випадок, коли позови формуються за схе-
мою гiллястого процесу. Тобто, позови формуються не iз сталою ймовiрнiстю,
а з ймовiрностями {𝑓𝑘, 𝑘 = 0, 1, 2, . . .},

∑︀∞
0 𝑓𝑘 = 1. Спочатку маємо один позов,

на основi якого формується наступна 𝑘 кiлькiсть позовiв. Цi позови формують
«перше поколiння». Кожний позов iз цього «поколiння» поводить себе аналогi-
чно [1].

Для опису усього процесу введемо незалежнi мiж собою послiдовностi неза-
лежних однаково розподiлених величин{︁

𝑋
(1)
𝑘

}︁
, 𝑘 = 1, 2, . . . ;

{︁
𝑋

(2)
𝑘

}︁
, 𝑘 = 1, 2, . . . ; . . . ;

де
{︁
𝑋

(𝑛)
𝑘

}︁
мають розподiл: 𝑃

(︁
𝑋

(𝑛)
𝑘 = 𝑗

)︁
= 𝑓𝑗, 𝑗 = 0, 1, 2, . . .

Послiдовнiсть 𝑍𝑛 матиме такий вигляд:

𝑍0 = 1,

𝑍1 = 𝑋
(1)
1 ,

𝑍2 = 𝑋
(2)
1 +𝑋

(2)
2 + · · ·+𝑋

(2)
𝑍1
,

. . . . . . . . .

𝑍𝑛 = 𝑋
(𝑛)
1 +𝑋

(𝑛)
2 + · · ·+𝑋

(𝑛)
𝑍𝑛−1

.

Розглядаючи суму випадкового числа випадкових величин, у якiй
𝑋

(𝑛)
1 , 𝑋(𝑛)

2 , . . . не залежать вiд 𝑍𝑛−1, за формулою повної ймовiрностi можна
одержати для функцiї: 𝑓(𝑛) (𝑥) = 𝐸𝑥𝑍𝑛 такий вираз:

𝑓(𝑛) (𝑥) = 𝐸𝑥𝑍𝑛 =
∞∑︁
𝑗=0

𝑃 (𝑍𝑛−1 = 𝑗) · 𝐸𝑥𝑋
(𝑛)
1 +𝑋

(𝑛)
2 +...+𝑋

(𝑛)
𝑗 =

=
∞∑︁
𝑗=0

𝑃 (𝑍𝑛−1 = 𝑗) ·𝑓 𝑗 (𝑥) = 𝑓(𝑛−1) (𝑓 (𝑥)) ,

де 𝑓 (𝑥) = 𝑓(1) (𝑥) = 𝐸𝑥𝑋
(1)
1 =

∑︀∞
𝑗=0 𝑓𝑗𝑥

𝑗. Позначимо iтерацiї функцiї 𝜙 (𝑥), таким
чином: 𝜙1 (𝑥) = 𝜙 (𝑥) ; 𝜙2 (𝑥) = 𝜙 (𝜙 (𝑥)) ; . . .

Якщо таким же чином ввести iтерацiї функцiї 𝑓 (𝑥) , за допомогою iндукцiї
одержують:

𝐸𝑥𝑍𝑛 = 𝑓𝑛 (𝑥) . (2)

Таким чином, якщо у початковий момент маємо один позов, який iз ймовiрнiстю
{𝑓𝑘, 𝑘 = 0, 1, 2, . . .},

∑︀∞
1 𝑓𝑘 = 1 — переходить у 𝑘 позовiв того ж типу, причому
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цей процес може продовжуватися, тодi стосовно функцiї 𝐸𝑥𝑍𝑛 , де 𝑍𝑛 — очiкува-
на кiлькiсть позовiв на 𝑛-му етапi, справедливе одержане вище спiввiдношення
(1) або (2), в залежностi вiд ситуацiї.

Вiдомо [1], що в середньому один позов призводить тiльки до ще одного
позову, тобто середня величина кiлькостi позовiв на кожному етапi дорiвнює
1, можна визначити ймовiрнiсть припинення цього процесу на кроцi 𝑛. Тобто,
мають мiсце такi оцiнки: якщо

𝑓 ′(1) = 1, 0 < 𝑏 ≡ 𝑓 ′′(1) <∞, то

– ймовiрнiсть завершення процеса (виродження) на кроцi 𝑛 дорiвнює 2
𝑏𝑛2 ;

– ймовiрнiсть продовження процесу формування позовiв приблизно дорiв-
нює 2

𝑛𝑏
.

5. Висновки i перспективи подальших дослiджень. Якщо позови
формуються за схемою ланцюгової реакцiї, тобто кожний позов може бути за-
доволений iз ймовiрнiстю 𝑞 або перетворитися у 𝑚 аналогiчних позовiв з ймо-
вiрнiстю 𝑝, то на 𝑛 етапi середня кiлькiсть позовiв дорiвнюватиме (𝑝𝑚)𝑛. Якщо
у початковий момент маємо один позов, який iз ймовiрнiстю {𝑓𝑘, 𝑘 = 0, 1, 2, . . .},∑︀∞

1 𝑓𝑘 = 1 — переходить у 𝑘 позовiв того ж типу, причому цей процес може про-
довжуватися, тодi стосовно закономiрностi для кiлькостi позовiв на 𝑛-му етапi
— а саме, для випадкової величинi 𝑍𝑛 — справедливе спiввiдношення:

𝐸𝑥𝑍𝑛 = 𝑓 (𝑓 (. . . 𝑓 (𝑥) . . . )) ,

де у правiй частинi 𝑛 разiв застосовується функцiя 𝑓 (𝑥) =
∑︀∞

𝑗=0 𝑓𝑗𝑥
𝑗.

У подальшому можна дослiджувати розподiл кiлькостi позовiв при iнших
обмеженнях на закони їх розподiлiв.
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Illicheva L. M, Avdieieva T. V., Tomaschuk O. P. Estimation of the number
of lawsuits formed according to the scheme of chain reaction and branching process.

The total value of client claims for a certain period of time is important for the correct
management of an insurance company. The paper considers the case when the number
of lawsuits will increase according to a chain reaction or in accordance with a branching
process. Such an increase in the number of claims is usually associated with cases of natural
disaster (storms, major floods) or military operations. If claims are formed according to
the scheme of a chain process, that is, each claim can be satisfied with probability 𝑞 or turn
into 𝑚 similar claims with probability 𝑝, then at stage 𝑛 the average number of claims will
be equal to (𝑝𝑚)

𝑛. If claims are formed according to the scheme of a branching process,
the formula for 𝐸𝑥𝑍𝑛 is given, where 𝑍𝑛 is the expected number of claims at the 𝑛-th
stage.

Keywords: random variable that does not depend on the future, chain process, branching
process, modeling the number of lawsuits, average number of lawsuits.
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РОЗВИТОК ШТУЧНОГО IНТЕЛЕКТУ I ЙОГО
ЗАСТОСУВАННЯ В БIБЛIОТЕЧНIЙ СПРАВI

Стаття розглядає роль штучного iнтелекту (ШI) в сучаснiй бiблiотечнiй справi.
У роботi дослiджено можливостi застосування ШI для покращення обслуговування
користувачiв, оптимiзацiї робочих процесiв та розвитку цифрових бiблiотечних сер-
вiсiв. Автори дослiджують рiзнi аспекти, включаючи покращений пошук iнформацiї,
який дозволяє користувачам швидко та ефективно знаходити релевантну лiтературу.
У статтi звертається увага на персоналiзованi рекомендацiї, якi надають користувачам
iндивiдуально налаштованi рекомендацiї щодо лiтератури та джерел iнформацiї. Ав-
томатизацiя процесiв каталогiзацiї та управлiння колекцiями спрощує роботу бiблiо-
текарiв та дозволяє бiблiотекам ефективно управляти своїми ресурсами. Взаємодiя з
користувачами через чат-ботiв та вiртуальних асистентiв стає бiльш iнтерактивною
та зручною. Розвиток цифрових архiвiв та електронних ресурсiв робить доступ до
iнформацiї бiльш швидким та зручним для користувачiв. Для управлiння мережею
бiблiотек на рiвнi країни або регiонiв ефективним є застосування нейромережевих
технологiй.

У роботi автори використали цi технологiї для прогнозування кiлькостi вiдвiдувань
бiблiотек та звернень до їхнiх web-сайтiв (на прикладi Полтавської областi). Резуль-
тати дослiдження можуть бути використанi фахiвцями у сферi бiблiотечної справи
з метою покращення обслуговування читачiв i подальшого вдосконалення сучасних
бiблiотечних сервiсiв.

Ключовi слова: штучний iнтелект, бiблiотеки, пошуковi системи, чат-боти, вiрту-
альнi асистенти, нейромережевi технологiї.

1. Вступ. На сьогоднi передача iнформацiї здiйснюється за допомогою
рiзних методiв, форм й iнструментiв. Зважаючи на свою ключову роль у збе-
реженнi iнформацiї, цифровiзацiя бiблiотек є необхiдною вимогою сучасностi.
Поряд iз цифровими сервiсами для пiдвищення ефективностi роботи бiблiотек
ефективним є використання технологiй штучного iнтелекту: виявлення iнфор-
мацiї за допомогою голосової iдентифiкацiї та iдентифiкацiї зображень, ката-
логiзацiя документiв, пiдготовка колекцiї, технiчнi служби, довiдковi служби,
запити, предметний покажчик, iдентифiкацiйнi iнформацiйнi потреби користу-
вачiв.

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



196 Н. В. IЧАНСЬКА, М. В. ЛИСЕНКО, В. В. ПIКАЛОВА

Iсторiя штучного iнтелекту починається з 1950-х рокiв, його концепцiї ши-
роко розроблялися ентузiастами того часу. Одним iз них був видатний бри-
танський дослiдник Алан Тюрiнг, який дослiджував математичнi можливостi
штучного iнтелекту. Саме вiн висловив думку, що машини можуть мати зда-
тнiсть вирiшувати завдання та приймати рiшення, як люди. Ця iдея лягла в
основу його статтi «Обчислювальна технiка та iнтелект» (1950), де розглянуто
можливiсть створення iнтелектуальних машин i методи перевiрки їх iнтелекту-
альних здiбностей [9].

Стаття Тюрiнга стала початком багатьох iнших дослiджень i сприяла роз-
витку штучного iнтелекту. Його внесок є фундаментальним для подальшого
розумiння та розвитку штучного iнтелекту, а iдеї Тюрiнга й зараз продовжу-
ють надихати багатьох вчених.

Дослiдження Алана Тюрiнга продовжують розвиватися. Важливий крок до
розвитку та застосування iдей Тюрiнга зробили:

– Джон Маккартi (1927–2011). Вiн був одним iз пiонерiв штучного iнтеле-
кту та ввiв термiн «штучний iнтелект». Маккартi працював над розробкою
програм, якi вiдображали психологiчнi процеси.

– Марвiн Мiнскi (1927–2016). Вiн зробив значний внесок у сферу штучного
iнтелекту, зосередившись на проблемi вiдтворення людського мислення та
iнтелекту за допомогою комп’ютерiв.

– Джеффрi Хiнтон (1947). Вiн найбiльш вiдомий своїми дослiдженнями гли-
бокого навчання та нейронних мереж, якi стали ключовими поняттями в
сучасних дослiдженнях штучного iнтелекту.

– Рiчард Саттон (1938–2009) та Ендрю Барто (1948). Їхнi дослiдження навча-
ння з пiдкрiпленням зробили значний внесок у розвиток автономних систем
i штучного iнтелекту.

Цi вченi та багато iнших дослiдникiв продовжують вивчати та розвивати
штучний iнтелект.

Однiєю з перших спроб створити комп’ютерну програму, що розв’язує ло-
гiчнi задачi та моделює людську розумовi процеси є програма "The Logic Theori-
st". Її було профiнансовано й представлено на Дартмутському семiнарi
(DSRPAI) Джоном Маккартi та Марвiном Мiнскi в 1956 роцi. На цiй семiнарi-
конференцiї Маккартi представив для вiдкритого обговорення концепцiю шту-
чного iнтелекту та саме там ним було введено термiн “штучний iнтелект” [9].

Введення термiну «штучний iнтелект» вiдобразило стрiмке розширення та
спецiалiзацiю в галузi. Цей термiн допомiг уникнути плутанини з кiбернети-
кою та уточнив напрямок дослiджень. Вiн вiдобразив амбiцiйну мету створення
програм та систем, якi здатнi досягати iнтелектуальних результатiв, що ранiше
були характернi лише для людини. Широке використання термiну «штучний
iнтелект» в наш час стало показником значного прогресу в цiй областi та ва-
жливим аспектом технологiчного розвитку [9].

Зауважимо, що в основному ШI користуються люди вiд 18 до 39 рокiв i
переважно — в ознайомчих чи приватних цiлях, тобто ставляться до нього,
як до розваги [11]. У 2023 роцi дослiдниками було проведено опитування про
обiзнанiсть i використання штучного iнтелекту. За його результатами лише 42%
опитуваних «приблизно уявляє», що таке штучний iнтелект, ще 33,9% взагалi
не знають, що це. I лише 24% респондентiв упевненi, що добре розумiють цю

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика



РОЗВИТОК ШТУЧНОГО IНТЕЛЕКТУ I ЙОГО ЗАСТОСУВАННЯ . . . 197

технологiю. Лише 8,6% вiдповiли, що використовують чат-бот GPT в роботi,
при цьому 64% не користуються ним, а майже 9% узагалi не знають, що це [1].

2. Постановка задачi. Сучасний свiт неможливо уявити без комп’ютерiв,
гаджетiв та штучного iнтелекту (ШI). Комп’ютери та гаджети стали необхiдни-
ми для практично кожного аспекту життя, починаючи вiд роботи й навчання
до спiлкування та розваг. Вони дозволяють швидко i ефективно виконувати
завдання, отримувати доступ до iнформацiї та спiлкуватися з iншими, навiть,
на великiй вiдстанi.

Штучний iнтелект вiдiграє важливу роль у розвитку сучасних технологiй.
Вiн дозволяє розв’язувати складнi завдання, аналiзувати великi обсяги даних,
робити прогнози та приймати рiшення на основi цих даних.

Цi технологiї стимулюють iнновацiї у всiх галузях, вiд медицини та науки до
бiзнесу та розваг. Для установ, якi працюють iз величезними потоками iнфор-
мацiї ШI буквально стає порятунком: допомагає виконувати рутиннi операцiї,
обробляючи данi, надаючи аналiтику. Вони допомагають автоматизувати про-
цеси, пiдвищувати продуктивнiсть й ефективнiсть роботи.

Комп’ютери, гаджети та ШI зробили багато аспектiв життя зручнiшими та
доступнiшими для людей з усього свiту. Вони дозволяють отримувати iнфор-
мацiю та послуги швидко i легко, забезпечуючи новi можливостi для розвитку
й розваг.

Мета статтi — показати можливостi застосування ШI в бiблiотечнiй справi
з метою оптимiзацiї роботи бiблiотек.

3. Основний результат. ШI використовується в багатьох суспiльного жи-
ття, зокрема:
∙ Охорона здоров’я. Дiагностика захворювань, розробка нових лiкiв, пер-

соналiзацiя лiкування. Штучний iнтелект здатний оцiнити, наскiльки добре
адмiнiстратор клiнiки спiлкується з пацiєнтами телефоном, чи дотримує-
ться правил. ШI навiть може поставити оцiнку роботi працiвника. Все це
вiдбувається практично миттєво — на вiдмiну вiд ситуацiї, коли аудiо роз-
мов прослуховує людина, витрачаючи на кожний дiалог по декiлька хвилин
[8].

∙ Виробництво. Оптимiзацiя виробничих процесiв, контроль якостi, про-
гнозування поломок. Iнтеграцiя ШI у виробництво дозволяє мiнiмiзувати
кiлькiсть браку та визначити фактори виникнення дефектiв. Забезпечення
точного й повнiстю автоматизованого контролю за якiстю продуктiв, якi
виходять з виробничої лiнiї [13].

∙ Транспорт. Розробка безпiлотних автомобiлiв, оптимiзацiя маршрутiв,
управлiння трафiком. Безпiлотнi автомобiлi, також вiдомi як автономнi ав-
томобiлi, оснащенi безлiччю датчикiв, камер i алгоритмiв штучного iнте-
лекту, якi дозволяють їм iнтерпретувати навколишнє середовище та само-
стiйно керувати автомобiлем, продуктивно змiнюють мiську мобiльнiсть та
особистий транспорт. Системи штучного iнтелекту аналiзують схеми транс-
портних потокiв, щоб прогнозувати затори та керувати ними. Розумiючи, як
трафiк перемiщується через мережу, цi системи ефективно впроваджують
заходи для зменшення заторiв, перш нiж це стане проблематичним [12].

∙ Освiта. Персоналiзацiя навчання, оцiнка успiшностi, створення iнтерактив-
них курсiв, розробка алгоритмiв, аналiз даних, пошук iнформацiї, автома-
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тизацiя завдань [3–5].
∙ Економiка. Застосування математичних методiв та ШI у бiзнесi залиша-

ється одним з трендiв на свiтовому ринку i викликає iнтерес у багатьох
науковцiв [16]. Сучаснi пiдприємства активно впроваджують та використо-
вують технологiї штучного iнтелекту в рiзних сегментах дiяльностi, роз-
глядаючи їх як конкурентну перевагу та можливiсть для розвитку бiзне-
су та освоєння нових методiв дiяльностi. Штучний iнтелект дозволяє ком-
панiям оптимiзувати бiзнес-процеси, знижувати витрати та покращувати
якiсть продукцiї й послуг. Зараз ШI використовують в маркетингу та рекла-
мi, у кадровому менеджментi, логiстицi, виробництвi. Наприклад, компанiя
Amazon iнтегрувала ШI для прогнозування попиту та оптимiзацiї запасiв
на складах. Це дозволило зменшити час доставки товарiв до клiєнтiв та
мiнiмiзувати витрати на зберiгання [13].

ШI використовується в бiблiотечнiй справi для вирiшення рiзноманiтних зав-
дань з метою оптимiзацiї роботи сучасної бiблiотеки та спрощення доступу до
iнформацiї для користувачiв.

Наведемо кiлька способiв використання ШI у бiблiотеках:
1. Розширенi можливостi пошуку та органiзацiї iнформацiї. ШI може ство-

рювати продуктивнiшi та ефективнiшi системи пошуку, якi дозволяють ко-
ристувачам швидко знаходити релевантну iнформацiю серед великих обся-
гiв даних. Це може включати пошук за ключовими словами, категоризацiю,
фiльтрацiю та сортування матерiалiв.

2. Аналiз змiсту iнформацiї. Аналiз текстового змiсту книги, статтi та iнших
джерел iнформацiї, виявляти ключовi теми, термiни та зв’язки мiж рiзними
документами, що допомагає конкретизувати результати пошуку та робить
його бiльш точним.

3. Персоналiзованi рекомендацiї. Використання алгоритму машинного навча-
ння для аналiзу читацьких вподобань та iнтересiв, щоб надавати користу-
вачам iндивiдуально налаштованi рекомендацiї щодо лiтератури та джерел
iнформацiї.

4. Автоматизований облiк та управлiння колекцiями. Ведення облiку та уп-
равлiння бiблiотечними колекцiями, знаходити дублiкати, вiдстежувати за-
позичення та повернення книг, а також оптимiзувати процеси закупiвель
нових матерiалiв.

5. Взаємодiя з користувачами через чат-боти та вiртуальних асистентiв.
Створення iнтерактивних чат-ботiв та вiртуальних асистентiв, якi надають
користувачам швидкий доступ до iнформацiї, вiдповiдають на запитання
та надають допомогу у реальному часi.

6. Розвиток цифрових архiвiв та електронних ресурсiв: ШI допомагає роз-
вивати цифровi архiви, електроннi бази даних та iншi електроннi ресурси,
забезпечуючи доступ до них в будь-який час та з будь-якого пристрою.

Яскравим прикладом застосування штучного iнтелекту є розробка
комп’ютерної програми для архiвiв студентами Львiвської полiтехнiки [6].
Цю розробку впроваджено в Державному архiвi Львiвської областi, де си-
стема штучного iнтелекту допомагає працiвникам архiву швидко знаходити
та виправляти помилки в номенклатурi документiв, аналiзує текст докумен-
тiв, якi надходять до архiву, та пiдкреслює тi частини, якi ймовiрно мiстять
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помилки. Це дозволяє працiвникам архiву зробити опис документiв бiльш
чiтким та достовiрним [6].

7. Вiзуалiзацiя творiв з метою популяризацiї лiтературної та мистецької
спадщини. Так, за допомогою штучного iнтелекту фахiвцi Нацiональної бi-
блiотеки «оживили» збiрку поезiй «Тече вода з-пiд явора» 1939 року вида-
ння з iлюстрацiями української художницi Любовi Джолос [12].

8. Iнтерактивнiсть. Бiблiотека має бути адаптована до сучасних проблем ко-
ристувача i особливо її виставкова складова. Сучасна книжкова виставка
повинна бути яскравою i привабливою, мати цiкаву тему та форму, бути
структурованою, оригiнальною та стильною, доповнену атрибутикою, ма-
ти iнтерактивний елемент. Наприклад, яскравим прикладом застосування
цього є Китайська бiблiотека Changning Library. Людський аватар, оснаще-
ний алгоритмом рекомендацiй, сканує читацькi квитки або обличчя людей,
щоб дiзнатися їхнi читацькi iсторiї та запропонувати вiдповiднi книги. По-
тiм роботи доставляють цi книги вiдвiдувачам. Бiблiотека впровадила цi
функцiї штучного iнтелекту восени 2022 року [17].

Впровадження в бiблiотеках iнновацiйних технологiй ChatGPT 3.5, Gemini,
Bing Chat та Grok дасть можливiсть пiдвищити ефективнiсть маркетингової дi-
яльностi, в автоматичному режимi аналiзувати вподобання читачiв, вести облiк
прочитаних ними книг та формувати на цiй основi вiдповiднi рекомендацiї. Ви-
користання нейронних мереж сприятиме полегшенню роботи бiблiотекарiв та
пiдвищенню якостi обслуговування користувачiв [7].

Програми та технологiї штучного iнтелекту дають можливiсть створення в
бiблiотеках нових сервiсiв для пошуку лiтератури, органiзацiї каталогiв, пiдбору
лiтератури бажаної тематики тощо. На основi штучного iнтелекту можливо
створення автоматичних програмних агентiв для виконання деяких завдань
працiвникiв [10].

Iнтеграцiя систем та елементiв штучного iнтелекту в дiяльнiсть бiблiотек
сприяє пiдвищенню доступностi iнформацiї, розвитку самоосвiти, цифровiзацiї
бiблiотечної справи, пiдвищує роль даної галузi в розвитку суспiльства [15].

Важливим напрямом в управлiннi мережею бiблiотек є планування та реалi-
зацiя заходiв щодо полiпшення обслуговування читачiв. Критерiєм ефективно-
стi таких заходiв є рiчна кiлькiсть вiдвiдувань бiблiотек та кiлькiсть звертань
до їх web-сайтiв. Тому важливим елементом в пiдготовцi управлiнських рiшень
є отримання науково обґрунтованих прогнозiв даних показникiв.

Для прогнозування динамiки кiлькостi вiдвiдувань бiблiотек та кiлькостi
звертань до їх web-сайтiв можна використати нейромережевi технологiї, якi яв-
ляються фундаментальною основою штучного iнтелекту.

Використаємо данi технологiї для одержання прогнозiв наведених вище по-
казникiв для бiблiотек Полтавської областi на 2024 та 2025 роки. Iнформацiйною
основою прогнозування є статистичнi данi про кiлькiсть вiдвiдувань та кiль-
кiсть звертань до web-сайтiв цих бiблiотек протягом ретроспективного перiоду
вiд 2007 до 2022 року [1].

Для прогнозування нами вибрана нейронна мережа типу Feed-forward back
propagation. Дана мережа включає три види нейронiв — один вхiдний, три про-
мiжних та один вихiдний. На вхiдний нейрон надходить сигнал, який в незмiн-
ному виглядi передається на промiжнi нейрони. Величини вхiдних сигналiв ви-

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



200 Н. В. IЧАНСЬКА, М. В. ЛИСЕНКО, В. В. ПIКАЛОВА

значаються рiвнiстю
𝑋 (𝑡) =

𝑡

𝑇 + 𝑇1 + 𝑇2 + 1
,

де 𝑇 — тривалiсть (в роках) ретроспективного перiоду, 𝑇1 — кiлькiсть рокiв мiж
ретроспективним перiодом та перiодом прогнозування, 𝑇2 — тривалiсть перiо-
ду прогнозування, 𝑡 — порядковий номер року, починаючи вiд початку ретро-
спективного перiоду. Промiжнi нейрони 𝑁1, 𝑁2 та 𝑁3 мають по одному входу,
якi сприймають сигнали вiд вхiдного нейрону, та по одному виходу, звiдки си-
гнал передається на вихiдний нейрон. Входам промiжних нейронiв 𝑁1, 𝑁2 та
𝑁3 зiставляються ваговi коефiцiєнти 𝑤11, 𝑤12 та 𝑤13. Параметрами промiжного
нейрона 𝑁𝑖 є змiщення 𝑎𝑖, та функцiя активацiї 𝑓(𝑥). При роботi мережi промi-
жний нейрон 𝑁𝑖 виробляє вихiдний сигнал 𝑌𝑖(𝑡), величина якого визначається
рiвнiстю

𝑌𝑖(𝑡) = 𝑓(𝑤1𝑖𝑋 (𝑡) + 𝑎𝑖).

Вихiдний нейрон 𝑁0 має три входи, якi сприймають вихiднi сигнали вiд
промiжних нейронiв. Параметрами вихiдного нейрону є ваговi коефiцiєнти 𝑤21,
𝑤22 та 𝑤23 його входiв, змiщення 𝑎0 та функцiя активацiї 𝑓(𝑥). Цей нейрон
виробляє вихiдний сигнал

𝐺(𝑡) = 𝑓(𝑤21𝑌1 (𝑡) + 𝑤22𝑌2 (𝑡) + 𝑤23𝑌3 (𝑡) + 𝑎0).

Для промiжних нейронiв та вихiдного нейрона вибрана функцiя активацiї

tansig (𝑥) =
1

1 + 1
𝑒2𝑥

− 1.

В процесi навчання мережi одержанi вихiднi сигнали 𝐺 (𝑡) порiвнюються iз
вiдомими еталонними величинами 𝐿(𝑡), одержаними iз статистичних даних про
вiдвiдування бiблiотек та звертання до їх web-сайтiв протягом ретроспективного
перiоду. В якостi еталонних значень для навчання мережi вибираємо значення

𝐿 (𝑡) =
𝑄(𝑡)

1,5𝑄max
,

де 𝑄(𝑡) — величина показника, що дослiджується, в 𝑡-тий рiк ретроспективно-
го перiоду, 𝑄max — максимальне значення цього показника в ретроспективному
перiодi. Якщо вихiдний сигнал 𝐺 (𝑡) вiдрiзняється вiд еталону на величину, що
перевищує задану точнiсть, то мережа здiйснює коригування вагових коефiцi-
єнтiв входiв та змiщень промiжних нейронiв та вихiдного нейрона.

При прогнозуваннi кiлькостi вiдвiдувань бiблiотек пiсля навчання мережi її
параметри приймають такi значення:

𝑤11 = 11,1036; 𝑤12 = −7,1799; 𝑤13 = 4,8403;

𝑎1 = −7,7028; 𝑎2 = 0,55373; 𝑎3 = 0,37212;

𝑤21 = −0,93234; 𝑤22 = 0,75206; 𝑤23 = 0,47902; 𝑎0 = 0,37212.

Для одержання прогнозiв на 2024 та 2025 рока на вхiд мережi подаються
значення 𝑋(18) = 0,9 та 𝑋(19) = 0,95, що вiдповiдають даним рокам. Одер-
жимо вихiднi значення 𝐿(18) = 0,38449 та 𝐿(19) = 0,38361. Вони вiдповiдають
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прогнозованим кiлькостям вiдвiдувань бiблiотек — 2747,4 тисяч в 2024 роцi та
2741,1 тисяч в 2025 роцi.

При прогнозуваннi кiлькостi звернень до web-сайтiв бiблiотек пiсля навчан-
ня мережi її параметри приймають такi значення:

𝑤11 = 4,3442; 𝑤12 = 3,5833; 𝑤13 = 4,3116;

𝑎1 = −3,988; 𝑎2 = 1,6948; 𝑎3 = 4,0246;

𝑤21 = 1,5029; 𝑤22 = 0,52734; 𝑤23 = 0,77955; 𝑎0 = 0,27538.

Для одержання прогнозiв на 2024 та 2025 рока на вхiд мережi подаються
значення 𝑋(18) = 0,9 та 𝑋(19) = 0,95, що вiдповiдають даним рокам. Одер-
жимо вихiднi значення 𝐿(18) = 0,66483 та 𝐿(19) = 0,66515. Вони вiдповiдають
прогнозованим кiлькостям звернень до web-сайтiв бiблiотек — 576,3 тисяч в
2024 роцi та 576,6 тисяч в 2025 роцi.

Таким чином, прогнозування на основi нейромережевих технологiй показа-
ло, що в 2024 та 2025 роках очiкується стабiлiзацiя розглянутих показникiв при
наявностi незначних тенденцiй до зростання кiлькостi звернень до web-сайтiв
та зменшення кiлькостi вiдвiдувань бiблiотек.

Сучасна бiблiотека має бути цифровiзованою, вiдкривати новi можливостi
отримання й сприйняття iнформацiї. Впровадження штучного iнтелекту у бi-
блiотечну справу має потенцiал для суттєвого пiдвищення ефективностi роботи
бiблiотек i покращення якостi обслуговування користувачiв.

4. Висновки. Комп’ютери, гаджети та штучний iнтелект вiдiграють ва-
жливу роль у сучасному свiтi. Їхня значимiсть продовжує зростати з розвитком
технологiй та цифрової економiки.

Застосування штучного iнтелекту в сучаснiй бiблiотечнiй справi є надзви-
чайно перспективним i корисним. Ця технологiя вiдкриває широкi можливостi
для покращення обслуговування користувачiв, оптимiзацiї робочих процесiв,
розвитку цифрових бiблiотечних сервiсiв та пiдвищення ефективностi управ-
лiнських рiшень в органiзацiї роботи бiблiотек.

ШI дозволяє розробляти ефективнiшi системи пошуку та органiзацiї iнфор-
мацiї, надавати персоналiзованi рекомендацiї, автоматизувати процеси катало-
гiзацiї та управлiння колекцiями, покращувати взаємодiю з користувачами че-
рез вiртуальних асистентiв та чат-ботiв, а також сприяти розвитку цифрових
архiвiв та електронних ресурсiв. Використання ШI сприяє подальшому розви-
тку бiблiотечної сфери, забезпечуючи зручний доступ до знань та iнформацiї
для користувачiв усього свiту.
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Ichanska N. V., Lysenko M. V., Pikalova V. V. Development of Artificial
Intelligence and its Application in Librarianship.

The article examines the role of artificial intelligence (AI) in modern librarianship. The
paper explores the possibilities of using AI to improve user experience, optimize work-
flows, and develop digital library services. The authors explore various aspects, including
improved information search, which allows users to find relevant literature quickly and
efficiently. The article draws attention to personalized recommendations, which provide
users with individually customized recommendations on literature and information sources.
Automation of cataloging and collection management processes simplifies the work of li-
brarians and allows libraries to effectively manage their resources. Interaction with users
through chatbots and virtual assistants is becoming more interactive and convenient. The
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development of digital archives and electronic resources makes access to information faster
and more convenient for users. To manage a network of libraries at the country or regional
level, neural network technologies are effective. In this paper, the authors used these tech-
nologies to predict the number of visits to libraries and access to their websites (based on
the example of Poltava region).

The results of the study can be used by library professionals to improve reader service
and further develop modern library services.

Keywords: artificial intelligence, libraries, search engines, chatbots, virtual assistants,
neural network technologies.
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FORECASTING CURRENCY RATES USING MACHINE
LEARNING MODELS

Accurate forecasting of foreign exchange (FOREX) currency rates is crucial for various
financial activities. However, both the time interval and the chosen model can have a sig-
nificant impact on forecasting accuracy. Therefore, investigating the effect these elements
have on the prediction accuracy of multivariate time series data representing Open, High,
Low, and Close (OHLC) prices in FOREX markets, requires further research.

The aim of paper is to evaluate and compare the performance of different quantitative
forecasting models (VAR, LSTM, GRU, Random Forest) in predicting Foreign Exchange
(FOREX) currency rates across various timeframes (daily (D), 4-hourly (H4), hourly (H1),
15-minute (M15)).

The performance of VAR, LSTM, GRU, and Random Forest – was evaluated on four
FOREX datasets. These datasets included data from different Timeframes including D, H4,
H1, M15. Each model was trained on historical data, and then their prediction accuracy
was assessed on unseen test data. Accuracy was measured using MAE and MSE.

The influence of timeframe and machine learning methods on forecasting exchange rates
EUR/USD is studied. Effectiveness of various forecasting models was analyzed.

Random Forest model outperformed other models on every Dataset (Timeframe) with
astounding result of MAE = 0.00004 and MSE = 0.000000007 on M15 Dataset. Future
research will focus on: developing a forecasting method based on fuzzy logic; constructing
a model capable of online learning with real-time data; and creating a decision support
system for algorithmic trading.

Keywords: LSTM, GRU, Random Forest, forecasting, multivariate timeseries, FOREX.

ABBREVIATIONS
FOREX — Foreign Exchange;
GRU — Gated Recurrent Unit;
LSTM — Long short-term memory;
MAE — mean absolute error;
MSE — mean squared error;
OHLC — Open, High, Low, Close;
VAR — Vector Autoregression.

NOMENCLATURE
𝑓𝑖 (𝑥) is a base model, typically a decision tree;
𝑔 (𝑥) is a final prediction;
𝑘 is a number of endogenous variables;
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𝑚 is a input features observed at time 𝑡;
𝑡 is a time period, numbered 𝑡 = 1, . . . , 𝑇 ;
𝑥 is a original value;
{𝑥1, 𝑥2, . . . , 𝑥𝑇} is a time series;
X is a 2-dimensional tensor (or matrix);
𝑥′ is a normalized value;
𝑥max is a maximum value of the original data;
𝑥min is a minimum value of the original data;
𝑦 is the target variable;
𝑦𝑡 is a vector of length 𝑘 representing the variables at time;
𝑦𝑡+𝑘 is a predicted value of the target variable at time 𝑡+ 𝑘.
1. Introduction. The Foreign Exchange Market (Forex) is the world’s largest
financial market, enabling the trading of currencies and other assets, such as met-
als. Its high liquidity makes it an essential platform for international trade and
investment [1].

To make informed trading decisions in the Forex market, investors and traders
rely on various analysis methods. Fundamental analysis focuses on identifying a
currency’s "fair value" by considering economic data and financial indicators. Tech-
nical analysis, on the other hand, utilizes price charts and technical indicators to
identify historical price patterns and potential future movements. The core principle
of technical analysis is that all relevant market information is already reflected in
the price itself.

While fundamental and technical analysis are widely used for market decisions,
quantitative analysis offers a distinct approach. Quantitative analysis views market
prices as time series data and employs sophisticated mathematical models and sta-
tistical techniques to forecast future price movements. This data-driven approach
complements traditional analysis methods by providing a more objective and sys-
tematic way to identify trading opportunities.

Within quantitative analysis, there exists a vast array of models, encompassing
statistical methods, machine learning and deep learning models. Each type of model
offers unique advantages and addresses specific challenges in market prediction.

However, the effectiveness of these quantitative models varies greatly. This paper
will delve into the efficiency of different model types, including statistical methods,
machine learning algorithms, and deep learning architectures, to identify the most
promising approaches for market prediction

So the object of study is foreign currency rates (FOREX) on the markets, repre-
sented by OHLC data and the subject of study is the efficiency of different machine
learning models in forecasting exchange rates at different time intervals.

A significant amount of research has explored quantitative forecasting in finan-
cial markets. However, these studies often focus on predicting a single variable,
typically the closing price, using univariate time series analysis. This approach
overlooks the rich information available within market data. Our work takes a more
comprehensive approach by investigating the forecasting of multivariate time series
using OHLC data (Open, High, Low, Close). This allows us to capture the full
range of price movements within a specific timeframe. Additionally, we explore the
impact of timeframe on efficiency. By analyzing the effectiveness of these models
across different time horizons (e.g., daily, hourly), we aim to provide a more nuanced
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understanding of their predictive capabilities.
The purpose of this work is to compare the efficiency of various forecasting models

employed in quantitative analysis when applied to different timeframes.
To achieve the purpose of the work, the following problems shall be solved:

– to analyze existing forecasting models;
– to create and prepare data sets;
– to implement and train forcasting models for each data set;
– to make a comparative analysis of the obtained results.
2. Problem Statement. Given a time series, where each is a vector of input

features observed at time, the task is to develop a predictive model that utilizes
historical data represented as a 2-dimensional tensor of shape to forecast a target
variable at a future time point. The goal is to accurately predict the future target
value using the model.

Given a time series for predicting a future target variables, the challenge lies
in identifying the most efficient forecasting model across various timeframes. To
achieve this, we will employ different models on multivariate time series data with
varying time horizons. The MAE and MSE will be calculated for each model’s
predictions to assess their accuracy and identify the most efficient model for specific
time intervals based on their lowest values.

3. Review of the literature. Financial market forecasting is a notori-
ously intricate task. Despite the valuable insights gleaned from popular methods
like technical and fundamental analysis [1], accurately predicting future price move-
ments requires navigating a complex interplay of economic data, market sentiment,
and other factors. This highlights the need for a more systematic and objective
approach to identify efficient forecasting models. Quantitative analysis emerges as a
complementary approach, leveraging mathematical models and statistical techniques
to dissect market data and objectively predict future price movements [2].

While Vector Autoregression (VAR) models, a popular statistical approach to
forecasting, have been explored in previous research [3, 4], their ability to capture
all the dependencies within financial data remains a challenge.

This necessitates exploring more intricate models. Machine learning algorithms,
with their ability to learn from vast datasets and identify hidden patterns, offer a
compelling alternative. Using the machine learning models described in [5], we aim
to develop a more comprehensive understanding of market dynamics and identify the
most efficient forecasting approach across different timeframes. In particular, these
are models of Long Short-Term Memory (LSTM) networks [6], Gated Recurrent
Units (GRUs) [6] and Random Forests [7].

In [8] statistical model was compared with LSTM. Paper [9] compared LSTM
with Random Forest.

Our study will compare classic statistical model VAR with LSTM, GRU and
Random Forest. Moreover, we will determine the impact of timeframe on efficiency.

4. Matherials and Methods. VAR model. A VAR model [4] describes the
evolution of a set of 𝑘 variables, called endogenous variables, over time. Each period
of time is numbered, 𝑡 = 1, . . . , 𝑇 . The variables are collected in a vector, 𝑦𝑡, which
is of length 𝑘. Equivalently, this vector might be described as a (𝑘× 1)-matrix. The
vector is modelled as a linear function of its own lagged values. The inclusion of
lagged values allows the model to capture the dynamic interdependencies between
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the variables.
LSTM model. Long Short-Term Memory (LSTM) networks [6] are a special type

of neural network that can learn from long sequences of data, unlike regular RNNs
which struggle with remembering distant information.

LSTMs have an internal memory that helps them remember important informa-
tion from past data points. This allows them to understand how events further back
in time can influence future events, something regular RNNs struggle with.

LSTM has forget gates, input gates, and output gates. These gates control how
information flows within the LSTM’s memory. They can decide what information
to keep, what to forget, and how to combine it with new data to make better
predictions.

GRU model [6]. Gated Recurrent Units (GRUs) are another type of neural
network similar to LSTMs, but with a slightly simpler approach. They also aim to
learn from long sequences of data and address the vanishing gradient problem.

Like LSTMs, GRUs have internal mechanisms (gates) that control how informa-
tion flows within their memory. These gates, named update, reset, and candidate,
decide what information to keep from the past, what to forget, and what new infor-
mation to integrate.

The key difference is that GRUs use a single set of gates instead of the separate
forget, input, and output gates in LSTMs. This makes them slightly more efficient
computationally.

In simpler terms, both LSTMs and GRUs are like neural networks with good
memories for past data. GRUs achieve this with a slightly more streamlined ap-
proach compared to LSTMs.

Random Forest.
Random Forest [7] is a powerful machine learning technique for predictive ana-

lytics. It falls under the category of ensemble learning, where the final prediction
is derived by combining the outputs of multiple, simpler models. Formally, these
models can be expressed as:

𝑔 (𝑥) = 𝑓0 (𝑥) + 𝑓1 (𝑥) + . . .+ 𝑓𝑖 (𝑥) .

This approach of combining multiple models to improve predictive performance
is known as model ensembling. In Random Forests, each base decision tree is built
independently using a random subset of the data (bootstrapping). This helps to
reduce variance and improve the overall robustness of the final model.

Normalization is used to bring data to a common scale. In this study, the min-
max technique was employed:

𝑥′ =
𝑥− 𝑥min

𝑥max − 𝑥min

. (1)

Accuracy indices.
To assess how well the models learned, we used a measure called Mean Squared

Error (MSE) [10] as the loss function during training. This helps us identify if the
model is becoming too focused on training data and might not perform well on
unseen data (overfitting).

In addition to MSE, we also evaluated the model’s performance on unseen data
using Mean Absolute Error (MAE) [11, 12]. MAE is a robust measure of prediction
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accuracy that calculates the average absolute difference between the predicted values
and the actual values. Unlike MSE, which squares the errors and thus penalizes
larger errors more heavily, MAE provides a straightforward interpretation of the
average error magnitude.

5. Experiments. 1. Datasets.
We applied the four machine learning techniques to the EUR/USD data sets

from the finance.yahoo.com Website to perform Time Series Forecasting (TSF) for
OHLC predictions.

Four data sets collected from different Timeframes are used. Each of them
includes data for two year time period November 18, 2021 to November 17, 2023 and
has 9 columns. First and second columns labeled as Date and Time were combined
into single feature called “Date Time”. The following four columns labeled as Open,
High, Low, Close were used as input features. And they were used as target variables
as well. The column names and explanations are presented in table 1.

Table 1.
Column names and explanations

Name Explanation Comment
Date Date of Bar Merged into
Time Time of Bar single feature
Open Opening price
High Highest price of bar Input features
Low Lowest price of bar & Targets
Close Closing Price
Volume Volume of Bar
Tick Volume Volume of Tick Ignored
Spread Difference between

Information about the generated datasets:
1. data set M15 has 50 001 rows, data was collected every 15 minutes;
2. data set H1 has 12 503 rows, data was collected hourly;
3. data set H4 has 3 128 rows, data was collected every 4 hours;
4. data set 1D has 522 rows, data was collected daily.

Data were normalized values to a range of [0, 1] using the Min-Max normalization
technique as shown in (1).

The data were divided into training set (first 70% rows) and test set (last 30%
rows).

2. Scheme of experiment.
VAR model was implemented as stated in [4]. And applied to all datasets.
A Random Forest model was constructed utilizing the scikit-learn library [14].

This model was then applied to all datasets for analysis.
The LSTM and GRU models were implemented as follows. Firstly, the data

underwent a pre-processing step involving min-max scaling (1) to normalize the
feature values. Subsequently, the data was segmented into batches, each with a size
equivalent to the look-up window employed for the forecasting models. This window
represents the amount of historical data fed into the model. We chose window sizes
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that corresponded to one week of data for each dataset: 480 for 15-minute intervals,
120 for hourly intervals, 30 for 4-hour intervals and 5 for daily intervals.

The construction of our models was accomplished utilizing the TensorFlow [13]
library.

To investigate the impact of model complexity on performance, we constructed
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models with
varying numbers of hidden layers. A 1-layer model served as the baseline, repre-
senting the simplest configuration. Additionally, a 4-layer model was implemented,
where the number of hidden layers matched the combined quantity of features and
target variables. Finally, a more complex model with 10 hidden layers was con-
structed. The selection of 10 layers was based on empirical observations, as models
with a greater number of layers exhibited signs of overfitting.

The optimal number of neurons within the hidden layers and the learning rate
hyperparameters were determined through hyperparameter tuning using KerasTuner
[15].

To prevent overfitting and underfitting, the optimal number of training epochs
was determined by employing the EarlyStopping callback from TensorFlow. This
callback automatically halts training when the validation performance ceases to im-
prove for a predefined number of epochs, effectively identifying the optimal stopping
point.

The visualization of the model outputs and actual values was achieved using the
Mplfinance library [16].

6. Results. Table 2 presents the results obtained for the datasets, following
the methodology outlined in Section 4.

Table 2.
Mean Absolute Error (MAE) and Mean Squared Error (MSE) Values by Dataset

and Forecasting Method
M15 H1

MAE MSE MAE MSE
VAR 0.0123 0.000233 0.01239 0.0002364

LSTM
1 Layer 0.000276 0.000000154 0.000462 0.000000562
4 Layers 0.000283 0.000000169 0.000487 0.00000056
10 Layers 0.000296 0.000000177 0.000370 0.000000606

GRU
1 Layer 0.000235 0.000000132 0.000486 0.000000526
4 Layers 0.000257 0.000000145 0.000627 0.000000764
10 Layers 0.000323 0.000000189 0.000616 0.000000712

Random Forest 0.000043 0.000000007 0.000112 0.000000036
H4 D

MAE MSE MAE MSE
VAR 0.0124 0.00023 0.0124389 0.000235

LSTM
1 Layer 0.00098 0.000002 0.00395 0.000025
4 Layers 0.000984 0.000002 0.00333 0.00002
10 Layers 0.00108 0.000002 0.00996 0.000185

GRU
1 Layer 0.00110 0.000002 0.00300 0.000015
4 Layers 0.001055 0.000002 0.00241 0.0000118
10 Layers 0.001197 0.000002 0.0026 0.000012

Random Forest 0.000286 0.00000018 0.00095 0.0000016

The colored cells in Table 2 highlight the Mean Absolute Error (MAE) values
corresponding to the forecasting method that achieved the best performance on each
dataset.

The analysis of the results reveals that the classic statistical method of Vector
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Autoregression (VAR) consistently yielded the highest MAE values, indicating its
underperformance compared to other models. Conversely, the Random Forest model
emerged as a standout performer, exhibiting exceptionally low MAE values across
various datasets. This suggests its potential as a robust forecasting tool in this
context.

In Figures 1–4 compared top results of each method.

Figure 1. Actual values (green) compared with values predicted by LSTM model
on M15 Dataset.

Figure 2. Actual values (green) compared with values predicted by GRU model on
M15 Dataset.
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Figure 3. Actual values (green) compared with values predicted by Random Forest
model on M15 Dataset.

7. Discussions. All models except VAR performed relatively well with peak
performance of MAE ∼ 0.0003 on the M15 dataset.

However, current research has determined that Random Forest is outperforming
other models on the task of forecasting multivariate timeseries. The only disadvan-
tage of Random Forest is its low forecasting capabilities based on real-time data
(online forecasting).

8. Conclusions. The problem of comparing the efficiency of various forecast-
ing models employed in quantitative analysis when applied to different timeframes
is being solved.

The scientific novelty of the obtained results is as follows:
1. VAR, Random Forest, LSTM, GRU models were used for multidimensional

forecasting of OHLC data on the exchange rate of the EUR/USD currency pair
generated at different time intervals;

2. the hyperparameters of the models and the architecture of neural networks were
adjusted in accordance with the tasks under consideration;

3. to identify the most effective forecasting models, a critical analysis of the re-
sults was carried out, taking into account the visualisation of the forecast and
accuracy metrics;

4. according to the results of the study, the best forecasting model was Random
Forest with MAE = 0.4 · 10−4, MSE = 0.7 · 10−8.

The practical significance of our findings lies in the development of software
equipped with various forecasting models. Experiments have demonstrated the ef-
fectiveness of these models on specific timeframes. This software can empower CFD
(Contract for Difference) traders with the ability to predict market movements based
on data-driven insights. Furthermore, the models and the underlying methodology
presented in this work can serve as valuable resources for other researchers seeking
to advance the field of financial forecasting.
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Future research is to develop a method for forecasting such time series based
on fuzzy logic. This will allow the results to be used not only to predict future
values, but also to convert the forecasts into actionable recommendations for CFD
traders, such as ‘Buy’, ‘Sell’ or ‘Wait’. It is also planned to develop a decision
support system for algorithmic trading that will provide traders with the ability to
execute trades automatically based on forecasts and recommendations generated by
forecasting models.
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Кондрук Н. Е., Гецко С. В. Прогнозування курсiв валют засобами ма-
шинного навчання.

Точне прогнозування валютних курсiв (FOREX) має вирiшальне значення для рi-
зних видiв фiнансової дiяльностi. Однак, як часовий iнтервал, так i обрана модель
можуть мати значний вплив на якiсть прогнозiв. Тому вивчення впливу цих елемен-
тiв на точнiсть прогнозування багатовимiрних часових рядiв даних, що представляють
цiни вiдкриття, максимуму, мiнiмуму та закриття (OHLC) на ринках FOREX, потре-
бує подальших дослiджень.

Метою роботи є оцiнка та порiвняння ефективностi рiзних кiлькiсних моделей про-
гнозування (VAR, LSTM, GRU, Random Forest) у передбаченнi валютних курсiв на
мiжнародних валютних ринках (FOREX) за рiзними часовими iнтервалами (денний
(D), 4-годинний (H4), годинний (H1), 15-хвилинний (M15)).

Ефективнiсть VAR, LSTM, GRU та Random Forest було оцiнено на чотирьох набо-
рах даних FOREX. Цi датасети включали данi з рiзних таймфреймiв, включаючи D,
H4, H1, M15. Кожна модель була навчена на iсторичних даних, а потiм їх точнiсть
прогнозування була оцiнена на невидимих тестових даних. Точнiсть була вимiряна за
допомогою метрик MAE та MSE.

Дослiджено вплив таймфрейму та методiв машинного навчання на прогнозування
валютних курсiв ЄВРО/ДОЛАР США. Проаналiзовано ефективнiсть рiзних моделей
прогнозування.

Модель Random Forest перевершила iншi моделi на кожному наборi даних (тайм-
фреймi) з вражаючим результатом MAE = 0.00004 та MSE = 0.000000007 на датасетi
M15. Подальшi дослiдження будуть зосередженi на: розробцi методу прогнозування
на основi нечiткої логiки; побудовi моделi, здатної до онлайн-навчання на даних в
реальному часi; створеннi системи пiдтримки прийняття рiшень для алгоритмiчної
торгiвлi.

Ключовi слова: LSTM, GRU, Random Forest, прогнозування, багатовимiрнi часовi
ряди, FOREX.
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АДАПТИВНА МОДЕЛЬ ПЛАНУВАННЯ ПРОЄКТIВ ТА
ОЦIНКИ РИЗИКIВ IЗ ВИКОРИСТАННЯМ МАШИННОГО

НАВЧАННЯ

Ефективне управлiння проєктами в умовах постiйно змiнюваних ринкових вимог
та технологiчного прогресу є необхiдною складовою успiшної дiяльностi компанiй.
Оптимiзацiя процесу планування та управлiння ризиками вiдiграє ключову роль у
пiдвищеннi якостi результатiв i скороченнi термiнiв реалiзацiї. Традицiйнi методи пла-
нування, такi як метод критичного шляху i метод програмування в мережi, ефективно
допомагають структурувати задачi проєкту. Однак, через зростаючу складнiсть про-
єктiв, цi методи не завжди можуть врахувати динамiку змiн та непередбаченi ризики.

Застосування сучасних технологiй, зокрема машинного навчання, дозволяє розро-
бляти гнучкi та адаптивнi системи управлiння, здатнi враховувати як iсторичнi данi,
так i новi змiни в проєктi в режимi реального часу. Алгоритми машинного навчан-
ня можуть ефективно прогнозувати строки виконання завдань, оцiнювати ризики та
допомагати в оптимальному розподiлi ресурсiв. Дана стаття зосереджена на розроб-
цi адаптивної моделi, що дозволяє покращити точнiсть планування та мiнiмiзувати
ризики пiд час виконання проєктiв.

Ключовi слова: машинне навчання, оцiнка ризикiв, нейроннi мережi, управлiння
проєктами, обробка даних, методи оптимiзацiї, обчислювальнi методи, iнтелектуальнi
системи.

1. Вступ. Ефективне управлiння проєктами в умовах швидких змiн є крити-
чно важливим для досягнення успiху в будь-якiй органiзацiї. Сучасний бiзнес
вимагає високого рiвня точностi у плануваннi та прогнозуваннi ризикiв, щоб
забезпечити стабiльнiсть виконання завдань i мiнiмiзувати можливi збої. Тра-
дицiйнi методи планування, досi залишаються важливими, проте вони мають
певнi обмеження в умовах постiйних змiн i непередбачуваних факторiв.

Впровадження алгоритмiв машинного навчання дозволяє пiдвищити ада-
птивнiсть систем управлiння проєктами, використовуючи великi обсяги iсто-
ричних даних для прийняття рiшень. Такi технологiї допомагають системам
автоматично коригувати плани вiдповiдно до нових викликiв i зменшують ймо-
вiрнiсть виникнення помилок. Використовуючи цi пiдходи, органiзацiї можуть
краще керувати ресурсами, прогнозувати термiни виконання та оцiнювати ри-
зики у режимi реального часу, що особливо актуально в умовах сучасних рин-
кових умов.

У статтi запропоновано адаптивну модель управлiння проєктами, яка засно-
вана на використаннi машинного навчання. Модель спрямована на покращення
процесу планування, а також на бiльш ефективне управлiння ризиками, що
виникають пiд час реалiзацiї складних проєктiв.

2. Аналiз показникiв планування. Показники планування проєктiв є
важливим iнструментом для оцiнки та оптимiзацiї виконання завдань. Одним
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iз ключових показникiв є тривалiсть завдань, що визначає загальну тривалiсть
проєкту. Для ефективного управлiння досить важливо оцiнити наявнi ресур-
си, включаючи їх доступнiсть та ефективнiсть використання. Прiоритетнiсть
завдань дозволяє концентрувати зусилля на особливо важливих етапах, забез-
печуючи оптимальний порядок їх виконання. Використання буфера часу допо-
магає запобiгти затримкам через непередбачуванi обставини. Оцiнка ефектив-
ностi виконання завдань у порiвняннi з початковими планами дозволяє вчасно
визначати вiдхилення та коригувати процес. Також варто звернути увагу на
рiвномiрний розподiл навантаження мiж членами команди, задля уникнення
перевантаження i забезпечення продуктивностi на кожному етапi проєкту [1].

Такий пiдхiд дозволяє забезпечити комплексний аналiз планування i допо-
магає ефективно управляти як ресурсами, так i часом, що є вирiшальним для
успiшного завершення проєкту.

Аналiз наведених показникiв планування дозволяє точнiше визначити опти-
мальнi стратегiї управлiння проєктом, але традицiйнi методи не завжди забез-
печують необхiдну гнучкiсть i адаптивнiсть. Для подолання цих обмежень про-
понується розробка алгоритму на основi машинного навчання, який буде вра-
ховувати зазначенi показники — тривалiсть завдань, ресурси, прiоритетнiсть i
взаємозалежнiсть — i автоматично коригувати плани у вiдповiдь на новi да-
нi. Цей алгоритм дозволить пiдвищити точнiсть прогнозування та мiнiмiзувати
ризики, пов’язанi з динамiкою проєкту [2].

3. Аналiз показникiв оцiнки ризикiв. Оцiнка ризикiв є важливою скла-
довою управлiння проєктами, оскiльки вона дозволяє iдентифiкувати потенцiй-
нi загрози та вчасно вжити заходiв для їх мiнiмiзацiї. Одним iз основних пока-
зникiв оцiнки ризикiв є ймовiрнiсть виникнення подiї, яка може вплинути на
успiшнiсть проєкту. Визначення рiвня впливу таких подiй допомагає оцiнити,
наскiльки серйозно вони можуть зашкодити виконанню завдань. Iнший важли-
вий показник — це час реакцiї на ризик: чим швидше команда може реагувати
на ризики, тим менше вони впливатимуть на проєкт. Крiм того, важливо вра-
ховувати ступiнь контролю над ризиком, оскiльки деякi ризики є зовнiшнiми i
не можуть бути повнiстю усуненi.

Для проведення глибокого аналiзу ризикiв необхiдно використовувати як
якiснi, так i кiлькiснi методи оцiнки. Це включає збiр iсторичних даних про
подiбнi проєкти та використання прогнозних моделей для оцiнки потенцiйних
загроз. Тут на допомогу приходять алгоритми машинного навчання, якi здатнi
автоматично визначати взаємозв’язки мiж рiзними ризиковими факторами та
оцiнювати їхнiй вплив на проєкт. Застосування таких моделей дозволяє створю-
вати системи, здатнi оперативно i точно оцiнювати ризики та вносити корективи
в плани [3].

Результати оцiнки ризикiв допомагають приймати рiшення щодо розподiлу
ресурсiв для запобiгання найбiльш ймовiрним i значущим загрозам. Це, в свою
чергу, сприяє пiдвищенню надiйностi виконання проєкту i зниженню ймовiрно-
стi серйозних вiдхилень вiд плану.

В рамках цiєї роботи пропонується розробка системи, яка використовує ма-
шинне навчання для адаптивної оцiнки ризикiв. Завдяки алгоритмам машинно-
го навчання, система зможе автоматично прогнозувати ризики на основi вели-
ких обсягiв даних i миттєво оновлювати оцiнки в реальному часi, забезпечуючи
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ефективне управлiння ризиками на всiх етапах проєкту [4].
4. Запропонований алгоритм. Запропонований алгоритм ґрунтується

на глибокiй нейроннiй мережi, яка здатна виконувати аналiз i обробку великих
масивiв даних проєктного планування та ризикiв. Модель побудована так, що
на вхiдний шар подаються данi про тривалiсть та тип завдань, iх виконавцiв
та затрачений час на виконання. Данi нормалiзуються для подальшої обробки
прихованими шарами.

Нейронна мережа включає кiлька прихованих шарiв, серед яких викори-
стовуються рекурентнi нейроннi мережi, оскiльки вони ефективно працюють з
часовими послiдовностями даних, наприклад, змiнами у станi проєкту протягом
його виконання. Вхiднi данi, що складаються з iсторичної iнформацiї та нових
умов, обробляються для виявлення закономiрностей, якi можуть вплинути на
планування або оцiнку ризикiв [5].

Спецiалiзований шар нейронної мережi вiдповiдає за прогнозування можли-
вих ризикiв за допомогою алгоритму зворотного поширення помилок. На основi
iсторичних даних модель генерує оцiнку ймовiрностi виникнення ризику.

Ще одна ключова функцiя алгоритму — прогнозування тривалостi. Шар, що
вiдповiдає за прогнозування термiнiв, використовує попереднi данi та поточну
доступнiсть ресурсiв для коригування часових рамок мiж завданнями.

На виходi модель генерує два основнi показники: прогнозовану тривалiсть
виконання та рiвень ризику. Цi результати iнтегруються в систему планування,
дозволяючи проєктним менеджерам приймати обґрунтованi рiшення та швидко
реагувати на змiни в умовах виконання проєкту [6].

5. Детальний опис алгоритму. Початковий етап передбачає пiдключен-
ня до JIRA за допомогою API для отримання даних про завдання зi спринтiв.
JIRA є популярним iнструментом для управлiння проєктами, тому отриманi
данi вiдображають реальнi робочi процеси команди. Пiсля пiдключення через
API, з JIRA можна отримати iнформацiю про попереднi спринти. Цi данi вклю-
чають iмена виконавцiв завдань, тривалiсть виконання (скiльки часу було ви-
трачено на виконання кожного завдання), початковi оцiнки часу та прiоритети
завдань тощо. Пiдключення до JIRA дозволяє автоматизовано отримувати да-
нi, що спрощує процес збору iнформацiї для прогнозiв, оскiльки це робиться
без ручного втручання [7].

Так як нейроннi мережi працюють iз числовими даними, категорiйнi да-
нi, такi як iмена виконавцiв i прiоритети завдань, перетворюються у числовий
формат. Для цього використовуються спецiальнi алгоритми перетворення, якi
змiнюють текстовi значення на числовi коди. Наприклад, кожен виконавець
отримує свiй унiкальний числовий код, що дозволяє моделi аналiзувати їх вплив
на тривалiсть виконання завдань.

Також, оскiльки данi про час виконання завдань можуть мати рiзнi дiапа-
зони (однi завдання можуть тривати години, а iншi — днi), необхiдно норма-
лiзувати цi значення, щоб привести їх у стандартний формат, що є зручним
для навчання моделi. Цього можна досягти за допомогою масштабування, яке
перетворює всi значення в дiапазон [0, 1]. Такий пiдхiд дозволяє пiдвищити ефе-
ктивнiсть навчання моделi, оскiльки вона працює з даними в одному масштабi
[8].

Нейронна мережа складається з вхiдного шару, кiлькох прихованих шарiв та
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двох вихiдних шарiв. Кожен шар мережi реалiзує функцiю, яка обчислюється на
основi вагових коефiцiєнтiв та функцiї активацiї. Для прогнозування тривалостi
завдань використовується регресiя, а для оцiнки ризикiв — класифiкацiя [9].

Вхiдний шар приймає набiр характеристик завдання. Цi характеристики по-
даються у виглядi вектора, де кожен елемент вiдповiдає певнiй характеристицi,
такiй як:

• виконавець (закодований як числове значення);
• прiоритет завдання;
• тип завдання (наприклад, «feature», «bug» тощо);
• початкова оцiнка часу;
• витрачений час.
Припустимо, що вхiдний вектор можна описати як:

𝑋 = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛],

де:
• 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 — це числовi значення кожної характеристики.
Модель мiстить два прихованi шари, якi використовують функцiю активацiї

Rectified Linear Unit (ReLU). Формально функцiя ReLU визначається як:

ReLu(𝑧) = max(0, 𝑧),

де ця функцiя вибрана тому, що вона дозволяє уникнути проблеми «зникаючого
градiєнта» та сприяє ефективному навчанню глибоких нейронних мереж.

Кожен нейрон у прихованому шарi обчислює лiнiйну комбiнацiю вхiдних
значень:

𝑧 =
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏,

де:
• 𝑤𝑖 — ваговi коефiцiєнти;
• 𝑏 — змiщення (bias).
Значення 𝑧 передається через функцiю активацiї ReLU, що дозволяє моделi

враховувати лише позитивнi значення для подальших обчислень.
Мережа має два виходи: один для прогнозування тривалостi завдання, iн-

ший для оцiнки ризикiв. Оскiльки задача прогнозування є регресiйною (трива-
лiсть — це безперервне число), використовуються лiнiйнi нейрони без активацiї:

𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑤 × 𝑧 + 𝑏,

де:
• 𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 — прогнозоване значення тривалостi.
Для задачi оцiнки ризикiв використовується бiнарна класифiкацiя, тому ви-

хiдний шар використовує сигмоїдну функцiю активацiї:

𝜎(𝑧) =
1

1 + 𝑒−𝑧
.

Значення на виходi в iнтервалi [0, 1] визначає ймовiрнiсть ризику виконання
завдання [10].

Для навчання нейронної мережi використовуються двi рiзнi функцiї втрат:
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1. Середньоквадратична похибка (MSE) для прогнозування тривалостi:

𝐿𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 − 𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑖)
2,

де:

• 𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 — це фактична тривалiсть;

• 𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 — прогнозоване значення для завдання 𝑖.

2. Бiнарна крос-ентропiя для оцiнки ризикiв:

𝐿𝑟𝑖𝑠𝑘 = − 1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑟𝑖𝑠𝑘,𝑖 log(𝑦𝑟𝑖𝑠𝑘,𝑖) + (1− 𝑦𝑟𝑖𝑠𝑘,𝑖) log(1− 𝑦𝑟𝑖𝑠𝑘,𝑖)),

де:

• 𝑦𝑟𝑖𝑠𝑘,𝑖 — фактичне значення ризику для завдання 𝑖;

• 𝑦𝑟𝑖𝑠𝑘,𝑖 — прогнозована ймовiрнiсть ризику.

Для оптимiзацiї використовується алгоритм Adam (Adaptive Moment Esti-
mation), який є варiантом градiєнтного спуску. Алгоритм адаптивно оновлює
ваги моделi на основi моментiв першого та другого порядку градiєнтiв:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1− 𝛽1)𝑔𝑡,

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1− 𝛽2)𝑔
2
𝑡 ,

де:
• 𝑔𝑡 — градiєнт функцiї втрат;
• 𝑚𝑡 та 𝑣𝑡 — моменти;
• 𝛽1, 𝛽2 — параметри згладжування.
Оптимiзатор Adam використовується через його стiйкiсть до змiни масшта-

бiв градiєнтiв i стабiльнiсть у процесi навчання на рiзних наборах даних. Це
особливо важливо для задач прогнозування, де данi можуть бути неоднорiдни-
ми за своїм масштабом (наприклад, рiзнi естiмейти часу) [11].

Пiсля навчання модель перевiряється на тестовiй вибiрцi даних, щоб визна-
чити, наскiльки точно вона може передбачати результати. Потiм новi завдання
подаються на вхiд моделi для прогнозування тривалостi їх виконання i рiвня
ризику. Це дозволяє менеджерам проєктiв отримувати прогнози ще до початку
роботи над завданнями, допомагаючи краще планувати час i ресурси [12].

6. Висновки. Запропонований алгоритм для планування проєктiв на осно-
вi машинного навчання має низку переваг. Вiн не лише прогнозує тривалiсть
завдань, але й оцiнює ризики, що дає змогу проєктним командам реагувати на
можливi проблеми до їх виникнення. Алгоритм використовує рекурентнi ней-
роннi мережi для обробки даних i враховує такi ключовi показники, як викона-
вець, початковий естiмейт, витрачений час i прiоритет та тип завдання.

Завдяки своїй здатностi працювати навiть iз невеликими наборами даних,
алгоритм є гнучким i придатним для багатьох типiв проєктiв, незалежно вiд
їх масштабу. Навiть якщо данi обмеженi, модель може ефективно навчатися

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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та генерувати кориснi прогнози, що є значною перевагою в умовах, коли до-
ступнiсть iсторичних даних мiнiмальна. Однак, iз розширенням обсягiв даних
точнiсть прогнозiв i оцiнка ризикiв значно покращуються.

Ключова перевага в тому, що алгоритм дозволяє автоматично оновлювати
плани на основi змiн у реальному часi. Це значно полегшує управлiння велики-
ми, складними проєктами, де фактори ризику i непередбачуванi подiї можуть
суттєво впливати на результати.
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ПРО ОДИН ПIДХIД ДО РОЗВ’ЯЗАННЯ ПРОБЛЕМИ
ДЕДЕКIНДА

У данiй роботi показано, що клас монотонних функцiй спiвпадає з класом тупи-
кових диз’юнктивних нормальних форм (ТДНФ). Монотоннi функцiї вiд 𝑛 змiнних
можна задати на вершинах 𝑛-мiрного кубу. У роботi знаходяться всi монотоннi фун-
кцiї вiд 𝑛 змiнних (𝑛 = 1, 2, . . . , 13), якi є одноярусними ТДНФ. У данiй роботi за-
пропонований алгоритм для знаходження монотонних функцiй, якi є одноярусними
тупиковими диз’юнктивними нормальними формами для 𝑛 змiнних.

Ключовi слова: монотоннi функцiї, проблема Дедекiнда, класи Поста, однояруснi
монотоннi функцiї.

1. Вступ. У роботi проведенi дослiдження класу монотонних функцiй ба-
гатьох змiнних. Вивчена структура класу тупикових диз’юнктивних нормаль-
них форм. Оскiльки клас монотонних функцiй для 𝑛 > 9 майже невивчений,
то дана робота присвячена дослiдженню пiдкласiв монотонних функцiй для
𝑛 = 9, 10, 11, 12, 13. Монотоннi функцiї знаходять широке застосування в тео-
рiї перемикальних схем, у криптографiї, у теорiї груп i кiлець, а також iнших
алгебраїчних структур.

Функцiя 𝑓(𝑥) : 𝑍𝑛
2 → 𝑍2 називається монотонною, якщо для будь-яких двох

порiвнювальних наборiв 𝑥, 𝑦 ∈ 𝑍𝑛
2 виконується умова 𝑓(𝑥) ≤ 𝑓(𝑦). Нехай 𝐷𝑛 —

множина всiх монотонних булевих функцiй з 𝑍𝑛
2 . Задача визначення потужностi

множини |𝐷𝑛| називається проблемою Дедекiнда, а безпосередньо потужнiсть
множини 𝑑𝑛 = |𝐷𝑛| називається числом Дедекiнда для вказаного 𝑛.

У 1897 роцi Дедекiнд розв’язав цю задачу для 𝑛 = 4, у 1940 роцi Черч для
𝑛 = 5 та Вард для 𝑛 = 6 у 1946 роцi. На даний час вiдомi значення числа Деде-
кiнда для булевих функцiй вiд семи, восьми та дев’яти змiнних [1]. У [2] Вiдеман

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



224 I. А. МИЧ, В. В. НIКОЛЕНКО, О. В. ВАРЦАБА, Н. I. КОГУТ

пiдрахував число монотонних функцiй для восьми змiнних. Цей результат був
пiдтверджений у [3].

У 1954 роцi Гiльберт отримав таку оцiнку числа Дедекiнда 2𝐶𝑛, [𝑛/2] ≤ 𝑑𝑛 ≤
≤ 𝑛𝐶𝑛, [𝑛/2]+2 . Надалi верхня оцiнка була покращена до 3𝐶𝑛, [𝑛/2] . Вiдомi роботи
[2, 3, 4, 5], у яких було покращено цю оцiнку.

У роботi [6] показано, що за характеристикою Поста можна побудувати сiм-
надцять непорожнiх класiв, якi утворюють решiтку Поста. Для тринадцяти
класiв знайденi формули обчислення потужностей цих класiв для довiльного 𝑛.
Клас монотонних функцiй — це об’єднання пiдкласiв 𝑛0, 𝑛3, 𝑛9, 𝑛12, 𝑛14. Для кла-
сiв 𝑛0, 𝑛9, 𝑛14 знайденi оцiнки обчислення потужностей для довiльної кiлькостi
змiнних, а для класiв 𝑛3, 𝑛14 такi оцiнки не знайденi.

2. Основнi результати.

Означення 1. Елементарною кон’юнкцiєю, утвореною iз булевих змiнних
𝑋1, 𝑋2, . . . , 𝑋𝑛, називається вираз вигляду 𝑋𝑖1𝑋𝑖2 · · ·𝑋𝑖𝑘 , де 𝑘 ≤ 𝑛 та 𝑖𝑝 ̸= 𝑖𝑞,
якщо 𝑝 ̸= 𝑞.

Ранг елементарної кон’юнкцiї це число 𝑘, яке визначає кiлькiсть змiнних,
якi входять до її складу.

Твердження 1. Всi елементарнi кон’юнкцiї є монотонними функцiями.

Доведення випливає з того факту, що кон’юнкцiя є монотонною функцiєю,
а клас монотонних булевих функцiй є замкнутим.

Означення 2. Диз’юнктивною нормальною формою називається диз’юнкцiя
елементарних кон’юнкцiй.

Твердження 2. Всi диз’юнктивнi нормальнi форми є монотонними фун-
кцiями.

Доведення аналогiчне доведенню попереднього твердження.

Означення 3. Тупиковою диз’юнктивною нормальною формою монотон-
ної функцiї називається диз’юнктивна нормальна форма, у якiй нi одна еле-
ментарна кон’юнкцiя не є власною частиною iншої елементарної кон’юнкцiї.

Теорема 1. Тупиковi диз’юнктивнi нормальнi форми є канонiчними.

Доведення. Доведемо, що кожна монотонна функцiя має єдину канонiчну
тупикову диз’юнктивну нормальну форму.

Випишемо системи тотожностей булевої алгебри, якi вiдносяться до моно-
тонних функцiй.

1. 0 ∧ 0 = 0;
2. 0 ∨ 0 = 0;
3. 1 ∧ 1 = 1;
4. 1 ∨ 1 = 1;
5. 0 ∧ 𝑥 = 0;
6. 0 ∨ 𝑥 = 𝑥;
7. 1 ∧ 𝑥 = 𝑥;
8. 1 ∨ 𝑥 = 1;
9. 𝑥 ∨ 𝑥 = 𝑥;

1. 𝑥 ∧ 𝑥 = 𝑥;
2. 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥;
3. 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥;
4. (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧);
5. (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ (𝑦 ∧ 𝑧);
6. (𝑥 ∨ 𝑦) ∧ 𝑧 = 𝑥 ∧ 𝑧 ∨ 𝑦 ∧ 𝑧;
7. 𝑥 ∨ 𝑦 ∧ 𝑧 = (𝑥 ∨ 𝑦) (𝑥 ∨ 𝑧);
8. 𝑥 ∨ 𝑥 ∧ 𝑦 = 𝑥;
9. 𝑥 (𝑥 ∨ 𝑦) = 𝑥.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Легко показати, що якщо у формулу монотонної функцiї входять константи
нуля та одиницi, то їх можна поглинути, використовуючи тотожностi 1–8, крiм
випадку, якщо функцiї є константою нуля або одиницi.

За допомогою тотожностей 9–18 отримаємо диз’юнктивну нормальну фор-
му, яка є тупиковою. Доведемо, що тупикова диз’юнктивна нормальна фор-
ма є канонiчною. Нехай монотонна функцiя 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) має двi тупиковi
диз’юнктивнi нормальнi форми 𝑝1 ∨ 𝑝2 ∨ . . . ∨ 𝑝𝑙 i 𝑞1 ∨ 𝑞2 ∨ . . . ∨ 𝑞𝑘. Зрозумi-
ло, що 𝑝1 ∨ 𝑝2 ∨ . . . ∨ 𝑝𝑙 = 𝑞1 ∨ 𝑞2 ∨ . . . ∨ 𝑞𝑘. Покажемо, що ∀𝑝𝑖, 𝑖 = 1, 2, . . . , 𝑙,
∃𝑞𝑗, 𝑗 = 1, 2, . . . , 𝑘, такi, що 𝑝𝑖 i 𝑞𝑗 лексикографiчно спiвпадають. Нехай 𝑝𝑖 =
= 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑚 . Розглянемо функцiю 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑚) на наборi 𝑥𝑖1 = 𝑥𝑖2 =
= . . . = 𝑥𝑖𝑚 = 1, а решта змiнних 𝑥𝑖𝑠 = 0; 𝑠 /∈ {1, 2, . . . ,𝑚}. На цьому набо-
рi 𝑝𝑖 = 1, а тому i 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 1. У цьому випадку повинна iснувати
𝑞𝑗 = 𝑥𝑗1𝑥𝑗2 . . . 𝑥𝑗𝑘 , яка на цьому наборi дорiвнює одиницi, а це можливо тiльки
тодi, якщо кожна змiнна 𝑥𝑗𝑟 , 𝑟 ∈ {1, 2, . . . , 𝑙} належить 𝑝𝑖.

Розглянемо випадок, коли 𝑞𝑗 є власною частиною 𝑝𝑖. На наборi, для яко-
го 𝑥𝑗1 = 𝑥𝑗2 = . . . = 𝑥𝑗𝑙 = 1, а решта змiнних рiвна нулю, отримаємо, що в
диз’юнктивнiй нормальнiй формi 𝑝1∨𝑝2∨ . . .∨𝑝𝑙 повинна iснувати елементарна
кон’юнкцiя 𝑝𝑣, яка є власною частиною 𝑝𝑖. Це протирiчить тому, що 𝑝1∨𝑝2∨. . .∨𝑝𝑙
є тупиковою диз’юнктивною нормальною формою. Теорема доведена.

Означення 4. Тупиковою диз’юнктивною нормальною формою 𝑘-го поряд-
ку називається диз’юнкцiя елементарних кон’юнкцiй, якi мають ранг 𝑘.

Наприклад, 𝑥1𝑥2𝑥4 ∨ 𝑥2𝑥3𝑥5 ∨ 𝑥1𝑥2𝑥5 — тупикова диз’юнктивна нормальна
форма третього порядку, а 𝑥1𝑥2𝑥3𝑥4𝑥5 — п’ятого порядку.

Потужнiсть тупикової диз’юнктивної нормальної форми — це число, що до-
рiвнює кiлькостi диз’юнктiв у диз’юнктивнiй нормальнiй формi.

Наприклад, |𝑥1𝑥2 ∨ 𝑥2𝑥3 ∨ 𝑥4𝑥5| = 3, а |𝑥1 ∨ 𝑥3𝑥4| = 2.
Позначимо через 𝐷𝑛

𝑖,𝑗 — множину тупикових диз’юнктивних нормальних
форм вiд 𝑛 змiнних 𝑖-го порядку з рангом 𝑗.

Для 𝑛 = 4 випишемо всi елементи множини 𝐷4
𝑖,𝑗, i знайдемо формули для

знаходження потужностi 𝐷4
𝑖,𝑗.

1) 𝐷4
1,1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4},

⃒⃒
𝐷4

1,1

⃒⃒
= 𝐶1

4 = 4.
2) 𝐷4

1,2 = {𝑥1 ∨ 𝑥2, 𝑥1 ∨ 𝑥3, 𝑥1 ∨ 𝑥4, 𝑥2 ∨ 𝑥3, 𝑥2 ∨ 𝑥4, 𝑥3 ∨ 𝑥4},
⃒⃒
𝐷4

1,2

⃒⃒
= 𝐶2

4 = 6.
3) 𝐷4

1,3 = {𝑥1 ∨ 𝑥2 ∨ 𝑥3, 𝑥1 ∨ 𝑥2 ∨ 𝑥4, 𝑥2 ∨ 𝑥3 ∨ 𝑥4, 𝑥2 ∨ 𝑥3 ∨ 𝑥4},
⃒⃒
𝐷4

1,3

⃒⃒
= 𝐶3

4 = 4.

4) 𝐷4
1,4 = {𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4},

⃒⃒
𝐷4

1,4

⃒⃒
= 𝐶4

4 = 1.
5) 𝐷4

2,1 = {𝑥1𝑥2, 𝑥1𝑥3, 𝑥1𝑥4, 𝑥2𝑥3, 𝑥2𝑥4, 𝑥3𝑥4},
⃒⃒
𝐷4

2,1

⃒⃒
= 𝐶2

4 = 6.
6) 𝐷4

2,2 = {𝑥1𝑥2 ∨ 𝑥1𝑥3, 𝑥1𝑥2 ∨ 𝑥1𝑥4, 𝑥1𝑥2 ∨ 𝑥2𝑥3, 𝑥1𝑥2 ∨ 𝑥2𝑥4, 𝑥1𝑥2 ∨ 𝑥3𝑥4 ,
𝑥1𝑥3 ∨ 𝑥1𝑥4, 𝑥1𝑥3 ∨ 𝑥2𝑥3, 𝑥1𝑥3 ∨ 𝑥2𝑥4, 𝑥1𝑥3 ∨ 𝑥3𝑥4, 𝑥1𝑥4 ∨ 𝑥2𝑥3, 𝑥1𝑥4 ∨ 𝑥2𝑥4,
𝑥1𝑥3 ∨ 𝑥3𝑥4, 𝑥2𝑥3 ∨ 𝑥2𝑥4, 𝑥2𝑥4 ∨ 𝑥3𝑥4, 𝑥2𝑥3 ∨ 𝑥3𝑥4}.⃒⃒
𝐷4

2,2

⃒⃒
= 𝐶2

6 = 15.

Аналогiчно, знаходимо потужнiсть решти множин 𝐷4
𝑖,𝑗, а саме:⃒⃒

𝐷4
2,3

⃒⃒
= 𝐶3

6 = 20;
⃒⃒
𝐷4

2,4

⃒⃒
= 𝐶4

6 = 15;
⃒⃒
𝐷4

2,5

⃒⃒
= 𝐶5

6 = 6;
⃒⃒
𝐷4

2,6

⃒⃒
= 𝐶6

6 = 1;⃒⃒
𝐷4

3,1

⃒⃒
= 𝐶3

4 = 4;
⃒⃒
𝐷4

3,2

⃒⃒
= 𝐶2

4 = 6;
⃒⃒
𝐷4

3,3

⃒⃒
= 𝐶3

4 = 4;⃒⃒
𝐷4

3,4

⃒⃒
= 𝐶4

4 = 1;
⃒⃒
𝐷4

4,1

⃒⃒
= 𝐶4

4 = 1.
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Означення 5. Тупикова диз’юнктивна нормальна форма називається одно-
ярусною, якщо вона є диз’юнкцiєю елементарних кон’юнкцiй, якi мають одна-
ковий ранг.

Твердження 3. Кiлькiсть одноярусних тупикових диз’юнктивних нор-
мальних форм для чотирьох змiнних дорiвнює 94 i обчислюється за формулою

4∑︁
𝑡=1

𝐶𝑡
𝐶1

4
+

4∑︁
𝑡=1

𝐶𝑡
𝐶2

4
+

4∑︁
𝑡=1

𝐶𝑡
𝐶3

4
+

4∑︁
𝑡=1

𝐶𝑡
𝐶4

4
.

У данiй роботi запропонований алгоритм для знаходження монотонних фун-
кцiй, якi є одноярусними тупиковими диз’юнктивними нормальними формами
для 𝑛 змiнних.

Узагальнюючи мiркування, наведенi для 𝑛 = 4, отримаємо вiдповiднi фор-
мули для обчислення одноярусних тупикових диз’юнктивних нормальних форм
для 𝑛 змiнних.

Теорема 2. Кiлькiсть одноярусних тупикових диз’юнктивних нормальних
форм дорiвнює

𝑛∑︁
𝑡=1

𝐶𝑡
𝐶1

𝑛
+

𝑛∑︁
𝑡=1

𝐶𝑡
𝐶2

𝑛
+ . . .+

𝑛∑︁
𝑡=1

𝐶𝑡
𝐶𝑛

𝑛
=
⃒⃒
𝐷𝑛

1,1

⃒⃒
+
⃒⃒
𝐷𝑛

1,2

⃒⃒
+ . . .+

⃒⃒
𝐷𝑛

1,𝑛

⃒⃒
+

+
⃒⃒
𝐷𝑛

2,1

⃒⃒
+
⃒⃒
𝐷𝑛

2,2

⃒⃒
+ . . .+

⃒⃒
𝐷𝑛

2,𝑛

⃒⃒
+ . . .+

⃒⃒
𝐷𝑛
𝑛,1

⃒⃒
+
⃒⃒
𝐷𝑛
𝑛,2

⃒⃒
+ . . .+

⃒⃒
𝐷𝑛
𝑛,𝑛

⃒⃒
.

У данiй роботi розроблено програмне забезпечення на мовi Python для об-
числення одноярусних тупикових диз’юнктивних нормальних форм.

Дана мова програмування має вбудовану пiдтримку роботи з великими чи-
слами (довга арифметика), оскiльки вже при значеннях 𝑛 ≥ 7 числовi опе-
ранди не можуть бути представленi стандартними 64-бiтними типами даних.
Python-скрипт є прямою реалiзацiєю вище наведених формул — одним циклом
обчислюється сума

⃒⃒
𝐷𝑛

1,1

⃒⃒
+
⃒⃒
𝐷𝑛

1,2

⃒⃒
+ . . . +

⃒⃒
𝐷𝑛
𝑛,𝑛

⃒⃒
, а iншим — значення кожного

доданку, тобто
𝑛∑︀
𝑡=1

𝐶𝑡
𝐶𝑖

𝑛
. Окрiм цього, застосованi наступнi оптимiзацiї, необхiднi

для отримання бажаного iнтервалу результатiв:
• Обчислення бiномiального коефiцiєнту 𝐶𝑘

𝑛 реалiзовано як функцiю-пiдпро-
граму. Для невеликих чисел, пiдiйшла б рекурсивна реалiзацiя даної фор-
мули: 𝐶(𝑛, 𝑘) = 𝐶(𝑛− 1, 𝑘 − 1) + 𝐶(𝑛− 1, 𝑘), проте в нашому випадку було
застосоване усунення хвостової рекурсiї (tail recursion elimination), щоб уни-
кнути переповнення стеку.

• Додатково в функцiю обчислення бiномiального коефiцiєнту додано кешу-
вання отриманих значень, iз зберiганням їх у хеш-мапi.

• Вхiднi параметри 𝑛, 𝑘 хешуються за допомогою функцiї парування Сзу-
дзiка [7], що дозволяє уникнути створення спискiв чи великих рядкiв при
зберiганнi значення-ключа в хеш-мапi.

• Весь скрипт був паралелiзований за допомогою вбудованого модуля
concurrent. Це дозволило розподiлити обчислення кожного iз значень 𝑛 мiж
рiзними ядрами процесора.
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Алгоритм можна i надалi оптимiзовувати, проте даних покращень достатньо
для отримання необхiдних емпiричних даних для цiєї роботи.

Позначимо кiлькiсть одноярусних монотонних функцiй для довiльного 𝑛 че-
рез 𝑀 ′

𝑛. Пiсля близько 2 годин виконання програми на 16-ядерному Intel проце-
сорi, отримали результати для усiх значень 𝑛 вiд 1 до 13, якi наведенi у табл. 1.

Таблиця 1.
Кiлькiсть одноярусних монотонних функцiй

𝑛 𝑀
′
𝑛 𝑑𝑛

1 1 3
2 4 6
3 15 20
4 94 168
5 2109 7581
6 1114236 7828354
7 68723671291 2414682040998
8 1180735735906024030714 56130437228687557907788

9 170141183460507917357914971986913657849 28638657766829841112846915
1667598498812366

10 723700557733555322308782897512730417919714
7198604070555943173844710572689400

11

238170513177184465895202425368741325817044
946084516042231526158512054234356305294904
144148681975608466856729790283581642146941
68094211837943

12

141812983367708498267942666831007057202511
448421643827125349472119773535022654196943
944209450975037768339007732459544512725221
726759486456306391423731808917670558303020
063768732533713950908137270269160833647989
425881755169137192813409227664868035160693
806114244902552366349295606

13

738758609270024209965454657683069677260386
656729278905586842644232395681812556747321
788066586922125536827933697818591623337035
720169993336001366030397874589276419552284
835453970579351391959773273488415652976103
375342719551996969762427017855859631621725
784601710328953268332288528234864115228186
588666802595591076050723075869603653902072
610273009464776994054492247292748821466108
364060833431050467374018687430061639026192
717549361179136998494285354179742122679355
281943238944043468706196125572554998224378
5045998321653

Оскiльки наразi вiдомi значення чисел Дедекiнда до 𝑛 = 9, то зобразимо на
графiку вiдносну частку одноярусних монотонних функцiй вiд загальної кiль-
костi монотонних функцiй

(︀
𝑀

′
𝑛/𝑑𝑛

)︀
.
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Рис. 1. Графiк функцiї 𝑦𝑛 =𝑀
′
𝑛/𝑑𝑛.

3. Висновки. У роботi показано, що для 𝑛 = 13 число одноярусних моно-
тонних булевих функцiй бiльше нiж 10518. Через це обчислення кiлькостi мо-
нотонних функцiй, тобто знаходження чисел Дедекiнда, яке значно перевищує
кiлькiсть одноярусних ТДНФ не є перспективною. Представляє iнтерес аналiти-
чне описання пiдкласiв 𝑛3, 𝑛14 монотонних функцiй i знаходження їх потужно-
стi. Iнший напрям у знаходженнi числа Дедекiнда полягає у подiлi множини
монотонних функцiй на класи функцiй, якi є багатоярусними диз’юнктивними
нормальними формами. У наступнiй роботi планується дослiдження монотон-
них функцiй, якi належать кiльком ярусам 𝑛-мiрного кубу.
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of dead-end disjunctive normal forms (DNF). Monotonic functions of 𝑛 variables can be
defined on the vertices of an 𝑛-dimensional cube. The paper contains all monotonic func-
tions of 𝑛 variables (𝑛 = 1, 2, . . . , 13), that are single-tier TDNF. It proposes an algorithm
for finding monotone functions that are single-level dead-end disjunctive normal forms for
𝑛 variables.

Keywords: monotonic functions, Dedekind’s problem, Post classes, single-level monotonic
functions.
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НЕЧIТКА МОДЕЛЬ ОЦIНКИ БЕЗПЕКИ МIЖНАРОДНИХ ТА
ТРАНСКОРДОННИХ ПРОЦЕСIВ СПIВРОБIТНИЦТВА З

УРАХУВАННЯМ РИЗИКОВИХ ФАКТОРIВ

Проведено дослiдження актуальної задачi розроблення нечiткої моделi оцiнки без-
пеки мiжнародних та транскордонних процесiв спiвробiтництва, з урахуванням ризи-
кових факторiв та експертних висновкiв щодо можливостi досягнення мети стосовно
гарантування нацiональних безпек країн-партнерiв.

В основу дослiдження покладений апарат нечiтких множин, що базується на iнтер-
валах оцiнок. Кожен ризик-орiєнтований фактор впливу на виконання мiжнародних
та транскордонних процесiв спiвробiтництва оцiнюється лiнгвiстичним висновком екс-
перта щодо рiвня ймовiрностi настання ризикової ситуацiї, описану вiдповiдним кри-
терiєм та числа впевненостi мiркувань експерта для такого висновку. Новаторською
особливiстю моделi є врахування експертного висновку щодо можливостi досягнення
мети стосовно гарантування нацiональних безпек країн-партнерiв при мiжнародному
або транскордонному спiвробiтництвi. Модель розкриває нечiткiсть вхiдних оцiнок,
здатна вивести лiнгвiстичне значення рiвня безпеки мiжнародних та транскордонних
процесiв спiвробiтництва та його оцiнку достовiрностi, чим пiдвищує ступiнь обґрун-
тованостi прийняття подальших управлiнських рiшень.

Подальше дослiдження проблематики вбачаємо в розробленi математичних моде-
лей та програмної пiдтримки для оцiнювання проектiв транскордонного спiвробiтни-
цтва за умов гарантування нацiональних безпек країн-партнерiв при реалiзацiї прое-
кту.

Ключовi слова: нечiтка модель, прийняття рiшень, оцiнювання ризикiв, нацiональна
безпека, транскордонне спiвробiтництво, мiжнародне спiвробiтництво.

1. Вступ. У сучасних умовах глобалiзацiї транскордонне спiвробiтництво є
важливим iнструментом для розвитку економiки та пiдвищення рiвня життя
громадян. Оцiнка безпеки таких процесiв дозволяє ефективно iнтегруватися у
свiтову економiку, зменшувати ризики для нацiональної безпеки та оптимiзува-
ти спiвпрацю з iншими країнами.
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Україна активно рухається до європейської iнтеграцiї. Важливим аспектом
цього процесу є розвиток транскордонного спiвробiтництва з сусiднiми країнами
ЄС. Участь у мiжнародних та транскордонних проектах може бути пов’язана
з рiзноманiтними ризиками, такими як полiтична нестабiльнiсть, корупцiя, кi-
берзагрози тощо. Дослiдження цих ризикiв дозволить Українi бiльш точно оцi-
нювати потенцiйнi загрози та розробляти стратегiї для їх мiнiмiзацiї. Також,
оцiнка ризикiв сприятиме бiльш ефективному та безпечному входженню в єв-
ропейський простiр.

Безпечна взаємодiя з мiжнародними партнерами є критично важливою для
збереження суверенiтету та стабiльностi держави. Оцiнка безпеки таких про-
цесiв сприяє захисту нацiональних iнтересiв у мiжнароднiй спiвпрацi. Таким
чином, актуальнiсть проведеного дослiдження визначається необхiднiстю без-
печної та ефективної мiжнародної iнтеграцiї, мiнiмiзацiї ризикiв у транскордон-
ному спiвробiтництвi та забезпечення нацiональної безпеки.

Основною метою даного дослiдження є розроблення нечiткої моделi оцiнки
безпеки мiжнародних та транскордонних процесiв спiвробiтництва з урахуван-
ням ризикових факторiв та експертних висновкiв щодо можливостi досягнення
мети стосовно гарантування нацiональних безпек країн-партнерiв.

2. Огляд лiтератури. Транскордонне спiвробiтництво — це одна з форм
сприяння регiональному розвитку, що виникає в результатi стратегiчних зусиль
рiзних учасникiв, заснованих на довiрi, взаєморозумiннi та бажаннi до спiвпра-
цi. У роботi [1] дослiджуються рiзноманiтнi моделi та доводиться факт, що в
ЄС не iснує єдиної найкращої стратегiї транскордонного спiвробiтництва. Ба-
гато авторiв зосереджують увагу на розв’язання чiтких прикладних проблем
шляхом мiжнародного або транскордонного спiвробiтництва [2–4]. Перешкоди
для розвитку транскордонного спiвробiтництва iснують у кiлькох вимiрах. Вну-
трiшнi бар’єри впливають найбiльше на соцiальнi цiлi спiвпрацi. Їх можна подо-
лати через полiтику мунiципалiтетiв та пiдприємцiв [5]. Зовнiшнi бар’єри хара-
ктернi для периферiйних регiонiв, якi вiддаленi вiд нацiональних та регiональ-
них центрiв прийняття рiшень, що призводить до ряду негативних наслiдкiв.
Ефективним iнструментом їх подолання може бути транскордонне спiвробiтни-
цтво. А для можливостi оцiнювання таких процесiв потрiбно сучаснi системи
пiдтримки прийняття рiшень [4].

Методи, що базуються на теорiї нечiткої математики, можуть забезпечити
аналiтичну пiдтримку для якiсних процесiв прийняття рiшень на будь-якому
рiвнi управлiння [6]. Для успiшного розвитку регiонiв потрiбно розробляти iн-
новацiйнi iнструменти та системи знань, якi пiдтримуватимуть їхню сталiсть, з
метою забезпечення iнформацiйної безпеки та в iнтересах нацiональних безпек
країн-партнерiв. Для вiдображення знань про об’єкт дослiдження варто вико-
ристовувати теорiю нечiтких множин [7] та сучаснi пiдходи до використання
iнтелектуального аналiзу знань у системах пiдтримки прийняття рiшень [8].

Таким чином, iснує актуальнiсть розробки моделей оцiнки безпеки мiжна-
родних та транскордонних процесiв спiвробiтництва з урахуванням ризикових
факторiв.

3. Матерiали та методи. Нехай системну теоретико-множинну модель
задачi оцiнювання безпеки мiжнародних та транскордонних процесiв спiвробi-
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тництва, представимо наступним чином:

{𝑃, 𝐾𝑅, 𝑀𝑅, 𝐿| 𝑌 (𝑓)}. (1)

𝑃 — деякий процес мiжнародного або транскордонного спiвробiтництва.
Процес транскордонного спiвробiтництва — це форма взаємодiї мiж прикордон-
ними регiонами рiзних держав, спрямована на спiльне вирiшення економiчних,
соцiальних, екологiчних, культурних та iнших проблем, якi виникають у при-
кордонних зонах. Таке спiвробiтництво сприяє покращенню взаєморозумiння
мiж країнами, розвитку iнфраструктури, торгiвлi, науки, а також змiцненню
миру та стабiльностi в регiонах, що межують.

𝐾𝑅 — iнформацiйна модель критерiїв оцiнювання ризик-орiєнтованих фа-
кторiв впливу, якi впливають на успiшнiсть досягнення мети процесу мiжнаро-
дного та транскордонного спiвробiтництва.

𝑀𝑅 — нечiтка математична модель оцiнювання ризикiв для гарантування
безпеки у процесi мiжнародного та транскордонного спiвробiтництва.

𝐿 — експертнi висновки щодо можливостi досягнення мети стосовно гаран-
тування нацiональних безпек країн-партнерiв при мiжнародному або транскор-
донному спiвробiтництвi.

В результатi отримуємо вихiдну оцiнку 𝑓 = 𝜇𝑌 (𝑓 (𝑚𝑟)) та рiвень 𝑌 , що
мiстить змiст рiвня безпеки мiжнародних та транскордонних процесiв спiвробi-
тництва.

𝐾𝑅 — iнформацiйна модель критерiїв оцiнювання ризик-орiєнтованих фа-
кторiв впливу, якi впливають на успiшнiсть досягнення мети процесу мiж-
народного та транскордонного спiвробiтництва.

Питання оцiнювання ризик-орiєнтованих факторiв впливу на успiшнiсть до-
сягнення мети виконання будь-якого процесу дуже складне. В залежностi вiд
процесу потрiбно набудовувати рiзнi показники ризикiв. Наприклад, у процесi
транскордонного спiвробiтництва можуть виникати такi ризики:

𝐾𝑅1 — полiтична нестабiльнiсть.
Змiни урядiв, полiтичнi конфлiкти або напруженiсть мiж країнами можуть

перешкоджати реалiзацiї спiльних проектiв або повнiстю їх зупинити.
𝐾𝑅2 — економiчнi ризики.
Вiдмiнностi у рiвнi економiчного розвитку країн-партнерiв, рiзниця в систе-

мах оподаткування, митнi бар’єри та нестабiльнiсть валютних курсiв можуть
ускладнювати спiвпрацю.

𝐾𝑅3 — правовi та адмiнiстративнi перешкоди.
Рiзнi правовi системи, законодавчi вимоги, а також бюрократичнi процедури

в кожнiй країнi можуть гальмувати спiльнi iнiцiативи.
𝐾𝑅4 — культурнi та соцiальнi вiдмiнностi.
Нерозумiння мiжкультурних вiдмiнностей або соцiальних традицiй може

призвести до конфлiктiв або труднощiв у комунiкацiї мiж партнерами.
𝐾𝑅5 — екологiчнi ризики.
Транскордоннi проекти, пов’язанi з iнфраструктурою, можуть мати нега-

тивний вплив на довкiлля, якщо не врахувати екологiчних стандартiв i потреб
регiонiв.

𝐾𝑅6 — невiдповiднiсть iнтересiв.
Партнери з рiзних країн можуть мати рiзнi прiоритети та очiкування вiд
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спiвпрацi, що ускладнює узгодження спiльних планiв i цiлей.
𝐾𝑅7 — корупцiя та непрозорiсть.
Корупцiйнi практики в окремих країнах можуть створювати додатковi тру-

днощi в реалiзацiї проектiв, знижуючи ефективнiсть та прозорiсть використа-
ння фiнансових ресурсiв.

𝐾𝑅8 — безпековi ризики.
Загрози тероризму, органiзованої злочинностi, контрабанди, нелегальної мi-

грацiї можуть негативно вплинути на стабiльнiсть регiонiв i успiшнiсть спiвпра-
цi.

𝑀𝑅 — нечiтка математична модель оцiнювання ризикiв для гарантування
безпеки у процесi мiжнародного та транскордонного спiвробiтництва.

Нехай задано процес 𝑃 мiжнародного або транскордонного спiвробiтництва
по якому потрiбно визначити рiвень безпеки. Процес будемо оцiнювати згiдно
запропонованої iнформацiйної моделi критерiїв 𝐾𝑅, вiдповiдно по критерiях̃︁𝐾𝑅 = (𝐾𝑅1, 𝐾𝑅2, . . . , 𝐾𝑅𝑘𝑅). Кожен ризик-орiєнтований фактор впливу (кри-
терiй ризику) буде оцiнюватись гiбридним чином, а саме:

• висновкiв щодо рiвня ймовiрностi настання ризикової ситуацiї, описану вiд-
повiдним критерiєм ̃︁𝐾𝑅. Такi висновки пропонуємо унiфiкувати за допо-
могою одного iз термiв наступної терм-множини: 𝑇 = {𝑡1(низький рiвень
ризику); 𝑡2(рiвень ризику нижче середнього); 𝑡3(середнiй рiвень ризику);
𝑡4(рiвень ризику вище середнього); 𝑡5(високий рiвень ризику)};

• числа 𝜀 впевненостi мiркувань експерта з iнтервалу [0; 1], для кожного ви-
сновку за вiдповiдним критерiєм ̃︁𝐾𝑅. Покладаючи наступний змiст: 0 —
мiнiмальна впевненiсть у своїх висновках, а 1 вiдповiдно — максимальна.

Представимо нечiтку модель оцiнювання ризикiв для гарантування безпеки
у процесi мiжнародного та транскордонного спiвробiтництва у виглядi операто-
ра:

𝜂 (𝑡; 𝜀) → 𝑚𝑟. (2)

де 𝜂 — оператор, що ставить у вiдповiднiсть вихiдне нормоване значення ризикiв
виконання процесу 𝑚𝑟, при вхiдних змiнних 𝑡; 𝜀.

На першому етапi здiйснимо фазифiкацiю вхiдних гiбридних даних.
Для фазифiкацiї вхiдних гiбридних даних (𝑡𝑢; 𝜀𝑢), 𝑢 = 1, 𝑘𝑅 використаємо

пiдхiд моделювання нечiтких знань у багатовимiрному просторi [8]. Наприклад,
застосуємо конусоподiбну функцiю належностi двох змiнних для об’єднання ви-
сновкiв щодо рiвня ймовiрностi настання ризикової ситуацiї та числа впевнено-
стi мiркувань експерта щодо надання свого висновку:

𝑂𝑢 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

100− 20 · 𝜀𝑢, якщо висновок 𝑡1;
100− 40 · 𝜀𝑢, якщо висновок 𝑡2;
100− 60 · 𝜀𝑢, якщо висновок 𝑡3;
100− 80 · 𝜀𝑢, якщо висновок 𝑡4;
100− 100 · 𝜀𝑢, якщо висновок 𝑡5.

(3)

𝜔𝑢 =

√︃
(𝑂𝑢 − 100)2

100

2

+ (𝜀𝑢 − 1)2. (4)
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𝜇 (𝐾𝑅𝑢) =

{︃
1− 𝜔𝑢, якщо 𝜔𝑢 < 1,

0, якщо 𝜔𝑢 ≥ 1.
(5)

𝑂𝑢, 𝜀𝑢 — значення 𝑢-го критерiю 𝑢 = 1, 𝑘𝑅.
Змiст значення функцiї належностi 𝜇 (𝐾𝑅𝑢) показує рiвень критерiю, тобто

чим бiльше значення 𝜇 (𝐾𝑅𝑢) тим вищий рiвень. А представлення вхiдних да-
них у виглядi лiнгвiстичної оцiнки та впевненостi її присвоєння дозволяє бiльш
якiсно розкрити мiркування експертiв.

На другому етапi особа, що приймає рiшення (ОПР) вводить ваговi коефiцi-
єнти за кожним ризик-орiєнтованим фактором впливу (критерiєм) на виконан-
ня процесу.

Позначимо ваговi коефiцiєнти 𝑣𝑢, 𝑢 = 1, 𝑘𝑅, з деякого iнтервалу [1; 10]. В
iншому випадку, критерiї ризику можуть бути рiвно важливими. Оскiльки пра-
цюємо у просторi оцiнок [0; 1], тодi, аналогiчно, потрiбно нормувати ваговi ко-
ефiцiєнти:

𝑣𝑢 =
𝑣𝑢

𝑘𝑅∑︀
𝑢=1

𝑣𝑢

, 𝑢 = 1, 𝑘𝑅. (6)

На третьому етапi виведемо агреговану оцiнку ризику. Для цього побудуємо
функцiю належностi, як одну iз запропонованих згорток, в залежностi вiд поба-
жань ОПР. Не зменшуючи загальностi, наприклад, вiзьмемо середню згортку:

𝑚=

𝑘𝑅∑︁
𝑢=1

𝑣𝑢 · 𝜇 (𝐾𝑅𝑢). (7)

Отримане значення несе у собi наступний змiст: чим бiльша агрегована оцiн-
ка 𝑚𝑟 ∈ [0; 1], тим меншi ризики виконання процесу.

Таким чином, вiдбувся перехiд вiд висновкiв щодо рiвня ймовiрностi настан-
ня ризикової ситуацiї та числа впевненостi мiркувань експерта з цього приводу,
до кiлькiсної оцiнки, що пiдвищує ступень обґрунтованостi майбутнiх рiшень.

Нехай експерти, що оцiнюють безпеку мiжнародних та транскордонних про-
цесiв спiвробiтництва висловлюють висновки щодо можливостi досягнення мети
стосовно гарантування нацiональних безпек країн-партнерiв при мiжнародному
або транскордонному спiвробiтництвi. Для такого висновку введемо лiнгвiсти-
чну змiнну можливостi досягнення мети стосовно гарантування нацiональних
безпек країн-партнерiв при мiжнародному або транскордонному спiвробiтни-
цтвi 𝐿 = {𝐿1; 𝐿2; . . . ; 𝐿5}, де: 𝐿1 — висока можливiсть; 𝐿2 — можливiсть вище
середнього; 𝐿3 — середня можливiсть; 𝐿4 — низька можливiсть; 𝐿5 — дуже
низька можливiсть.

Для iнтерпретацiї залежностi вихiдної оцiнки 𝑚𝑟 та експертного висновку
𝐿 щодо можливостi досягнення мети стосовно гарантування нацiональних без-
пек країн-партнерiв при мiжнародному або транскордонному спiвробiтництвi,
пропонуємо наступну функцiю належностi [8]:

𝑓 (𝑚𝑟) =

⎧⎪⎨⎪⎩
0, 𝑚𝑟 < 0;

(𝑚𝑟)
𝑘, 0 ≤ 𝑚𝑟 < 1;

1, 𝑚𝑟 ≥ 1.

(8)
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де 𝑘 — порiг можливостi досягнення мети. Значення даного порогу змiнюється в
залежностi експертного висновку 𝐿. Наприклад, експериментально поставимо:
𝑘 = 2

9
коли маємо експертний висновок 𝐿1; 𝑘 = 7

9
— 𝐿2; 𝑘 = 4

9
— 𝐿3; 𝑘 = 5

9
— 𝐿4;

𝑘 = 3
2

— 𝐿5.
Таким чином, отримано агреговану нормовану оцiнку 𝑓 (𝑚𝑟) з iнтервалу

[0; 1].
Рiвнi 𝑌 безпеки мiжнародних та транскордонних процесiв спiвробiтництва,

представимо наступним чином: 𝑦1 — дуже низький рiвень; 𝑦2 — низький рi-
вень; 𝑦3 — середнiй рiвень; 𝑦4 — високий рiвень; 𝑦5 — дуже високий рiвень.
Рiвнi прийняття рiшень 𝑌 можна розглядати за допомогою трикутних функцiй
належностi. Це обумовлюється тим, що вони будуть мати перетини вихiдних
значень, а це дозволить розширити можливостi прийняття рiшень:

𝜇𝑦1 =

{︃
1, 𝑓 (𝑚𝑟) ≤ 𝛿 − 𝛿

2
;

3𝛿−4·𝑓(𝑚𝑟)
𝛿

, 𝛿 − 𝛿
2
< 𝑓 (𝑚𝑟) ≤ 𝛿 − 𝛿

4
.

(9)

𝜇𝑦2 =

{︃
4·𝑓(𝑚𝑟)−2𝛿

𝛿
, 𝛿 − 𝛿

2
< 𝑓 (𝑚𝑟) ≤ 𝛿 − 𝛿

4
;

4𝛿−4·𝑓(𝑚𝑟)
𝛿

, 𝛿 − 𝛿
4
< 𝑓 (𝑚𝑟) ≤ 𝛿.

(10)

𝜇𝑦3 =

{︃
4·𝑓(𝑚𝑟)−3𝛿

𝛿
, 𝛿 − 𝛿

4
< 𝑓 (𝑚𝑟) ≤ 𝛿;

5𝛿−4·𝑓(𝑚𝑟)
𝛿

, 𝛿 < 𝑓 (𝑚𝑟) ≤ 𝛿 + 𝛿
4
.

(11)

𝜇𝑦4 =

{︃
4·𝑓(𝑚𝑟)−4𝛿

𝛿
, 𝛿 < 𝑓 (𝑚𝑟) ≤ 𝛿 + 𝛿

4
;

6𝛿−4·𝑓(𝑚𝑟)
𝛿

, 𝛿 + 𝛿
4
< 𝑓 (𝑚𝑟) ≤ 𝛿 + 𝛿

2
.

(12)

𝜇𝑦5 =

{︃
4·𝑓(𝑚𝑟)−5𝛿

𝛿
, 𝛿 + 𝛿

4
< 𝑓 (𝑚𝑟) ≤ 𝛿 + 𝛿

2
;

1, 𝑓 (𝑚𝑟) ≥ 𝛿 + 𝛿
2
.

(13)

В залежностi вiд того, в який iнтервал попадає значення 𝑓 (𝑚𝑟), вибираємо
ту чи iншу функцiю належностi 𝜇𝑦 вiдносно ступеня 𝛿. Ступiнь 𝛿 належить
з iнтервалу [0; 1] та налаштовується ОПР, причому при потребi його можна
змiнювати. Таке налаштування має переваги в тому, що модель легко адаптує-
ться для рiзних процесiв транскордонного спiвробiтництва. Оскiльки побудова-
нi функцiї належностi мають перетини, то при оцiнюваннi процесiв отримується
або один, або два рiвнi прийняття рiшень 𝑌 i вiдповiдно таку ж кiлькiсть для
них достовiрностей.

В результатi обчислення, отримаємо 𝑌 лiнгвiстичне значення рiвня безпеки
мiжнародних та транскордонних процесiв спiвробiтництва, а також його оцiн-
ку достовiрностi. Тобто, достовiрнiсть того, що оцiнка належить до одного, або
iншого рiвня. ОПР на основi вихiдних даних приймає подальшi рiшення щодо
зниження загроз безпеки виконання процесiв мiжнародних та/або транскордон-
них процесiв спiвробiтництва.

Переваги моделi аргументуються тим, що на основi вхiдних гiбридних даних
розкривається нечiткiсть вхiдних оцiнок. Покращується ефективнiсть отрима-
ння вхiдних оцiнок використовуючи досвiд, знання та компетенцiї експертiв.
Модель здатна вивести кiлькiсне та лiнгвiстичне значення рiвня безпеки мiж-
народних та транскордонних процесiв спiвробiтництва, чим пiдвищує ступiнь
обґрунтованостi прийняття подальших управлiнських рiшень.
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4. Висновки та перспективи подальших дослiджень. У роботi по-
будована нечiтка модель оцiнки безпеки мiжнародних та транскордонних про-
цесiв спiвробiтництва з урахуванням ризикових факторiв. Особливiстю моделi
є те, що вхiднi данi є гiбридними, а вiдповiдно мають вищу якiсть. В основу
дослiдження покладений апарат нечiтких множин, що базується на iнтерва-
лах оцiнок, показуючи коридор значень прогнозних параметрiв. Кожен ризик-
орiєнтований фактор впливу на виконання мiжнародних та транскордонних
процесiв спiвробiтництва оцiнюється лiнгвiстичним висновком експерта щодо
рiвня ймовiрностi настання ризикової ситуацiї, описану вiдповiдним критерiєм
та числа впевненостi мiркувань експерта для такого висновку. Новаторською
особливiстю моделi є врахування експертного висновку щодо можливостi дося-
гнення мети стосовно гарантування нацiональних безпек країн-партнерiв при
мiжнародному або транскордонному спiвробiтництвi. Модель розкриває нечi-
ткiсть вхiдних оцiнок, здатна вивести лiнгвiстичне значення рiвня безпеки мiж-
народних та транскордонних процесiв спiвробiтництва та його оцiнку достовiр-
ностi, чим пiдвищує ступiнь обґрунтованостi прийняття подальших управлiн-
ських рiшень.

Отриманi результати демонструють наукову та прикладну цiннiсть проведе-
ного дослiдження. Подальше дослiдження проблематики вбачаємо в розробле-
нi математичних моделей та програмної пiдтримки для оцiнювання проектiв
транскордонного спiвробiтництва за умов гарантування нацiональних безпек
країн-партнерiв при реалiзацiї проекту.

5. Подяка. Наукове дослiдження та пiдготовка статтi вiдбулося в рамках
наукового проєкту молодих вчених "Захист iнформацiйної безпеки при управ-
лiннi проєктами мiжнародного спiвробiтництва на засадах гарантування на-
цiональної безпеки України" (ДБ-921М) за фiнансової пiдтримки Мiнiстерства
освiти i науки України.
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Polishchuk V., Polishchuk I., Matei A., Fedelesh Yu. A fuzzy model of secu-
rity assessment of international and cross-border cooperation processes considering
risk factors.

Research has been carried out on the urgent task of developing a vague model for
assessing the security of international and cross-border cooperation processes, considering
risk factors and expert opinions on the possibility of achieving the goal of guaranteeing the
national security of partner countries.

The research is based on the apparatus of fuzzy sets, which are based on evaluation
intervals. Each risk-oriented factor of influence on the implementation of international
and cross-border cooperation processes is evaluated by the expert’s linguistic conclusion
regarding the level of probability of the occurrence of a risk situation, described by the
corresponding criterion and the number of confidences of the expert’s reasoning for such a
conclusion. An innovative feature of the model is the consideration of an expert opinion
on the possibility of guaranteeing the national security of partner countries during interna-
tional or cross-border cooperation. The model reveals the vagueness of the input estimates
and can derive the linguistic meaning of the level of security of international and cross-
border cooperation processes and its credibility assessment, which increases the degree of
validity of further management decisions.

Further research of the problem is seen in the developed mathematical models and
software support for evaluating cross-border cooperation projects under the conditions of
guaranteeing the national security of the partner countries during project implementation.

Keywords: fuzzy model, decision-making, risk assessment, national security, cross-border
cooperation, international cooperation.
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THE USE OF MATHEMATIC MODELLING IN FINOPS DOMAIN

The advent of cloud computing has revolutionized the way organizations manage their
IT resources, offering scalable and flexible solutions for various operational needs. However,
with the increased adoption of cloud services, financial operations (FinOps) have become
more complex, presenting challenges in cost management, resource allocation, and financial
forecasting. Traditional methods often fail to address these complexities effectively, leading
to inefficiencies and suboptimal decision-making. This paper explores the application of
mathematical modeling in the FinOps domain as a robust solution to these challenges.
By proposing a classification of FinOps problems into distinct classes and suggesting a
mathematical formulation for each class, the research aims to enhance the efficacy of FinOps
practices. The integration of mathematical models improves accuracy and efficiency while
providing a systematic approach to managing financial operations in the cloud. Through
case studies and real-world examples, this paper demonstrates the transformative potential
of mathematical modelling in driving innovation and operational excellence in FinOps.

Keywords: mathematic modelling, cloud management, data analysis, forecasting, FinOps,
optimization processes.

1. Introduction. The rapid advancement and adoption of cloud computing
have significantly changed how organizations handle their IT infrastructure. By
providing scalable and flexible solutions, cloud technology helps businesses man-
age their costs more effectively. As a result, companies across various industries
have increasingly migrated their operations to the cloud, taking advantage of its
cost-saving benefits. However, this shift has also introduced new complexities in
financial management. The dynamic and often unpredictable nature of cloud costs
has necessitated the development of specialized practices to optimize financial op-
erations in this new environment. This need has given rise to the field of Financial
Operations, or FinOps, which focuses on managing cloud spending and maximizing
the value derived from cloud investments. FinOps combines financial management
principles with the agile, data-driven methodologies inherent to cloud computing,
ensuring that organizations can maintain control over their cloud expenses while
achieving their strategic objectives.

A central focus of FinOps is to ensure that organizations can effectively manage
and optimize their cloud spending. The primary goals of FinOps include cost opti-
mization, financial accountability, and operational efficiency. By fostering a culture
of financial responsibility, FinOps encourages collaboration between finance and en-
gineering teams, ensuring that both sides work together to achieve cost-effective
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cloud usage. This collaborative approach is guided by core principles such as data-
driven decision-making and continuous improvement. FinOps practitioners rely on
real-time data and analytics to monitor cloud expenses and make informed decisions
that align with the organization’s financial objectives. Without a structured FinOps
approach, organizations often struggle with overspending, lack of transparency, and
inefficiencies in their cloud operations.

These challenges underscore the necessity of FinOps in maintaining control over
cloud costs and maximizing the value derived from cloud investments. However, im-
plementing FinOps practices is not without its difficulties, especially when it comes
to data analysis. The large amount of data generated by cloud environments can
be hard to manage and analyze quickly. This can lead to delays in decision-making
and overspending. Another major challenge is predicting and controlling cloud ex-
penses, which can change a lot based on usage patterns and pricing models. This
makes it hard for organizations to forecast costs accurately and stay within their
budget. Additionally, combining financial data with operational metrics adds an-
other layer of complexity. Effective FinOps requires a complete view that includes
both financial information and operational data, like resource usage and perfor-
mance metrics. However, this is often difficult due to data silos and inconsistent
data formats. Mathematical concepts and techniques can help solve these problems.
For example, statistical models can forecast cloud costs by looking at past spend-
ing patterns. Optimization algorithms can help allocate resources more effectively,
ensuring that organizations get the most value from their cloud investments. Ma-
chine learning models can also identify unusual patterns and inefficiencies in cloud
usage, helping to manage costs proactively and improve operations. By using these
mathematical tools, FinOps practitioners can overcome data analysis challenges and
manage financial operations in the cloud more effectively.

The relevance of this problem is best demonstrated by the amount of money
businesses are willing to invest in its research. The global cloud FinOps market was
valued at approximately $832.2 million in 2023 and is expected to grow to $2,750.5
million by 2028, reflecting a compound annual growth rate (CAGR) of 18.8% [1].
This significant growth underscores the increasing importance of FinOps as organi-
zations seek to optimize their cloud spending and enhance financial accountability.
As businesses continue to migrate to cloud environments, the demand for effective
FinOps strategies will only increase. This trend highlights the need for advanced
solutions, such as mathematical modeling, to address the complex challenges asso-
ciated with cloud financial management. Furthermore, there are numerous startups
leveraging data analysis, AI, and ML to enhance FinOps practices. These startups
are driving innovation by providing tools and platforms that improve cost visibil-
ity, optimization, and forecasting. The growing number of these tech-driven startups
indicates a strong market trend towards integrating advanced analytics and automa-
tion in FinOps [2].

Implementing advanced solutions grounded in mathematical modeling can signif-
icantly streamline FinOps processes, allowing companies to shift their focus to other
important strategic problems. However, it’s important to recognize that such au-
tomation isn’t a cure-all. While mathematical models and algorithms can automate
complex tasks like cost forecasting, resource optimization, and anomaly detection,
their effectiveness largely depends on the quality of data and the robustness of the
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models used. Automating these processes can indeed reduce manual effort and
improve efficiency, freeing up valuable time and resources. This enables teams to
address other critical issues, such as innovation, customer experience, and market
expansion. However, the initial setup and ongoing maintenance of these advanced
solutions require significant investment in both time and expertise. Organizations
must ensure they have the right talent and infrastructure to support these technolo-
gies.

For example, advanced mathematical models and algorithms can continuously
monitor and optimize cloud spending, providing real-time insights and proactive rec-
ommendations. This allows FinOps practitioners to move from a reactive approach
to a more strategic and proactive one, focusing on long-term financial health and
operational excellence. Nevertheless, reliance on automated solutions also requires
vigilance; without proper oversight, there’s a risk of over-reliance on these tools,
potentially missing out on nuanced, human insights.

In general, by leveraging these advanced solutions, companies can achieve a
higher level of financial management maturity, ensuring sustainable growth and
competitive advantage in the rapidly evolving cloud landscape. However, it’s crucial
to balance automation with human oversight to maximize the benefits and mitigate
potential risks.

This work focuses on providing a comprehensive understanding of the FinOps
domain, highlighting the main challenges it faces, and exploring how mathematical
modeling can offer solutions. It includes an overview of existing optimization tech-
niques that leverage mathematical modeling and various algorithms to address these
challenges. Additionally, this paper contributes a unique classification of FinOps
problems based on a mathematical perspective, considering the different types of
data used to solve these problems. In the author’s opinion, the application of math-
ematical modeling in FinOps is highly relevant in today’s context and continues to
trend upward. The insights gained from this research can guide organizations in im-
plementing more effective FinOps practices, ensuring better financial management
and operational efficiency in the cloud environment.

2. Different classes of problems in FinOps. The FinOps domain is still
evolving, and there is no definitive way to classify the various problems it addresses.
Different organizations may prioritize different aspects based on their unique needs
and perspectives. For instance, some might focus on operational efficiency and cost
control, while others might emphasize the development of robust solutions using
advanced mathematical models. Additionally, the type and quality of data available
for analysis can also influence how these problems are classified.

The classes defined by the authors in this paper are based on a mathematical
perspective, also taking into account the different types of data used to solve these
problems. This approach aims to provide a structured method for understanding
and addressing FinOps challenges. These classifications are not absolute, and other
approaches can be equally valid and useful. Furthermore, the authors’ perspective
is dynamic and evolves with new innovations and insights in the field. The key is
to apply the most relevant methods to effectively manage and optimize financial
operations in the cloud.

2.1. Resource utilization. Resource utilization is a common problem for
companies that heavily rely on cloud services. The goal is to use exactly as much
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as you need at any given moment and not more, because in the cloud, you typically
pay for what you use. Depending on a company’s maturity, this problem can vary in
scale. Efficient resource utilization is crucial for maintaining cost-effective and high-
performance cloud operations. Underutilization and overprovisioning are common
issues that can lead to unnecessary expenses and reduced operational efficiency.

One major challenge is resources running idle or using significantly less than their
capacity. This often happens when resources such as EC2 instances are provisioned
based on peak demand but remain underutilized during off-peak times, leading to
wasted expenditures. Other common scenarios include forgetting to turn off in-
stances after use, over-provisioning storage volumes, and leaving unused services
running. These situations result from not accurately aligning resource provisioning
with actual workload requirements, causing financial inefficiencies and wasted cloud
spending. To address these issues, data on compute instances such as CPU usage,
RAM utilization, and disk I/O can be collected. This time-series data provides
a continuous stream of performance metrics over time, enabling detailed analysis.
Various methods, from simple statistical techniques to complex machine learning
models, can be applied to this data to optimize resource utilization.

Detecting patterns in utilization data is essential for identifying inefficiencies
and opportunities for optimization. By analyzing these patterns, organizations can
better understand usage trends and predict future demands. This allows for more
accurate provisioning of resources, ensuring they are used efficiently. Predictive
analytics uses historical data and machine learning algorithms to forecast future
resource demands. By predicting usage patterns, organizations can better plan
and allocate resources to match demand, reducing idle time and avoiding over-
provisioning.

To formalize this approach, let’s define an optimization metric and an algorithm.
For a single resource, the optimization metric could be the cost over a given day 𝐶𝑑:

𝐶𝑑 =
24∑︁
𝑖=1

𝐶𝑜𝑠𝑡 (𝑅, 𝑡𝑖),

where 𝐶𝑜𝑠𝑡 (𝑅, 𝑡𝑖) represents the cost of resource 𝑅 at hour 𝑡𝑖.
For multiple resources, or a workload, the cost can be extended to consider all

resources over a 30-day period 𝐶30:

𝐶30 =
30∑︁
𝑑=1

𝐶𝑑.

Then we can define 𝑓 as an algorithm that takes various data sources 𝐷 (such
as CPU usage, RAM utilization, disk I/O, historical data, and forecasted demand)
and outputs optimized resource allocations. The cost function can be expressed as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐶30, 𝐷),

where the objective is to minimize 30-day cost given the data 𝐷. Now, with this
mathematical problem statement, we can use different algorithms as 𝑓 and different
data sources or even different time granularities for 𝐷. The reason cost was selected
as the metric is that we usually focus on reducing cost. Even though other metrics
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could be applied, this one is suitable for quantifying and explaining because cost is
a key concept in FinOps.

2.2. Cloud cost forecasting. In mature companies, planning cloud spending
in advance is a standard practice, which creates a necessity for accurate cost fore-
casting. It is essential to ensure that actual spending aligns with these forecasts.
Accurate forecasting helps companies to manage their budgets, allocate resources
effectively, and avoid unexpected expenses. Forecasting is a well-known problem
in the mathematical world, with many established methods available to tackle it.
These methods include time series analysis, regression models, machine learning
algorithms, and stochastic processes. However, cloud cost forecasting is particu-
larly challenging due to the multiple dimensions involved. These dimensions include
the variability in cloud usage patterns, different pricing models offered by cloud
providers, the impact of reserved instances and spot instances, seasonal trends, and
sudden changes in demand or application performance. The complexity of these
factors makes it difficult to create accurate forecasts, requiring sophisticated models
that can account for the multifaceted nature of cloud cost data.

In paper [3], the authors investigated various methods such as ARIMA time series
models and machine learning algorithms to forecast cloud costs. They found that
machine learning models, particularly those using neural networks, provided better
accuracy in dynamic environments. Another study [4] explored the use of regression
models and ensemble methods for cloud cost forecasting, highlighting that combin-
ing multiple models often leads to more reliable predictions. The main finding was
that hybrid models combining statistical methods with machine learning techniques
can handle the complex patterns in cloud cost data more effectively. Additionally, a
study by Hofmann and Rutschmann [5] emphasized the integration of different data
sources in demand forecasting. They showed that big data analytics could signifi-
cantly enhance forecast accuracy by utilizing diverse data inputs, including historical
data, performance metrics, and market trends. Another relevant work [6] reviewed
various AI-based forecasting methods in financial accounting, finding that hybrid
models combining support vector machines, fuzzy logic, and genetic algorithms pro-
vided reliable forecasts. Access to diverse and comprehensive data is crucial for
accurate forecasting. Several open data sources can be utilized for cloud cost fore-
casting. The FOCUS (FinOps Open Cost and Usage Specification) initiative is an
open-source specification that aims to standardize cost and usage billing data across
different cloud vendors. This initiative helps reduce complexity for FinOps practi-
tioners by providing consistent datasets for analysis [7]. Additionally, platforms like
Kaggle offer various datasets that can be used for machine learning projects, includ-
ing cloud cost forecasting [8]. Amazon Forecast also provides tools and templates
for deploying time-series forecasting models, which can utilize historical usage data
stored in Amazon S3 [9]. Google BigQuery public datasets offer another resource
for accessing diverse datasets that can be integrated into forecasting applications
[10]. These open data sources provide the necessary historical data and contextual
information needed to develop robust forecasting models that can accurately predict
future cloud costs.

From a mathematical standpoint, forecasting is a well-defined problem. It in-
volves predicting future values based on historical data using various statistical and
machine learning methods. The core idea is to build a model that can understand
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and extrapolate the patterns in the historical data to make accurate future predic-
tions. Common methods include time series analysis, regression models, and ma-
chine learning algorithms like neural networks. However, when you apply forecasting
algorithms to different domains, the mathematical formulation can be adjusted to
better suit the specific characteristics and requirements of that domain. Each do-
main may have unique factors that influence the forecasting process, necessitating
modifications to the standard forecasting models.

FinOps is no exception, and because companies plan their budgets, we need to
consider these unique factors in our forecasting models. Cloud cost forecasting must
account for various dimensions such as seasonality (e.g., summer, winter), company
growth plans, cost dynamics, team growth, business domain, and other variables
depending on the company. These factors are often difficult to quantify numerically,
adding complexity to the forecasting models. This makes it necessary to adapt
traditional forecasting techniques to the specific needs of FinOps.

To formalize the problem, we consider the following mathematical formulation.
Let 𝑌𝑡 represent the cloud cost at time 𝑡. The goal is to predict future costs
𝑌𝑡+1, 𝑌𝑡+2, . . . , 𝑌𝑡+ℎ for a forecast horizon ℎ. The feature set 𝑋𝑡 includes variables
such as season, company growth plans, cost dynamics, team growth, business do-
main, and other variables depending on the company. The forecasting model 𝑓

𝑌 ∧
𝑡+ℎ = 𝑓(𝑌𝑡, 𝑌𝑡−1, . . . , 𝑌𝑡−𝑝, 𝑋𝑡, 𝑋𝑡−1, . . . , 𝑋𝑡−𝑝),

where 𝑝 is the number of lag observations considered in the model. The objective is
to minimize the forecast error, which can be measured using metrics such as Mean
Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error
(RMSE):

𝑛∑︁
𝑖=1

𝐿
(︀
𝑌𝑡+𝑖, 𝑌

∧
𝑡+𝑖

)︀
→ min,

where 𝐿 is the loss function, and 𝑛 is the number of forecasted time points. By
defining the problem this way, we can leverage existing forecasting techniques while
incorporating the unique aspects of cloud cost management. This approach ensures
that our models are tailored to the specific needs of FinOps, providing more accurate
and reliable cost forecasts.

This forecasting definition is applicable not only to the overall cost but also to
costs for specific services, cloud accounts, compute types, and other granular levels
of cloud expenditure.

2.3. Anomaly Detection. In mature companies, monitoring cloud spend-
ing in real-time is essential to ensure financial efficiency and prevent unexpected
costs. Despite careful planning and forecasting, actual cloud expenses can some-
times deviate significantly from expectations due to various reasons such as sudden
changes in usage patterns, misconfigurations, or even security breaches. Detecting
these anomalies quickly is crucial to mitigate potential financial losses and opera-
tional disruptions. Anomaly detection mechanisms play a vital role in identifying
unusual spending patterns that deviate from the norm, allowing companies to take
immediate corrective actions.

Anomaly detection is closely tied to cloud cost forecasting. Effective forecasting
provides a baseline of expected costs and usage patterns, which anomaly detec-
tion systems use to identify deviations. While forecasting aims to predict future
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costs based on historical data, anomaly detection focuses on identifying unexpected
variations in real-time. Although they are interrelated, we consider them distinct
classes of problems because forecasting primarily addresses planning and budget-
ing, whereas anomaly detection deals with operational monitoring and immediate
response to deviations.

As discussed in the cloud cost forecasting chapter, the vast amount of data
generated in real-time from cloud services, combined with the variability in usage
patterns, presents a significant challenge for anomaly detection. Additionally, inte-
grating anomaly detection systems with existing monitoring and management tools
is crucial. These systems need to provide real-time alerts and insights while fitting
seamlessly into the organization’s current infrastructure. Ensuring compatibility
and smooth integration can be complex but is essential for effective anomaly detec-
tion and timely responses to potential issues. However, the implementation details
of such integrations are a separate topic of discussion and are beyond the scope of
this paper.

To better explain the anomaly detection problem in the FinOps domain, let’s
focus on the cost of compute instances (EC2) rather than the whole cloud cost. This
does not mean we lose any information or limit our scope. The principles applied
to EC2 can be extended to other services and resources, preserving the original
problem statement’s generality. Anomaly detection in this context revolves around
three key variables: Baseline, Threshold, and Time-Granularity.

The baseline represents the expected cost, which can be defined using statistical
measures (such as average or median) or based on values provided by domain experts.
This helps establish a reference point against which current costs can be compared.
The threshold defines the acceptable deviation from the baseline before an anomaly
is flagged. It can also be determined using statistical measures (such as standard
deviation or the 75th percentile) or based on expert judgment. This value helps to
distinguish between normal fluctuations and actual anomalies.

Anomaly detection can be applied at different time granularities : hourly, daily,
weekly, etc. It’s important to understand the chosen granularity because an anomaly
might be detected on an hourly level but not on a daily level due to the dynamic
nature of workloads. For example, a high cost at a particular hour might be offset
by lower costs in other hours, making it important to consider the context in which
anomalies are detected.

Define the baseline 𝑌 ∧
𝑡 using an appropriate statistical measure or expert input:

𝑌 ∧
𝑡 = 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑌𝑡, 𝑌𝑡−1, . . . , 𝑌𝑡−𝑛).

The anomaly score 𝑆𝑡 can be calculated as the difference between the current
cost 𝑌𝑡 and the baseline 𝑌 ∧

𝑡 :
𝑆𝑡 = |𝑌𝑡 − 𝑌 ∧

𝑡 |.

Set or calculate a threshold 𝜃 to determine when a deviation is considered an
anomaly:

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑓 𝑆𝑡 > 𝜃.

This method is straightforward and computationally efficient. It provides a clear
and immediate indication of anomalies based on recent cost patterns without the
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need for complex forecasting models. The simplicity of this approach makes it well-
suited for real-time monitoring and quick response to deviations in cloud spending.
Even though we defined the anomaly score as an absolute difference, in practice, we
will likely care only about cases where costs are higher and not lower.

A cascade architecture can be used to enhance anomaly detection. In this ap-
proach, anomalies are evaluated at multiple levels of granularity. For example, an
anomaly detected at an hourly level (Anomaly Level 1) may prompt immediate in-
vestigation. However, if this anomaly does not affect the daily cost (Anomaly Level
2), it might be considered a transient fluctuation rather than a true anomaly. This
method ensures that short-term anomalies are validated over longer periods, reduc-
ing false positives and providing a clearer understanding of cost deviations. The
authors believe that due to the unique nature of FinOps, where costs are visible at
different levels and need constant monitoring, the cascade architecture is particularly
well-suited.

Implementing anomaly detection in cloud cost management involves several prac-
tical considerations, such as ensuring data quality and consistency through pre-
processing steps like normalization, handling missing values, and outlier removal.
Deploying the detection mechanism to operate in real-time is crucial, providing im-
mediate alerts and insights. Seamless integration with existing cloud monitoring
and management tools allows for automated responses and comprehensive visibility.

Defining any abstract problem using mathematical concepts is crucial to ensure
that the problem statement is clear and precise. Once the mathematical formulation
of the problem is established, various parameters such as the algorithm and data
sources can be adjusted without altering the core definition of the problem. This
approach ensures consistency and accuracy in addressing the problem, allowing for
effective monitoring and management of cloud spending, ensuring financial control
and operational efficiency.

2.4. Cost management and optimization. As cloud technology continues
to evolve, the variety of pricing and commitment options available to organizations
has increased significantly. Cloud providers offer numerous pricing models such as
on-demand, reserved instances, spot instances, and various discount plans. Addi-
tionally, there are multiple ways to commit to these resources, each with its own
set of terms and potential cost savings. With these options, there are more combi-
nations and strategies for managing cloud costs based on an organization’s specific
needs and usage patterns. However, this increased flexibility also adds complexity,
making it challenging to determine the most cost-effective approach.

When an organization grows large enough, managing cloud costs at scale for
a vast number of resources becomes a significant challenge. The dynamic nature
of cloud pricing, combined with the need to monitor and optimize resource usage
continuously, requires sophisticated tools and strategies.

One major challenge is understanding and selecting the most cost-effective pric-
ing options while considering usage patterns. It is difficult to estimate how many
commitments to buy and to understand if, at any given moment, you can manipulate
instances to avoid driving usage to unused commitments, thus wasting money on
resources that are not being fully utilized. Cloud providers frequently update their
pricing structures, which necessitates continuous adaptation and strategy updates.
This complexity, together with the variability in cloud usage, further complicates
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cost management. These challenges necessitate the use of advanced mathematical
models and optimization techniques to manage and optimize cloud costs effectively.
FinOps practitioners must leverage these tools to navigate the complexity of cloud
pricing, manage resource usage efficiently, and ensure that spending aligns with
business objectives.

To address the challenges of cost management and optimization in the FinOps
domain, we will focus on the most dynamic and complex resource type, which is
EC2 (Elastic Compute Cloud) in AWS. The variability and cost structure of EC2
instances present unique challenges that require sophisticated mathematical mod-
els and optimization techniques. Let’s define a more detailed cost function that
accounts for different types of EC2 instances (Box, Spot) and the impact of pur-
chasing commitments (Reserved Instances, Compute Savings Plans, EC2 Savings
Plans). The total EC2 cost is the sum of the costs for both Box and Spot instances.
For simplicity, we define an EC2 instance that is not Spot as Box. Each cloud
provider has its own terminology for these instances.

Cost of Spot Usage can be defined like this:

𝑆𝑝𝑜𝑡 𝐶𝑜𝑠𝑡 (𝑁𝑠𝑝𝑜𝑡) =

𝑁𝑠𝑝𝑜𝑡∑︁
𝑖=1

(𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒𝑖 × 𝑈𝑠𝑎𝑔𝑒𝑖),

where:
– 𝑁𝑠𝑝𝑜𝑡 is the total number of spot instances;
– 𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒𝑖 is the price of the 𝑖-th spot instance;
– 𝑈𝑠𝑎𝑔𝑒𝑖 describes amount of usage of spot instance (normalized units or amount

of minutes/hours).
Cost of “Box” Usage can be defined like this:

𝐵𝑜𝑥 𝐶𝑜𝑠𝑡 (𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) =

𝑁𝑏𝑜𝑥∑︁
𝑖=1

(𝑃𝑟𝑖𝑐𝑖𝑛𝑔𝑂𝑝𝑡𝑖𝑜𝑛𝑖 × 𝑈𝑠𝑎𝑔𝑒𝑖),

where:
– 𝑁𝑏𝑜𝑥 is the total number of spot instances;
– 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠 is a variable that defines amount of commitments customer has;
– 𝑃𝑟𝑖𝑐𝑖𝑛𝑔𝑂𝑝𝑡𝑖𝑜𝑛𝑖 is the cost of instance depends on 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠 it can be dif-

ferent even for same instance;
Then the total EC2 Cost is given by:

𝐸𝐶2 𝐶𝑜𝑠𝑡 = 𝐵𝑜𝑥 𝐶𝑜𝑠𝑡 (𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) + 𝑆𝑝𝑜𝑡 𝐶𝑜𝑠𝑡 (𝑁𝑠𝑝𝑜𝑡) + 𝐶𝑊,

where new variable 𝐶𝑊 means commitments waste or amount of cost customer
wasting because of not proper use of commitments and more exacly because of
commitments underutilization.

To minimize the total 𝐸𝐶2 𝐶𝑜𝑠𝑡, we need to find the optimal values for
(𝑁𝑠𝑝𝑜𝑡, 𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) for cost function:

𝐸𝐶2 𝐶𝑜𝑠𝑡 (𝑁𝑠𝑝𝑜𝑡, 𝑁𝑏𝑜𝑥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡𝑠) → min .

Intentionally for simplicity time granularity dimension was ignored but as in any
other FinOps problem this cost function can be viewed on hourly, daily, weekly and
monthly level, etc.
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In a more general view current approach can be applied to any cloud services or
to the whole cloud account at once. However, different compute types and services
could have different ways of optimization. In this paper we focused on the most
complex case, which is compute instances.

3. Conclusion. FinOps faces numerous challenges that arise from the dynamic
and complex nature of cloud environments. The increasing variety of pricing models,
the need for real-time data analysis, and other complexities create many abstract
problems. Mathematical modeling provides a way to address these abstract problems
effectively, enhancing decision-making and operational efficiency.

For any abstract problem to be effectively addressed, it must be defined mathe-
matically. Mathematical formulations provide a structured way to solve problems,
allowing for the application of advanced techniques like optimization algorithms
and machine learning. This approach not only clarifies the problem but also offers
systematic methods to address it.

This paper overviews the main FinOps problems and contributes by classifying
these problems into distinct categories. By proposing mathematical formulations
for each class, we think that integrating statistical models, optimization algorithms,
and machine learning techniques can improve the accuracy and efficiency of FinOps
practices. This structured approach guides organizations toward better financial
management and operational excellence in the cloud.
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Роботишин М. В., Маляр М. М. Застосування математичного моделю-
вання у домейнi FinOps.

Розвиток хмарних обчислень революцiонiзував пiдхiд органiзацiй до управлiння
IТ-ресурсами, пропонуючи масштабованi та гнучкi рiшення для рiзноманiтних опера-
цiйних потреб. Проте, з пiдвищеним впровадженням хмарних сервiсiв, фiнансовi опе-
рацiї (FinOps) стали бiльш складними, створюючи виклики в управлiннi витратами,
розподiлi ресурсiв та фiнансовому прогнозуваннi. Традицiйнi методи часто не здатнi
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ефективно вирiшувати цi складнощi, що призводить до неефективностi та субопти-
мального прийняття рiшень. У цiй роботi дослiджується застосування математичного
моделювання в сферi FinOps як потужного рiшення цих викликiв. Пропонується кла-
сифiкацiя проблем FinOps на окремi класи та математична постановка задачi для
кожного класу, що має на метi пiдвищити ефективнiсть FinOps-практик. Iнтеграцiя
математичних моделей покращує точнiсть та ефективнiсть, забезпечуючи системати-
чний пiдхiд до управлiння фiнансовими операцiями у хмарному середовищi. Через
вивчення кейсiв та прикладiв з реального свiту ця робота демонструє трансформацiй-
ний потенцiал математичного моделювання у стимулюваннi iнновацiй та досягненнi
операцiйної досконалостi в FinOps.

Ключовi слова: математичне моделювання, управлiння хмiрними обчисленнями,
аналiз даних, прогнозування, FinOps, оптимiзацiйнi процеси.
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EXPLORING TWO SOLUTION METHODS FOR THE TWO-STAGE
LOCATION-ACTIVATION PROBLEM

This study highlights the importance of medical logistics research during crises that
might stress the system. We formulated a practical problem statement for the organiza-
tional structure of the medical logistics system, which has three types of centers: regional,
subregional, and distribution. We also proposed a mathematical model for the two-stage
location-activation problem, which minimizes the costs of operation, delivery, location, and
activation. For the proposed mathematical model, two solution approaches are presented.
The first approach divides the process into two steps: locate the distribution centers by
solving the continuous problem and then use the obtained coordinates to solve the second
(discrete) part. The second approach is a combined solution technique combining contin-
uous and discrete parts using full information during the algorithm’s execution. Both can
be used to solve the problem, the first is simpler and has a lower time complexity, and the
second uses more information but has higher time complexity.

Keywords: discrete optimization, continuous optimization, effective decisions, evolution-
ary algorithms, transportation, medical logistics.

1. Introduction. Recent years have shown that the medical logistics system has
some significant weaknesses and areas for improvement. The global pandemic in
2020 demonstrated how unprepared we were to handle the demand for large quan-
tities of medicines and immunobiological products. It also highlighted the strain on
the system when rapid and efficient action is needed during a crisis. The situation
worsened with the full-scale invasion in 2022, which created an even greater need
to move large quantities of medicines as part of the humanitarian response. This
unprecedented demand put a lot of pressure on the existing infrastructure, under-
scoring the need for a strong and adaptable medical logistics system that can handle
crises. These challenges have also highlighted the importance of modernizing and
optimizing the way medical supplies are transported.

2. Literature review. The paper [1] describes a solution to the optimal
warehouse location problem. A new model of mixed integer linear programming for
solving the problem of warehouse location using linearization of Euclidean distance
is proposed. The study [2] proposes a new approach to the location of manufac-
turing enterprises using fuzzy logic and inference systems. The study is useful for
decision-makers in the manufacturing industry and allows for the effective use of
fuzzy logic and inference systems to solve complex problems of manufacturing plant
location. The proposed model can be applied in various industries, including the
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automotive, electronics, and food industries. The capacity allocation problem [3]
with differentiated convex production costs is a variant of the classical capacity al-
location problem, where the cost of production at each plant is modeled as a convex
function of its production capacity. The authors propose a fast, accurate method
based on the branch-and-price approach that exploits the structure of the problem
and the convexity of production costs. The publication [4] describes the solution
to the traveling salesman problem using swarm methods and highlights that evolu-
tionary algorithms play a crucial role during logistics improvements. A combination
of the particle swarm method and a genetic algorithm is used, using the output
of one for the input of the other algorithm. An interesting aspect of the work is
the study of the effectiveness of the roulette method and the multi-point cyclic
crossover. When tested using samples of large sizes, the algorithm demonstrates
100% success for the clear case. Paper [5] deals with the two-stage transportation
problem with fixed charges. They propose a fast, parallel-friendly solution method
for real-world applications. Their iterative constructive heuristic reduces the solu-
tion space at each step. The problem of reasonable planning and optimization of
shelter locations [6] aims to reduce losses from natural disasters and sustainable
urban development. Paper considers a sequential solution to a two-criteria problem
based on sequential decision logic to maximize economic sustainability and social
utility. A two-stage transportation problem with a fixed route toll is researched in
the publication [7]. To solve this problem, the authors transition to a different form
of the problem, which is similar to the two-stage transportation problem with the
cost of transportation per unit of goods. The cost of the goods is presented as a
conditional expression depending on whether this route is used or not. A genetic
algorithm is used to solve the problem. The chromosome is encoded using a matrix
representation. The paper proves the robustness of the proposed algorithm using
randomly generated entities. An alternative approach to deal with that problem is
studied in [8]. The work described problem of optimizing evacuation logistics during
emergencies to ensure the efficient distribution of resources and human flows. The
proposed solution involves the introduction of a mathematical model and algorithm
that optimize the location of rescue facilities and the zoning of territories to man-
age evacuation traffic effectively. The study [9] investigates the best location for
a pharmaceutical warehouse in one of the major Turkish cities using the analytic
hierarchy process and EDAS method, which evaluate locations around an average
solution within a spherical fuzzy environment. This unique approach is applied for
the first time to this problem. It identifies the most optimal location and comes with
robustness analysis, ensuring the reliability of the method. Additive Manufacturing
greatly enhances the flexibility of manufacturing networks. The paper [10] addresses
a location-production routing problem for a distributed manufacturing platform, in-
tegrating decisions on location, production planning, and delivery routing. To solve
this complex problem, the authors introduce a Neural Genetic Algorithm, which ef-
ficiently finds near-optimal solutions, reducing computation time by 99% compared
to traditional methods. Sensitivity analysis shows that unit shortage costs heavily
influence customer service and facility distribution.

3. Practical problem statement. In critical situations, such as emergencies,
natural disasters, or military conflicts, there may be an urgent need for rapid and
efficient distribution of essential medical supplies (medicines or medical devices) to
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the population. In such circumstances, the speed and accuracy of delivery can be
critical to saving lives and health. To ensure such distribution, each region has a
fixed number (𝑁) of regional centers (RCs) and several (𝑀) subregional centers
(SRCs) that serve as distribution middle points for medical supplies. However, due
to limited resources such as fuel, vehicles, personnel, or difficult logistical conditions,
the government may decide to activate only a portion of these centers. To reduce
costs and optimize the use of available resources, only 𝐿 of the 𝑀 subregional centers
are activated. Schematically the practical problem statement is illustrated on Fig. 1.

Figure 1. Diagram for practical problem statement.

The activated SRCs are responsible for redistributing medical supplies to distri-
bution centers located throughout the region. In total, there are 𝐾 such distribution
centers (DCs) located at key points to ensure the fastest possible access to medical
supplies for the population. These distribution centers serve as final delivery points
from which medicines and medical supplies are distributed directly to consumers in
their service areas. The primary goal of this process is to minimize overall trans-
portation costs and delivery time while ensuring that the needs of each distribution
center and consumer for necessary medical supplies are fully met. It is also impor-
tant to consider factors that may affect logistics, such as the geography of the region,
the state of the infrastructure, and potential risks that may arise during transporta-
tion. Achieving this goal is critical to ensuring the resilience and reliability of the
medical logistics system during emergencies.

4. Mathematical model. Let’s define the following:

– Ω — customer distribution area;
– Ω𝑖 — customer service for 𝑖-th DC, 𝑖 = 1, 𝑁 ;
– 𝑁 — the required number of DCs;
– 𝑀 — the total number of SRCs available for activation;
– 𝐿 — the maximum number of possible activated SRCs;
– 𝐽 — set of subregional centers available for activation;
– 𝑏𝐼𝑖 — demand of the 𝑖-th DC, 𝑖 = 1, 𝑁 .
– 𝑏𝐼𝐼𝑗 — capacity of the 𝑗-th SRC, 𝑗 = 1,𝑀 ;
– 𝐴𝑗 — activation costs for 𝑗-th SRC;
– 𝑐𝐼𝑖 = 𝑐(𝑥, 𝜏 𝐼𝑖 ) — transportation cost between DC 𝑖 and customer at 𝑥;
– 𝑐𝑖𝑗 = 𝑐(𝜏 𝐼𝑖 , 𝜏

𝐼𝐼
𝑗 ) — transportation cost between SRC (𝜏 𝐼𝐼𝑗 ) and DC (𝜏 𝐼𝑖 );
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– 𝜌(𝑥) — demands from medicines in point 𝑥 of the area Ω;
– 𝜏 𝑟𝑖 = (𝜏 𝑟𝑖1, 𝜏

𝑟
𝑖2) — coordinates of DC(r=I) or SRC (r=II);

– 𝑣𝐼𝑖𝑗 — the volume weight units number of medicines and medical equipment
transported from SRC 𝑗 to DC 𝑖;

– 𝜃𝑗 =

{︃
1, if SRC 𝑗 is activated,

0, otherwise.

Then mathematical model can be defined as:

min
𝜃(·)∈Θ,𝜏𝐼∈Ω𝑁 ,𝑣∈𝑅+

𝑁𝑀

𝑀∑︁
𝑗=1

𝐴𝑗𝜃𝑗 +
𝑁∑︁
𝑖=1

∫︁
Ω𝑖

𝑐𝐼𝑖 (𝑥, 𝜏
𝐼
𝑖 )𝜌(𝑥)𝑑𝑥+

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑐𝑖𝑗𝑣
𝐼
𝑖𝑗, (1)

under the constraints:

𝑀∑︁
𝑗=1

𝑣𝐼𝑖𝑗𝜃𝑗 =

∫︁
Ω𝑖

𝜌(𝑥)𝑑𝑥, 𝑖 = 1, 𝑁, (2)

𝑁∑︁
𝑖=1

𝑣𝐼𝑖𝑗 ≤ 𝑏𝐼𝐼𝑗 , 𝑗 = 1,𝑀, (3)

𝑀∑︁
𝑗=1

𝜃𝑗 ≤ 𝐿, (4)

𝑁⋃︁
𝑖=1

Ω𝑖 = Ω, (5)

𝑚𝑒𝑠(Ω𝑖 ∩ Ω𝑗) = 0, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 𝑁, (6)

𝑣𝐼𝑖𝑗 ≥ 0, 𝜃𝑗 ∈ {0; 1}, 𝑖, 𝑗 = 1, 𝑁, 𝑗 = 1,𝑀, (7)

𝜏 𝐼 = (𝜏 𝐼1 , 𝜏
𝐼
2 , . . . , 𝜏

𝐼
𝑁), 𝜏 𝐼 ∈ Ω𝑁 . (8)

where: (1) — main optimization task of the two-stage location-activation problem
which summarizes the total expenses for location and activation of distribution and
subregional centers and transportation costs; (2) — the amount of medications
shipped to the 𝑖-th distribution center is equal to its needs; (3) — the amount of
medications shipped from the 𝑗-th subregional center not exceed its capacity; (4) —
the number of activated subregional center is less or equal to specified non-negative
value 𝐿; (5) — the service areas of the distribution centers encompass the entire
region; (6) — each customer is served by only one distribution center; (7) and (8)
are balance constraints;

Θ is defined as:

Θ = {𝜃1(·), 𝜃2(·), . . . , 𝜃𝑁(·) : 0 ≤ 𝜃𝑖(𝑥) ≤ 1;
𝑁∑︁
𝑖=1

𝜃𝑖 = 1 for almost all 𝑥 ∈ Ω}.

5. First solution approach. We propose to use a combination of evolutionary
algorithms and the approach from the theory of optimal partitioning of sets. Given
this, we can divide the solution of problems (1)–(8) into two stages. At the first
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stage, distribution centers are located and their service areas are determined by
solving the problem of optimal partitioning of sets in formulation (9)–(11), where N
is the required number of centers.

Minimize
𝑁∑︁
𝑖=1

∫︁
Ω𝑖

𝑐𝐼𝑖 (𝑥, 𝜏
𝐼
𝑖 )𝜌(𝑥)𝑑𝑥, (9)

under the constraints:
𝑁⋃︁
𝑖=1

Ω𝑖 = Ω, (10)

𝑚𝑒𝑠(Ω𝑖 ∩ Ω𝑗) = 0, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 𝑁. (11)

The (9)–(11) problem is a well-studied problem of optimal partition of sets. The
paper [11] contains more information about the approaches and practical applica-
tions for such tasks. At the second stage, we solve the discrete location problem
(12)–(16):

𝑀∑︁
𝑗=1

𝐴𝑗𝜃𝑗 +
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑐𝐼𝑖𝑗(𝜏
𝐼
𝑖 , 𝜏

𝐼𝐼
𝑗 )𝑣𝐼𝑖𝑗 → min, (12)

under the constraints:
𝑀∑︁
𝑗=1

𝑣𝐼𝑖𝑗𝜃𝑗 = 𝑏*𝐼𝑖 , 𝑖 = 1, 𝑁, (13)

𝑁∑︁
𝑖=1

𝑣𝐼𝑖𝑗 ≤ 𝑏𝐼𝐼𝑗 , 𝑗 = 1,𝑀, (14)

𝑀∑︁
𝑗=1

𝜃𝑗 ≤ 𝐿, (15)

𝑣𝐼𝑖𝑗 ≥ 0, 𝜃𝑗 ∈ {0; 1}, 𝑖, 𝑗 = 1, 𝑁, 𝑗 = 1,𝑀, (16)

where 𝜏 𝐼 = (𝜏 𝐼1 , 𝜏
𝐼
2 , . . . , 𝜏

𝐼
𝑁), 𝜏 𝐼 ∈ Ω𝑁 — distribution centers location that was

obtained during first stage; 𝑏*𝐼𝑖 — determined capacity of distribution centers:

𝑏*𝐼𝑖 =

∫︁
Ω𝑖

𝜌(𝑥)𝑑𝑥, 𝑖 = 1, 𝑁.

Additionally, we define this solvability condition:∫︁
Ω

𝜌(𝑥)𝑑𝑥 ≤
𝑀∑︁
𝑗=1

𝑏𝐼𝐼𝑗 𝜃𝑗, 𝑗 = 1,𝑀.

The solution for discrete task (12)–(16) is more deeply investigated by authors
in [12]. The example of program implementation for the first solution approach can
be found in [13]. Despite the successful location and activation of the centers, the
proposed approach has several drawbacks:
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– the located distribution centers are independent of chromosomes, which reduces
variability and does not fully correspond to the idea of the genetic algorithm;

– when solving the location problem, the transportation plan is not taken into
account, which leads to a more uniform distribution of centers, which can lead
to inefficient placement of distribution centers.

To eliminate these drawbacks, we propose to use a different approach.
6. Second solution approach. We propose to use a genetic approach

to solving the two-stage location-activation problem. The proposed modifications
compared to the first approach:

– In the objective function (1), we additionally take into account the transporta-
tion plan between centers. This will add influence links between the placed
centers and the activated ones, making the approach more rational in consider-
ing all the links and constraints.

– Each chromosome or other solution from evolutionary algorithm represents a
transportation plan between certain centers. Therefore, the encoding and de-
coding procedure depends on the actual coordinates of the corresponding cen-
ters. We propose to modify the chromosome estimation procedure (and decod-
ing procedures) in the form of solving the placement problem to build a more
complete transportation plan.

Using the evolutionary algorithms, we can formulate the second solution ap-
proach:

1. We will use the mathematical model (1)–(8). The general scheme of the genetic
algorithm is the following:

2. The population 𝑃 (𝑡) is initialized using priority-based encoding. We get the
first generation of potential solutions to the problem.

3. We evaluate the fitness of each chromosome in the population by solving the
location problem on the model (1)–(8) with a transportation plan included in
the optimization task. After solving the problem, the DCs’ location, capacity,
and transportation plan are obtained for each chromosome.

4. Chromosomes are selected for reproduction using the roulette method.
5. The selected chromosomes are crossed to produce offspring.
6. Some chromosomes undergo mutation to introduce variations.
7. A new population 𝑃 (𝑡 + 1) is formed from the offspring and possibly some

individuals from the current population. The new generation replaces the old
one.

8. Check whether the stopping requirement is met. If so, go to the next step.
Otherwise, return to step 2 with the population value 𝑡+ 1.

9. Finish the algorithm. Decode the effective chromosome and return the value of
the objective function and the transportation plan. The algorithm is described.

The second approach proposes a more connected solution for the problem (1)–(8)
where we consider the actual determined locations of the centers. We also improved
the decoding procedure to ensure that the decision on where to place the center was
made under full information. One of the drawbacks of such an approach is that we
create circular dependency for minimization functional and chromosome evaluation
procedure that requires more computation and time complexity for the algorithm’s
implementation.
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7. Experiments. Let us run some experiments to demonstrate and compare
different approaches. To illustrate the work of the proposed mathematical model and
proposed approaches, we developed a software implementation using C++ (location
module) and Python (UI module) technologies. For the experimental environment,
we use an Apple M3 Max chip featuring a 12-core CPU and 18-core GPU, 36 GB
of unified memory, a 512 TB SSD, and running macOS Sequoia 15.1. To demon-
strate differences in performance between the two described methods, we run a set
of experiments: the problems will have sizes 4×10, 7×20, 10×25, 12×30, 15×35. As
random generation plays a crucial role during the solution, we will rerun each exper-
iment 20 times and find the average value for these parameters: algorithm execution
time and fitness function value. These comparisons are illustrated in Fig. 2.

Figure 2. Comparison of first and second solution approached for execution time
(left) and functional value (right).

From the results obtained from experiments, we can state that, as expected,
the solution time for the second solution approach is significantly greater (starting
from 10×25 size) than for the first one. This is expected, as we apply the location
of the centers for each chromosome for the second solution approach while doing
it only once in the first solution approach. At the same time, as we are solving
the minimization problem, the second solution approach gives more efficient results
where the average functional value of the second solution approach is 13.44% lower
than the first one. We can conclude that the first solution approach is more usable
when fast and approximate solutions for the location-activation process are required
(e.g. real-time routing of medical supply vehicles or points in a city where quick
decisions are critical to ensure the timely delivery of medicines) and the second so-
lution approach gives a more efficient solution but takes drastically more time to
execute (e.g. long-term planning for the establishment of new centers of medical
logistics to optimize coverage and resource allocation across a region). As the de-
cision about location or opening some centers from a practical problem statement
is usually something more like a strategic one rather than short-term, the second
solution approach should be utilized to manage medical logistics efficiently.

8. Conclusions. In the paper, we highlighted the importance of medical
logistics research. The topic’s relevance becomes more vital during the crises that
put the system under challenge. We formulated a practical problem statement that
represents the organizational structure of the medical logistics system and it contains
several types of centers: regional, subregional and distribution. We also propose a
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mathematical model for the two-stage location-activation problem and this model
minimizes the expenses for operation, delivery, location, and activation. For the
mentioned mathematical model, two solution approaches are introduced. The first
one contains the idea of dividing the process into two steps, wherein in the first step,
we only locate the distribution centers by solving the continuous optimization task.
We use the obtained coordinate to solve the second (discrete) part in the second
step. The second solution approach proposes a combined solution technique where
continuous and discrete parts are linked together so that we use full information
during the algorithm run. For the first and the second methods, we run a set of
experiments that demonstrate that both ways can be used to solve the mentioned
problem, with the difference that the first one is significantly faster and can be
used in areas where solutions are required during runtime or live mode, while the
second one uses more information and has longer execution time but provides more
efficient solutions that can greatly optimize costs and can be used during strategic
and long-term planning for location or activation of centers of different levels. Both
approaches can be used to solve the mentioned problem and the first one is simpler
and has simpler time complexity while the second one uses more information but
has longer execution time.

This publication was prepared as a part of the scientific theme 0123U100011
"Problems of analysis, modeling, and optimization of technological processes in com-
plex systems of different nature", which is implemented on the System Analysis and
Control Department at Dnipro University of Technology.
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ДОСЛIДЖЕННЯ ЗМIСТУ ВАГОВИХ КОЄФIЦIЄНТIВ
КОМПЛЕКСНОЗНАЧНИХ НЕЙРОМЕРЕЖ У ЧАСТОТНIЙ

ОБЛАСТI

Розглянуто задачу фiльтрацiї зображень за допомогою комплекснозначної нейрон-
ної мережi MLMVN у частотнiй областi. Дослiджено випадки наявностi на зображе-
ннях адититвного Гаусiвського шуму та мультиплiкативного спекл шуму. Для фiль-
трацiї використано комплекснозначну нейромережу прямого поширення. Проведено
аналiз вагiв коєфiцiєнтiв нейроелементiв на рiзних епохах процесу навчання та змiст
ядер згорток утворених з вагiв окремих нейроелементiв у просторовiй областi.

Ключовi слова: нейроннi мережi, комплекснозначнi нейроннi мережi, цифровi зо-
браження, фiльтрацiя шуму.

1. Вступ. Попередня обробка зображень є обов’язковим i дуже важливим iн-
струментом у розпiзнаваннi та аналiзi зображень. Вона дозволяє значно спро-
стити i прискорити процес навчання зосереджуючись саме на важливих де-
талях а не артефактах, якi спотворюють зображення i можуть призвести до
некоректних висновкiв. Не дивлячись на широкий спектр алгоритмiв вiдновле-
ння спотворених зображень у просторовiй областi велика кiлькiсть задач може
бути ефективно вирiшена саме у частотнiй областi. Яскравими прикладами та-
ких задач є вiдновлення дефокусованих зображень та фiльтрацiя шумiв, що
виникають на практицi у рiзних важливих сферах дiяльностi людини, зокре-
ма в медицинi, аерофотозйомцi та супутниковiй зйомцi. Також можна навести
велику кiлькiсть прикладiв застосування високочастотних та низькочастотних
фiльтрiв, BM3D-фiльтра [1], фiльтра Вiнера [2], та iнших. Не дивлячись на ши-
роко розвинутий iнструментарiй нейронних мереж, комплекснозначнi нейроннi
мережi iдеально пiдходять для аналiзу зображень саме у частотнiй областi зав-
дяки роботi з комплексними числами. Саме ця особливiсть дозволяє будувати
найбiльш точнi математичнi моделi на основi перетворення Фур’є.

У статтi дослiджено контекстний змiст вагових коефiцiєнтiв, що отримманi
в процесi навчання комплекснозначної нейромережi MLMVN [3] з метою фiль-
трацiї шуму на цифрових зображеннях. Також було дослiджено їх взаємозв’зок
з ядрами фiльтрiв у просторовiй областi.

2. Основний результат.
Формат представлення цифрового зображення. Не зменшуючи за-

гальностi мiркувань для спрощення процесiв аналiзу та їх iнтерпретацiї було
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розглянуто цифровi зображення у вiдтiнках сiрого. Зауважимо, що результати
аналiзу можуть бути адаптованi на випадок кольорових зображень.

У просторовiй областi цифрове зображення представляється у виглядi дис-
кретної функцiї двох змiнних 𝑓 (𝑥, 𝑦), де 𝑥 та 𝑦 — просторовi координати, а
значенням функцiї у кожнiй точцi простору є iнтенсивнiсть [4]. Оскiльки дослi-
дження проводилися у частотнiй областi, то для переходу мiж просторовою та
частотною областями було використано пряме та зворотне перетворення Фур’є.

𝐹 (𝑢, 𝑣) =
𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑓 (𝑥, 𝑦) 𝑒−𝑖2𝜋(
𝑢𝑥
𝑀

+ 𝑣𝑦
𝑁 ),

𝑓 (𝑥, 𝑦) =
1

𝑀𝑁

𝑀−1∑︁
𝑢=0

𝑁−1∑︁
𝑣=0

𝐹 (𝑢, 𝑣) 𝑒𝑖2𝜋(
𝑢𝑥
𝑀

+ 𝑣𝑦
𝑁 ).

З метою оптимiзацiї обчислень у роботi для переходу у частотну область
використано алгоритм швидкого двомiрного перетворення Фур’є (FFT) [5].

Моделювання дослiджуваних зашумлених цифрових зображень. З
метою формування навчальної вибiрки для алгоритмiв навчання комплексно-
значних нейромереж було змодельовано навчальну вибiрку з штучно зашумле-
ними зображеннями. При цьому було використано найбiльш поширенi на пра-
ктицi адитивний Гаусiвський шум [6] та мультиплiкативний спекл шум [7]. Для
реалiзацiї моделювання шуму використовувалися вiдповiднi функцiї Matlab з
пакету Image Processing Toolbox.

Гаусiвський шум зазвичай має нормальний розподiл i часто виникає напри-
клад внаслiдок електронних перешкод у фотосенсорах, а також пiд час отри-
мання цифрових зображень при недостатньому рiвнi освiтлення. Адитивний
Гаусiвський шум у даному дослiдженнi моделювався наступним чином:

𝑓𝑛𝑜𝑖𝑠𝑦 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + 𝑛 (𝑥, 𝑦) ,

де 𝑓𝑛𝑜𝑖𝑠𝑦(𝑥, 𝑦) — зашумлене зображення, 𝑓(𝑥, 𝑦) — iдеальне зображення, 𝑛(𝑥, 𝑦) —
випадковий шум з нормальним розподiлом iнтенсивностей.

Для моделювання адитивного Гаусiвського шуму використовувався шум зi
стандартним вiдхиленням у межах 0.1𝜎–0.3𝜎 (де 𝜎 — стандартне вiдхилення
iнтенсивностей пiкселiв кожного окремо взятого iдеального зображення).

Спекл шум часто виникає внаслiдок когерентностi хвиль, якi взаємодiють
з неоднорiдностями в середовищi. Цей шум є типовим для ультразвукових та
радiолокацiйних зображень. У роботi було змодельовано рiвномiрний мульти-
плiкативний спекл шум

𝑓𝑛𝑜𝑖𝑠𝑦 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) · 𝑛 (𝑥, 𝑦) ,

де 𝑓𝑛𝑜𝑖𝑠𝑦(𝑥, 𝑦) — зашумлене зображення, 𝑓(𝑥, 𝑦) — iдеальне зображення, 𝑛(𝑥, 𝑦) —
випадковий шум з рiвномiрним розподiлом iнтенсивностей.

При моделюваннi мультиплiкативного спекл-шуму стандартне вiдхилення
шуму варiювалось у дiапазонi 0.1𝜎–0.4𝜎.

Важливо зауважити, що шум був змодельований таким чином, щоб сере-
днi значення iнтенсивностi (середня iнтенсивнiсть) iдеального та зашумленого

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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зображення були рiвними. Це дозволяє забезпечити збереження середньої iн-
тенсивностi зображення пiсля додавання шуму, що є критичним для коректного
аналiзу впливу шуму та подальших методiв його фiльтрацiї. У процесi навчання
та валiдацiї для оцiнки якостi фiльтрацiї було викорстано оцiнку максимального
вiдношення сигнал\шум (PSNR).

Загальна схема навчання комплекснозначної нейронної мережi. Як
було зазначено ранiше, для обробки зображень у частотнiй областi найбiльш
оптимальним вибором є використання нейромереж, у яких входи, виходи та
ваги нейронiв є комплексними числами. Такi нейроннi мережi називають ком-
плекснозначними. Алгоритми навчання комплекснозначних нейромережам все-
бiчно розглянутi у численних публiкацiях [3, 8, 9, 10, 11].

У роботi для формування навчальної вибiрки було використано множину
зображеннь у вiдтiнках сiрого рiзних розмiрiв. Процес навчання нейронної ме-
режi був органiзований iз застосуванням пiдходу навчання з валiдацiєю. Для
цього змодельована навчальна вибiрка була подiлена на двi частини: власне
навчальну вибiрку, яка використовувалася для коригування ваг нейронiв, та
валiдацiйну вибiрку, яка застосовувалася для перiодичної перевiрки результату
навчання. Навчальна вибiрка складалася з пар iдеальних та зашумлених векто-
ризованих фрагментiв зображень у частотнiй областi. Потужнiсть навчальної
вибiрки становила 60 000 навчальних зразкiв.

Процес навчання був проведений окремо для адитивного Гаусiвського шу-
му та мультиплiкативного спекл-шуму, однак загальна процедура формування
навчальних вибiрок i пiдхiд до навчання були однаковими для обох типiв шу-
му. Для перевiрки якостi навчання нейромережi використовувалася валiдацiйна
вибiрка. Вона складалася з пар iдеальних та зашумлених зображень, якi не вхо-
дили до навчальної вибiрки.

Для фiльтрацiї шуму на цифрових зображеннях використовувалася ком-
плекснозначна нейронна мережа прямого поширення, яка має 𝑛 входiв, один
прихований шар iз 𝑁ℎ1 нейронами та вихiдний шар iз 𝑁𝑜 нейронами. Архiте-
ктура цiєї нейромережi була обрана на основi емпiричних даних. При цьому
слiд зауважити, що кiлькiсть прихованих шарiв i нейронiв, якi використовува-
лися в даному дослiдженнi, не можна вважати оптимальною. Оптимiзацiя цих
параметрiв є предметом подальших дослiджень.

Навчання мережi проводилося з використанням алгоритму навчання пакета-
ми (batch learning) [10, 11]. Основною перевагою цього методу порiвняно з класи-
чним алгоритмом навчання для комплекснозначних нейромереж є можливiсть
одночасно коригувати ваги нейронiв прихованого та вихiдного шарiв на основi
декiлькох навчальних зразкiв. Навчання проводилося до моменту досягнення
бажаного значення PSNR на валiдацiйнiй вибiрцi або досягнення наперед зада-
ної кiлькостi епох навчання.

Аналiз ваг нейронiв сформованих у процесi навчання. Навчання
нейромережi є iтеративним процесом, на кожному кроцi якого обчислюється
похибка мережi та похибка кожного нейроелемента, пiсля чого, згiдно з прави-
лом навчання, оновлюються ваги нейроелементiв. Таким чином ваги синапсiв
нейронiв є одним iз найважливiших факторiв, якi впливають на їхнiй вихiд, а
вiдповiдно й на вихiд нейромережi загалом.

Розглянемо 𝑘-й нейроелемент першого прихованого шару комплекснозначної
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нейромережi. Вихiд цього нейрона обчислюється за формулою:

𝑂
(𝑘)
1 = 𝑃

(︃
𝑛∑︁
𝑖=0

𝑤
(𝑘)
𝑖 𝑥

(𝑝)
𝑖

)︃
,

де 𝑃 (·) — активацiйна функцiя, 𝑤(𝑘)
0 , 𝑤

(𝑘)
1 , 𝑤

(𝑘)
2 , . . . , 𝑤

(𝑘)
𝑛 — ваги нейрона (𝑤(𝑘)

0

називається вiльною вагою), 𝑥(𝑝)0 , 𝑥
(𝑝)
1 , . . . , 𝑥

(𝑝)
𝑛 — входи нейрона (𝑥(𝑝)0 — штучний

вхiд, який завжди рiвний 1).
Попередню формулу можна записати у наступному виглядi:

𝑂
(𝑘)
1 = 𝑃

(︃
𝑤

(𝑘)
0 𝑥

(𝑝)
0 +

𝑛∑︁
𝑖=1

𝑤
(𝑘)
𝑖 𝑥

(𝑝)
𝑖

)︃
= 𝑃

(︁
𝑤

(𝑘)
0 𝑥

(𝑝)
0 +𝑅(𝑘,𝑝)

)︁
,

𝑅(𝑘,𝑝) є сумою елементiв вектора, який є результатом поелементного добутку
векторiв 𝑤(𝑘) =

(︁
𝑤

(𝑘)
1 , 𝑤

(𝑘)
2 , . . . , 𝑤

(𝑘)
𝑛

)︁
та 𝑥(𝑝) =

(︁
𝑥
(𝑝)
1 , . . . , 𝑥

(𝑝)
𝑛

)︁
. Як зазначено ви-

ще, на вхiд нейромережi, а вiдповiдно й на кожен нейрон першого приховано-
го шару, подаються векторизованi фрагменти зображення у частотнiй областi.
Оскiльки фрагмент зображення у просторовiй областi можна розглядати як
дискретну функцiю двох змiнних, його можна записати у виглядi матрицi, де
кожен елемент є iнтенсивнiстю у вiдповiдних просторових координатах. Таким
чином, при переходi у частотну область (за допомогою двовимiрного швидко-
го перетворення Фур’є) отримаємо матрицю коефiцiєнтiв перетворення Фур’є
такого ж розмiру, як i фрагмент зображення. З вищенаведеного випливає, що
вектор 𝑥(𝑝) так само як i 𝑤(𝑘), можуть бути записанi у виглядi матриць

𝑋
(𝑝)
𝑓 =

⎛⎜⎜⎜⎝
𝑥
(𝑝)
1 𝑥

(𝑝)
1 · · · 𝑥

(𝑝)
𝑟1

𝑥
(𝑝)
𝑟1+1 𝑥

(𝑝)
𝑟1+2 · · · 𝑥

(𝑝)
𝑟2

...
... . . . ...

𝑥
(𝑝)
𝑟2+1 𝑥

(𝑝)
𝑟2+2 · · · 𝑥

(𝑝)
𝑛

⎞⎟⎟⎟⎠ , 𝑊
(𝑝)
𝑓 =

⎛⎜⎜⎜⎝
𝑤

(𝑘)
1 𝑤

(𝑘)
1 · · · 𝑤

(𝑘)
𝑟1

𝑤
(𝑘)
𝑟1+1 𝑤

(𝑘)
𝑟1+2 · · · 𝑤

(𝑘)
𝑟2

...
... . . . ...

𝑤
(𝑘)
𝑟2+1 𝑤

(𝑘)
𝑟2+2 · · · 𝑤

(𝑘)
𝑟𝑛

⎞⎟⎟⎟⎠ .

Оскiльки обробка вiдбувається у частотнiй областi, то, згiдно з теоремою
згортки [13], можемо записати таке:

𝑋(𝑝)
𝑠 *𝑊 (𝑘)

𝑠 = F−1
(︁
𝑋

(𝑝)
𝑓 ×𝑊

(𝑘)
𝑓

)︁
,

де F−1 (·) — обернене двомiрне перетворення Фур’є, * — оператор згортки, × —
оператор поелементного множення, 𝑋(𝑝)

𝑠 = F−1
(︁
𝑋

(𝑝)
𝑓

)︁
, 𝑊 (𝑘)

𝑠 = F−1
(︁
𝑊

(𝑘)
𝑓

)︁
.

З останньої рiвностi випливає, що 𝑅(𝑘,𝑝) є сумою елементiв згортки у про-
сторовiй областi фрагменту зображення 𝑋(𝑝)

𝑠 з ядром 𝑊
(𝑘)
𝑠 .

У таблицях 1–6 наведено результати згорток у просторовiй областi вхiдних
фрагментiв зображень з ядрами, сформованими вагами рiзних нейронiв першо-
го прихованого шару при навчаннi мережi для фiльтрацiї Гаусiвського та спекл
шуму.
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а) #1. Гаусiвський шум
0.1𝜎–0.3𝜎;

б) #2. Гаусiвський шум
0.1𝜎–0.3𝜎;

в) #3. Гаусiвський шум
0.1𝜎–0.3𝜎;

г) #1. Спекл шум
0.1𝜎–0.4𝜎;

д) #2. Спекл шум
0.1𝜎–0.4𝜎;

е) #3. Спекл шум
0.1𝜎–0.4𝜎.

Рис. 1. Фрагмент зашумленого зображення розмiром 8×8.
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Таблиця 1.
Результати згортки у просторовiй областi зображення #1 (рис. 1 (а)) з
ядрами, що утворюються вагами нейронiв першого прихованого шару

Епоха навчання #1 Епоха навчання #5 Епоха навчання #10

Нейрон #1

Нейрон #256

Нейрон #512

Нейрон #768

Нейрон #1024
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Таблиця 2.
Результати згортки у просторовiй областi зображення #2 (рис. 1 (б)) з
ядрами, що утворюються вагами нейронiв першого прихованого шару

Епоха навчання #1 Епоха навчання #5 Епоха навчання #10

Нейрон #1

Нейрон #256

Нейрон #512

Нейрон #768

Нейрон #1024
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Таблиця 3.
Результати згортки у просторовiй областi зображення #3 (рис. 1 (в)) з
ядрами, що утворюються вагами нейронiв першого прихованого шару

Епоха навчання #1 Епоха навчання #5 Епоха навчання #10

Нейрон #1

Нейрон #256

Нейрон #512

Нейрон #768

Нейрон #1024
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Таблиця 4.
Результати згортки у просторовiй областi зображення #4 (рис. 1 (г)) з
ядрами, що утворюються вагами нейронiв першого прихованого шару

Епоха навчання #1 Епоха навчання #7 Епоха навчання #9

Нейрон #1

Нейрон #256

Нейрон #512

Нейрон #768

Нейрон #1024
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Таблиця 5.
Результати згортки у просторовiй областi зображення #5 (рис. 1 (д)) з
ядрами, що утворюються вагами нейронiв першого прихованого шару

Епоха навчання #1 Епоха навчання #7 Епоха навчання #9

Нейрон #1

Нейрон #256

Нейрон #512

Нейрон #768

Нейрон #1024
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Таблиця 6.
Результати згортки у просторовiй областi зображення #6 (рис. 1 (е)) з
ядрами, що утворюються вагами нейронiв першого прихованого шару

Епоха навчання #1 Епоха навчання #7 Епоха навчання #9

Нейрон #1

Нейрон #256

Нейрон #512

Нейрон #768

Нейрон #1024
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Доцiльно також порiвняти ядра згортки, сформованi вагами нейронiв, iз
деякими вiдомими ядрами згортки у просторовiй областi. Для порiвняння ви-
користовувалася косинусна подiбнiсть.

𝑠 (𝐴,𝐵) =
R (⟨𝐴,𝐵⟩)
‖𝐴‖ ‖𝐵‖

,

де 𝐴 та 𝐵 — векторизованi ядра згортки, ⟨·⟩ — скалярний добуток, R (·) — фун-
кцiя, яка повертає дiйсну частину комплексного числа, ‖·‖ — норма Фробенiуса.
Значення 𝑠 (𝐴,𝐵) близькi до 1 свiдчать про подiбнiсть ядер згортки.

У таблицях 7 та 8 наведено результати порiвняння ядер згортки у просторо-
вiй областi, отриманих з ваг нейронiв комплекснозначної нейромережi на 10-й
епосi навчання для фiльтрацiї Гаусiвського шуму (таблиця 7) та спекл-шуму
(таблиця 8) з деякими вiдомими ядрами згортки у просторовiй областi.

Таблиця 7.
Порiвняння ядер згортки, що утворюються вагами нейронiв з деякими

вiдомими ядрами згортки в просторовiй областi

Бокс фiльтр,
8×8

Гаусiвський фiльтр,
8×8, стандартне
вiдхилення 0.5

Гаусiвський фiльтр,
8×8, стандартне

вiдхилення 1
Нейрон #1 0.022833 −0.18097 −0.14759
Нейрон #256 0.062074 −0.047544 −0.042503
Нейрон #512 0.048572 −0.063726 −0.025157
Нейрон #768 0.0036742 −0.083041 −0.11821
Нейрон #1024 0.038796 −0.091296 −0.054479

Таблиця 8.
Порiвняння ядер згортки, що утворюються вагами нейронiв з деякими

вiдомими ядрами згортки в просторовiй областi

Бокс фiльтр,
8×8

Гаусiвський фiльтр,
8×8, стандартне
вiдхилення 0.5

Гаусiвський фiльтр,
8×8, стандартне

вiдхилення 1
Нейрон #1 0.020731 −0.18133 −0.12566
Нейрон #256 0.065181 −0.15032 −0.098496
Нейрон #512 0.050016 −0.024569 −0.017305
Нейрон #768 −0.0096031 −0.028489 −0.011391
Нейрон #1024 0.047493 −0.053494 −0.026364

У таблицях 9–14 наведено результати фiльтрацiї зашумлених зображень за
допомогою вiдомих методiв фiльтрацiї. Зображення з номерами 1,2,3 мiстять
адитивний Гаусiвський шум iз стандартним вiдхиленням 0.1𝜎, 0.2𝜎 та 0.3𝜎 (де
𝜎 — стандартне вiдхилення кожного окремо взятого iдеального зображення)
вiдповiдно. Зображення з номерами 4,5 та 6 мiстять мультиплiкативний спекл
шум зi стандартним вiдхиленням 0.2𝜎, 0.3𝜎 та 0.4𝜎 вiдповiдно. У таблицях 15–19
наведено результати згортки зображень з номерами 1–6 з ядром, сформованим
з ваг комплекснозначного нейроелемента.
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Таблиця 9.
Фiльтрацiя зображень з використанням BM3D фiльтра

Зображення #1 32.3497 0.77856 0.9961
Зображення #2 29.4844 0.627 0.983
Зображення #3 25.7033 0.51686 0.96354
Зображення #4 30.7613 0.76866 0.99502
Зображення #5 28.8852 0.60848 0.98245
Зображення #6 22.2808 0.44534 0.958

Таблиця 10.
Фiльтрацiя зображень з використанням Frost фiльтра з ядром розмiру 3×3

PSNR SSIM Кореляцiя
Зображення #4 28.3072 0.76486 0.99069
Зображення #5 26.2537 0.60972 0.97556
Зображення #6 22.6432 0.5086 0.95369

Таблиця 11.
Фiльтрацiя зображень з використанням Lee фiльтра з ядром розмiру 3×3

PSNR SSIM Кореляцiя
Зображення #4 29.5624 0.78081 0.99319
Зображення #5 27.7981 0.66759 0.983
Зображення #6 23.6314 0.62605 0.9689

Таблиця 12.
Фiльтрацiя зображень з використанням Гаусiвського фiльтру розмiром 3×3

PSNR SSIM Кореляцiя
Зображення #1 28.792 0.75903 0.99126
Зображення #2 27.1301 0.64375 0.97459
Зображення #3 24.5305 0.62553 0.96113
Зображення #4 28.9979 0.8114 0.99217
Зображення #5 26.7999 0.69389 0.97962
Зображення #6 23.2128 0.6139 0.96229

Таблиця 13.
Фiльтрацiя зображень з використанням mean фiльтру

PSNR SSIM Кореляцiя
Зображення #1 27.5266 0.69113 0.98822
Зображення #2 26.1626 0.54263 0.96654
Зображення #3 23.4641 0.51558 0.94956
Зображення #4 27.7646 0.75651 0.98935
Зображення #5 25.931 0.60199 0.97281
Зображення #6 22.4884 0.50564 0.95102

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



272 Ю. О. ТОВТ, А. Ю. БРИЛА

Таблиця 14.
Фiльтрацiя зображень з використанням median фiльтру

PSNR SSIM Кореляцiя
Зображення #1 28.9261 0.70792 0.99131
Зображення #2 26.4753 0.54488 0.9705
Зображення #3 24.0154 0.50745 0.95491
Зображення #4 29.5767 0.78316 0.99248
Зображення #5 27.279 0.60831 0.97708
Зображення #6 22.2505 0.50074 0.95563

Таблиця 15.
Згортка з ядром сформованим з ваг нейрона #1 першого прихованого шару

PSNR SSIM Кореляцiя
Зображення #1 9.679 0.14058 0.75555
Зображення #2 11.1107 0.039981 0.62206
Зображення #3 7.1767 −0.009568 0.32788
Зображення #4 9.7986 0.17531 0.76509
Зображення #5 11.3959 0.060549 0.65415
Зображення #6 7.0937 −0.012968 0.34234

Таблиця 16.
Згортка з ядром сформованим з ваг нейрона #256 першого прихованого шару

PSNR SSIM Кореляцiя
Зображення #1 15.2185 0.28548 0.88255
Зображення #2 20.0616 0.21385 0.85416
Зображення #3 14.4664 0.16622 0.67291
Зображення #4 15.2535 0.33429 0.88482
Зображення #5 19.737 0.24288 0.8664
Зображення #6 13.757 0.14491 0.68519

Таблиця 17.
Згортка з ядром сформованим з ваг нейрона #512 першого прихованого шару

PSNR SSIM Кореляцiя
Зображення #1 15.9611 0.31671 0.93556
Зображення #2 20.8287 0.16441 0.87298
Зображення #3 14.6615 0.14323 0.78444
Зображення #4 16.7474 0.39105 0.93785
Зображення #5 21.1445 0.20906 0.88693
Зображення #6 14.9326 0.12511 0.79323
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Таблиця 18.
Згортка з ядром сформованим з ваг нейрона #768 першого прихованого шару

PSNR SSIM Кореляцiя
Зображення #1 7.3852 0.090734 0.11664
Зображення #2 6.5666 0.044863 −0.11016
Зображення #3 3.7031 0.01698 −0.14104
Зображення #4 7.491 0.091222 0.24199
Зображення #5 6.6837 0.050447 −0.010282
Зображення #6 3.9845 0.022352 −0.015933

Таблиця 19.
Згортка з ядром сформованим з ваг нейрона #1024 першого прихованого шару

PSNR SSIM Кореляцiя
Зображення #1 9.8989 0.21524 0.80256
Зображення #2 9.5571 0.17998 0.70795
Зображення #3 7.0918 0.14029 0.53676
Зображення #4 9.9547 0.24695 0.80882
Зображення #5 9.7059 0.20776 0.73009
Зображення #6 7.4643 0.12938 0.54255

Зi значень PSNR та SSIM [14] (таблицi 15–19) видно, що ядра згорток не
забезпечують фiльтрацiю шуму на достатньому рiвнi (значення PSNR менше
20dB вважається низьким) i не наближаються за якiстю фiльтрацiї до жодного з
наведених методiв. У бiльшостi випадкiв зберiгся середнiй рiвень кореляцiї мiж
результатом згортки та iдеальним зображенням, що свiдчить про збереження
певного рiвня подiбностi мiж ними.

3. Висновки. У роботi було проведено дослiдження вагiв комплекснозна-
чної нейромережi MLMVN у процесi навчання з метою фiльтрацiї зображень, на
яких присутнiй адитивний Гаусiвський шум та мультиплiкативний спекл шум.
Зроблено аналiз окремих нейроелементiв на рiзних епохах навчання. Проведенi
дослiдження дозволяють зробити висновок, що ядра згорток утворених з ваг
окремих нейроелементiв не дозволяють сформувати ефективнi фiльтри у про-
сторовiй областi i не є близькими до вiдомих методiв фiльтрацiї. Проте ваги
нейронiв акумулюють iнформацiю отриману в процесi навчання, що дозволяє
нейромережi здiйснювати реальну успiшну фiльтрацiю шуму на цифрових зо-
браженнях.
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IМIТАЦIЙНЕ МОДЕЛЮВАННЯ SIR МОДЕЛЕЙ МЕТОДОМ
КЛIТИННИХ АВТОМАТIВ

Для узагальненої епiдемiологiчної SIR моделi методом клiтинних автоматiв вивчає-
ться динамiка поширення iнфекцiйних захворювань. Запропонована методика створе-
ння динамiчного середовища взаємодiї агентiв, де можна встановлювати та коригувати
параметри моделi. Проведено моделювання ряду стратегiй та обмежень на параметри
моделi. Отриманi результати моделювання та врахування впровадження соцiального
дистанцiювання дозволяє аналiзувати рiзнi схеми обмежувальних заходiв та оцiнити
їх доцiльнiсть.

Ключовi слова: SIR, клiтиннi автомати, iмiтацiйне моделювання, навчання з пiдкрi-
пленням, соцiальне дистанцiювання, COVID-19.

1. Вступ. Поширення iнфекцiйних захворювань являє собою складне явище з
великою кiлькiстю непередбачуваних факторiв. Створення iмiтацiйних моделей
поширення iнфекцiй є важливим елементом для дослiдження складної динамi-
ки захворювання. Найпоширенiшими моделями розповсюдження iнфекцiйних
захворювань є SIR-модель (Susceptible-Infected-Recovered) та багаточисельнi її
узагальнення, якi дiлять популяцiю на три рiзнi групи: здоровi особини, що мо-
жуть пiдхопити iнфекцiю (S); зараженi, особини, що переносять хворобу (I), i
тi, хто одужав i перестав розповсюджувати хворобу (R) [1–2].

В основi цих моделей є система диференцiйних рiвнянь, яка описує пове-
дiнку динамiки захворювання на макрорiвнi зберiгаючи високий рiвень абстра-
гування вiд реальностi. При цьому не враховуються iндивiдуальнi властивостi
об’єктiв, оскiльки процес поширення iнфекцiї дискретний та неможливо перед-
бачити наслiдки, якi активно впроваджуються.

Ще один пiдхiд для моделювання процесiв у епiдемiологiї - є iмiтацiйне мо-
делювання iз допомогою мультиагентного методу. Вiн дає змогу, задавши поча-
тковi параметрами для кожного типу об’єктiв i систему правил їхньої взаємодiї
визначити динамiчнi закономiрностi розвитку iнфекцiї i найважливiшi власти-
востi агентiв, якi сприяють змiнi темпiв поширення. Перевагою даного пiдходу
є те, що враховуються iндивiдуальнi властивостi кожного об’єкту складної си-
стеми [3]. Застосування агентного моделювання забезпечує можливiсть експе-
риментувати з параметрами моделi та отримати рiзнi сценарiї розвитку подiй,
розширюючи наше бачення про те, що може вiдбутися в майбутньому [4–5].
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2. Огляд праць. Моделювання епiдемiї зазвичай виконується за допомо-
гою компартментних моделей, якi часто називають SIR моделями, розпочалося
з робiт А. Г. Маккендрiка та В. О. Кермака [1–2]. Подальшi дослiдження кiль-
костi агентiв у конкретнiй фракцiї та швидкостi їх змiни розглянуто в роботах
[5–6].

У роботах [7–9] було здiйснено моделювання SIR моделей за допомогою клi-
тинних автоматiв де було розглянуто частину карантинних обмежень, однак не
дослiджено повний комплекс заходiв та не проаналiзовано їх взаємодiю.

У першiй частинi даної роботи ми пропонуємо спосiб моделювання коронавi-
русної iнфекцiї методом клiтинних автоматiв, в якому реалiзовано рiзнi режими
i пiдходи розповсюдження захворювання та здiйснено аналiз i порiвняння ефе-
ктивностi запроваджених обмежень. Друга частина роботи присвячена аналiзу
ефективностi впровадження соцiального дистанцiювання на основi технологiї
навчання з пiдкрiпленням Reinforcement learning.

3. Iмiтацiйне моделювання SIR моделей. У найпростiших SIR моде-
лях здiйснюються базовi припущення, наприклад, що кожен має однаковi шанси
пiдхопити вiрус вiд iнфiкованої людини, оскiльки популяцiя iдеально i рiвно-
мiрно змiшана, i що всi люди з хворобою однаково заразнi, поки не помруть або
не одужають. Бiльш просунутi моделi, якi роблять кiлькiснi прогнози, необхi-
днi пiд час нової пандемiї, подiляють людей на меншi групи — за вiком, статтю
тощо.

Особливий iнтерес становлять клiтиннi автомати, що моделюють рух iнди-
вiдiв. Клiтиннi автомати можуть подолати недолiки пiдходу з використанням
диференцiальних рiвнянь i розглядаються як ефективний альтернативний ме-
тод для моделювання поширення епiдемiї.

У класичнiй SIR моделi є набiр агентiв, якi рухаються в популяцiї. У нашiй
симуляцiї ми розглядаємо набiр агентiв, якi рухаються у просторi, i тим самим
iмiтують життя в мiстi. Кожен агент може належати до однiєї з трьох категорiй
залежно вiд свого стану: S (susceptible) — здоровий i сприйнятливий до хвороби,
I (infected) — iнфiкований, який може заразити iнших, R (recovered) — виду-
жав або не сприйнятливий. Агенти поступово переходять мiж цими станами в
процесi моделювання: S→ I→ R.

Для моделювання необхiдно iнiцiалiзувати параметри моделi [10]:
– загальна кiлькiсть агентiв (𝑁);
– вiдстань при якiй є ймовiрнiсть заразитися (𝑑);
– тривалiсть моделювання (𝑡);
– iнфiкованi агенти на першiй iтерацiї (𝑛_𝑖𝑛𝑓);
– позицiя агента (𝑥, 𝑦);
– швидкiсть агента (𝑣) та вектор руху (𝑘);
– радiус зараження (𝑟);
– iнфiкованiсть агента (𝑖𝑛𝑓);
– вакцинованацiя агента (𝑣𝑎𝑐);
– чи носить агент маску (𝑚𝑎𝑠𝑘);
– чи агент знаходиться на самоiзоляцiя (𝑖𝑠𝑜𝑙).
Якщо неiнфiкований агент потрапляє у радiус зараження iнфiкованого, вiд-

бувається оцiнка ймовiрностi iнфiкування. Якщо агент сприйнятливий (статус
𝑆), то з певною ймовiрнiстю вiн може заразитися та змiнити свiй статус на

Наук. вiсник Ужгород. ун-ту, 2024, том 45, № 2 ISSN 2616-7700 (print), 2708-9568 (online)



278 I. М. ЧЕРЕВКО, I. Т. КОСОВИЧ

I. Значення ймовiрностi iнфiкування визначається випадковим числом 𝑧 з iн-
тервалу [0, 1]. Якщо 𝑧 < 𝑝, де 𝑝 — ймовiрнiсть зараження, агент iнфiкується.
Важливо враховувати рiзнi фактори, що впливають на ймовiрнiсть iнфiкува-
ння, наприклад, наявнiсть маски чи вакцини у агента. Наявнiсть маски може
значно знизити ймовiрнiсть зараження, оскiльки вона обмежує передачу вiрусу
вiд iнфiкованого до сприйнятливого агента. Вакцинацiя також вiдiграє певну
роль, оскiльки вакцинованi агенти мають знижений ризик зараження або мо-
жуть мати легший перебiг хвороби. Такi деталi дозволяють врахувати складну
динамiку поширення вiрусу i допомагають моделювати реальнi сценарiї епiде-
мiї.

Пiсля завершення часу iнфiкування агент або одужує (статус змiнюється
на 𝑅), або помирає. Рiшення про те, чи агент помирає, залежить вiд рiвня
летальностi 𝐷: генерується випадкове число з iнтервалу [0, 1], i якщо це число
бiльше за 𝐷, агент виживає i переходить до статусу 𝑅, iнакше вiн помирає i
видаляється з процесу моделювання.

Симуляцiя триває до моменту, поки всi iнфiкованi агенти не вилiкуються
або не помруть.

Моделювання обмежувальних заходiв.
Iзоляцiя: створюються умови, за яких хворий агент не може заразити iн-

ших. Це можна реалiзувати або через додатковий статус з перевiркою на кожно-
му кроцi iтерацiї, або шляхом створення окремої зони (iзолятор або домашнiй
карантин), де знаходяться iнфiкованi агенти i взаємодiють лише мiж собою.
Пiсля одужання агент повертається до основної областi моделювання. У реаль-
ному життi виявити та iзолювати всiх iнфiкованих складно через iнкубацiйний
перiод та можливiсть безсимптомного перебiгу хвороби.

Масковий режим: зменшується ризик зараження, обмежуючи передачу
вiрусу через дихальнi шляхи або контакт з забрудненими поверхнями. У мо-
делюваннi цей ефект враховується через зниження ймовiрностi зараження на
константу 𝑄𝑚𝑎𝑠𝑘 = 0.6. Таким чином, ймовiрнiсть зараження модифiкується
наступним чином: 𝑧 < 𝑝𝑄𝑚𝑎𝑠𝑘, де 𝑧 — випадкова величина з iнтервалу [0, 1].

Вакцинацiя: не гарантується повного уникнення зараження, але значно
знижується його ймовiрнiсть. Крiм того, вакцинованi агенти частiше перено-
сять захворювання у легкiй формi. У моделi це враховується через зменшення
ризику зараження на константу 𝑄𝑣𝑎𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0.4. Ймовiрнiсть зараження розра-
ховується як: 𝑧 < 𝑝𝑄𝑣𝑎𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛, де 𝑧 — випадкова величина з iнтервалу [0, 1].

Моделювання триває до моменту, поки всi iнфiкованi агенти не одужають.
Це дозволяє моделювати рiзнi сценарiї пiд час однiєї симуляцiї. Для аналiзу
сценарiїв можливе збереження стану системи в будь-який момент часу, що до-
зволяє продовжити моделювання з цього моменту для рiзних умов.

Вихiднi данi моделi включають динамiку загальної кiлькостi iнфiкованих,
одужаних та померлих агентiв. Запропонована модель дозволяє легко розраху-
вати цi показники шляхом пiдсумовування станiв агентiв.

На Рис. 1 зображенi рiзнi сценарiї моделювання.
Моделювання 1: Враховано лише масковий режим. Кiлькiсть iнфiкова-

них агентiв швидко зростає, створюючи критичне навантаження на медичну
систему. Пiк захворюваностi є найвищим серед усiх сценарiїв, що свiдчить про
недостатню ефективнiсть маскового режиму без додаткових заходiв.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Рис. 1. Динамiка кiлькостi iнфiкованих агентiв при рiзних сценарiях.

Моделювання 2: Враховано лише вакцинацiю. Також спостерiгається ви-
сокий пiк iнфiкування, що призводить до значного навантаження на медичну
систему. Лише вакцинацiя без iнших обмежень виявляється неефективною у
запобiганнi стрiмкому зростанню кiлькостi хворих.

Моделювання 3: Комбiнацiя маскового режиму та вакцинацiї. Хоча пiк
захворюваностi залишається високим, спостерiгається швидкий спад кiлькостi
iнфiкованих завдяки набуттю iмунiтету через вакцинацiю. Це допомагає посту-
пово зменшити навантаження на медичну систему, але ситуацiя все ще залиша-
ється критичною.

Моделювання 4: Самоiзоляцiя у разi хвороби та масковий режим. Пiк
захворюваностi стає меншим, а розвиток хвороби проходить бiльш плавно. За-
провадження самоiзоляцiї значно зменшує навантаження на медичну систему
та дозволяє уникнути критичних ситуацiй з переповненням лiкарень.

Моделювання 5: Самоiзоляцiя та вакцинацiя. Пiк захворюваностi значно
знижується порiвняно з попереднiми сценарiями, розвиток хвороби проходить
бiльш контрольовано. Ця комбiнацiя заходiв дозволяє уникнути переповнення
медичної системи та є бiльш ефективною для стримування епiдемiї.

Моделювання 6 (основне): Враховано всi обмежуючi фактори — маско-
вий режим, самоiзоляцiю, вакцинацiю та перiод одужання. Сценарiй показує
найкращi результати з найменшим пiком захворюваностi та плавним розви-
тком хвороби. Пiк епiдемiї змiщується в часi, що дозволяє медичнiй системi
краще пiдготуватися та ефективно реагувати на зростання кiлькостi випадкiв.
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Комплексне запровадження всiх заходiв є найбiльш ефективним у стримуваннi
пандемiї.

Результати моделювання показують, що найкращий результат досягається
за умови застосування комбiнацiї маскового режиму, вакцинацiї та самоiзоляцiї
(Моделювання 6). Це дозволяє розтягнути епiдемiчний процес у часi, уникну-
ти критичного навантаження на медичну систему та забезпечити ефективне
стримування пандемiї.

Рис. 2. Рiзнi симуляцiї кiлькостi iнфiкованих агентiв основої моделi.

На рис. 2 показано п’ять рiзних симуляцiй основної моделi для демонстрацiї
її стiйкостi. Ми демонструємо, що попереднi графiки не є випадковими, а рiзнi
симуляцiї на часовому промiжку мають схожi результати.

На осi 𝑥 зображенi iтерацiї моделi, а на осi 𝑦 — кiлькiсть iнфiкованих аген-
тiв. З Рис. 2 видно, що основнiй моделi вдалося знизити пiк захворюваностi.
Попереднi симуляцiї мали пiк iз 80–100 iнфiкованими на однiй iтерацiї, тодi як
основна модель продемонструвала максимум 67 iнфiкованих. Середнє значення
всiх симуляцiй склало 62 особи як пiк на iтерацiях. В умовах перевантаження
медичної системи це є значним досягненням. Також спостерiгається покраще-
ння в часовому аспектi — розвиток хвороби проходить плавнiше та повiльнiше
порiвняно з iншими симуляцiями. Середня кiлькiсть iтерацiй усiх основних си-
муляцiй становила 36, що свiдчить про ефективнiсть параметрiв основної моде-
лi.

Аналiз пiкових значень поширення iнфекцiї. У процесi моделювання
динамiки епiдемiї було проаналiзовано пiковi значення поширення iнфекцiї та
особливостi динамiки iнфекцiйних хвиль. Оцiнка проведена за такими критерi-
ями: максимальне та мiнiмальне значення пiку, середнє значення пiку, а також
iтерацiї, на яких спостерiгалися максимальнi значення. Вiдхилення результатiв
наводиться у вiдсотках, що дає змогу оцiнити варiативнiсть моделi при рiзних
параметрах.
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Максимальне значення пiку (в особах): Дослiдження показало, що най-
бiльша кiлькiсть iнфiкованих осiб у пiковий момент склала 67±2 з вiдхиленням
±2.98%. Це значення вiдповiдає найбiльшiй кiлькостi iнфiкованих на етапi роз-
гортання епiдемiї.

Мiнiмальне значення пiку (в особах): Найменше значення пiку склало
59±2, що вiдповiдає вiдхиленню ±3.38%. Це свiдчить про мiнiмальну кiлькiсть
iнфiкованих осiб пiд час пiкового навантаження системи.

Середнє значення пiку (в особах): Середнє значення пiку за перiод мо-
делювання склало 62.4± 6, при цьому вiдхилення становило ±9.61%. Це вказує
на стабiльнiсть моделi в контекстi середнiх значень пiкового навантаження.

Максимальна iтерацiя з найбiльшим значенням: Максимум iнфiкова-
них осiб спостерiгався на iтерацiї 16±1, з вiдхиленням ±6.25%. Це дає уявлення
про час, коли епiдемiя досягає свого пiку.

Мiнiмальна iтерацiя з максимальним значенням: Перший пiк iнфiко-
ваних осiб спостерiгався на iтерацiї 13± 1, з вiдхиленням ±7, 69%. Це вказує на
початкову фазу розгортання епiдемiї.

Середня iтерацiя з максимальним значенням: Середня iтерацiя, на
якiй спостерiгалося максимальне значення, становить 13.6 ± 5, з вiдхиленням
±29.4%. Це свiдчить про те, що пiковi значення можуть виникати в рiзний час
в залежностi вiд параметрiв моделi.

4. Дослiдження соцiального дистанцiювання за допомогою навчан-
ня з пiдкрiпленням. Моделювання поширення вiрусу за допомогою навчання
з пiдкрiпленням (RL) є складним завданням через велику кiлькiсть невизначе-
ностей i нестабiльностей [11].

Основнi кроки для моделювання поширення вiрусу за допомогою RL [12]:
1. Визначення динамiчного середовища: необхiдно створити середови-

ще, у якому агенти будуть взаємодiяти мiж собою. Це може бути мережа
зв’язкiв мiж людьми або географiчна карта з визначеними мiсцями зустрi-
чей.

2. Визначення агентiв: агенти можуть бути людьми з рiзними характери-
стиками (вiк, стать, стан здоров’я тощо);

3. Визначення цiлей агентiв: метою кожного агента може бути мiнiмiза-
цiя ризику iнфiкування або максимiзацiя користi вiд взаємодiї з iншими
агентами;

4. Визначення винагород: необхiдно визначити винагороди для кожного
агента, що вiдображатимуть наближення до досягнення їхньої мети. Вина-
города може нараховуватися за кожну взаємодiю з iншим агентом або за
певний перiод часу.
Середовище. Пiд час моделювання динамiки популяцiї в умовах пандемiї

ми визначаємо стан населення SIRD (сприйнятливi, iнфiкованi, одужалi, помер-
лi) на певний день. Ця iнформацiя про стан є важливою як для симуляцiї, так
i для середовища RL. Вона включає частки сприйнятливих осiб (S), загальну
кiлькiсть iнфiкованих (I), одужалих (R) та померлих (D) серед усього населен-
ня. Цi параметри передаються до довiльного симулятора динамiчних систем у
середовищi WhyNot, яке далi iнтегрує його в середовище Gym для RL:

– Динамiчна система (simulate_fn);
– Конфiгурацiя (config);
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– Початковий стан для запуску симулятора (initial_state);
– Визначений простiр дiй для учня (action_space);
– Визначений простiр спостереження (observation_space);
– Перетворення числових дiй у втручання симулятора (intervention_fn);
– Визначена функцiя винагороди (reward_fn).
Симуляцiя починається з початкового стану i змiнює стан за допомогою

параметрiв (p), взятих з конфiгурацiйного кортежу:
– start_time — початок симуляцiї;
– end_time — кiнець симуляцiї (кiлькiсть iтерацiй);
– delta_t — частота перерахунку параметрiв симулятора;
– sigma — ймовiрнiсть переходу вiд сприйнятливих до iнфiкованих;
– mu_i — ймовiрнiсть переходу вiд iнфiкованих до одужалих;
– tau_i — ймовiрнiсть переходу вiд iнфiкованих до смертi.
Процес моделювання пандемiї з використанням моделi SIRD включає взає-

модiю агента RL iз стимуляцiєю для оптимiзацiї полiтики соцiального дистан-
цiювання. На початку епiзоду симуляцiї середовище RL iнiцiалiзується розпо-
дiлом населення за станом здоров’я, що забезпечує початковий контекст для
прийняття рiшень агентом RL. Агент, керуючись своєю полiтикою, оцiнює по-
точний стан i визначає рiвень соцiального дистанцiювання, який представлений
дискретними дiями вiд 0% до 100%. Обрана дiя коригує параметри, такi як рi-
вень передачi в моделi SIRD, i симуляцiя продовжується на певну кiлькiсть
днiв для моделювання ефекту втручання. Пiсля застосування дiї модель SIRD
оновлює стан здоров’я популяцiї, враховуючи динамiку захворювання та вплив
заходiв соцiального дистанцiювання. Пiсля цього обчислюється винагорода, яка
оцiнює ефективнiсть втручання з урахуванням впливу на здоров’я (наприклад,
зниження смертностi та кiлькостi iнфекцiй).

Функцiя винагороди. Функцiя винагороди є важливою для спрямування
поведiнки агента, надаючи зворотний зв’язок про те, чи є змiни стану позитив-
ними або негативними. У нашому дослiдженнi функцiя винагороди показує дiї,
що призводять до позитивних результатiв, таких як зменшення кiлькостi iнфi-
кованих осiб, i карає за дiї, що погiршують ситуацiю. Враховуючи як позитивнi,
так i негативнi наслiдки дiй, функцiя винагороди допомагає агенту RL обирати
дiї, що мiнiмiзують загальний вплив COVID-19.

Функцiя винагороди формулюється наступним чином:

𝑅(𝑡) = 100𝑆(𝑡)− 100𝐼(𝑡)− 1000𝐷(𝑡),

де:
– 𝑅(𝑡) — винагорода в момент часу 𝑡;
– 𝑆(𝑡) — кiлькiсть сприйнятливих осiб в момент часу 𝑡;
– 𝐼(𝑡) — кiлькiсть iнфiкованих осiб в момент часу 𝑡;
– 𝐷(𝑡) — кiлькiсть смертей в момент часу 𝑡.
Ця функцiя винагороди стимулює полiтику, яка ефективно зменшує кiль-

кiсть iнфiкованих i померлих.
У даному пiдходi ми розглянули рiзнi полiтики для кривих захворюваностi,

щоб оцiнити їхню ефективнiсть та виявити умови, за яких фактор дистанцiю-
вання дає найбiльшу винагороду Рис. 3.
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Рис. 3. Графiки iз рiзними станами i результатами функцiї винагороди.

Найкращий варiант — 100% соцiальне дистанцiювання, що забезпечує вiдсу-
тнiсть iнфiкованих, але є нереалiстичним через економiчнi наслiдки. Зниження
дистанцiювання до 50% зберiгає високу ефективнiсть, зменшуючи кiлькiсть iн-
фiкованих i пiдтримуючи економiчну стабiльнiсть.

Помiрнi обмеження (30–40%) виявилися найбiльш збалансованими, оскiль-
ки вони дозволяють знизити кiлькiсть iнфiкованих без значного впливу на еко-
номiку та спосiб життя. Такий пiдхiд забезпечує баланс мiж запровадженням
обмежень i контролем над зростанням захворюваностi.

Вiдсутнiсть соцiального дистанцiювання (0%), тобто вiдсутнiсть будь-яких
обмежень, є найгiршим варiантом з найвищим пiком iнфiкування та мiнiмаль-
ною винагородою.

5. Висновки та перспективи подальших дослiджень. У цьому до-
слiдженнi розглянуто два пiдходи до моделювання поширення iнфекцiй: SIR
моделi та навчання з пiдкрiпленням. SIR моделi є корисними для загального
аналiзу динамiки захворюваностi та враховують ключовi особливостi взаємодiї
мiж групами населення, що дозволяє оцiнити ефективнiсть рiзних заходiв на
макрорiвнi.

Моделювання з RL надає можливiсть адаптивного реагування на змiни в
епiдемiї, що дозволяє агентам навчатися та приймати рiшення, спрямованi на
зменшення поширення iнфекцiї. Запропонована модель включає аспекти соцi-
альної динамiки через простi правила, заснованi на статистичних принципах.
Найкращi результати досягнуто при 30–40% соцiального дистанцiювання, що
забезпечує баланс мiж контролем епiдемiї та економiчною стабiльнiстю.

Комбiнацiя SIR моделей з RL пiдходом забезпечує комплексний пiдхiд до
моделювання епiдемiй, що дозволяє ефективнiше планувати заходи боротьби з
iнфекцiйними захворюваннями.
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АНАЛIЗ МЕТОДIВ АВТЕНТИФIКАЦIЇ ЦИФРОВИХ ОБ’ЄКТIВ

У статтi розглянуто проблему автентифiкацiї цифрових об’єктiв, що має важли-
ве значення для багатьох сучасних технологiй i дослiджень, зокрема розпiзнавання
образiв та обробки зображень. Описанi виклики, пов’язанi з аналiзом i класифiкацiєю
зображень в умовах зростаючих обсягiв цифрових даних, а також потреба у створеннi
ефективних методiв, здатних працювати в реальному часi.

Сучаснi технологiї, такi як глибоке навчання та нейроннi мережi, вiдкрили новi
можливостi у вирiшеннi цих завдань, забезпечуючи високу точнiсть i продуктивнiсть.
Проте залишаються невирiшеними проблеми, пов’язанi з обробкою зображень за по-
ганого освiтлення, рiзноманiтнiстю об’єктiв, потребою у великих навчальних вибiрках
i високою обчислювальною складнiстю.

Проаналiзовано сучаснi методи розпiзнавання облич, включно з такими, як DeepFace,
DeepID, FaceNet, VGG Face, та OpenFace. У статтi наведено порiвняльний аналiз їхньої
точностi, особливостей i вимог до обчислювальних ресурсiв. Особливу увагу придiлено
використанню глибоких згорткових нейронних мереж у поєднаннi зi спецiалiзованими
функцiями втрат, що забезпечують високу точнiсть розпiзнавання.

Запропонованi напрями можуть значно розширити можливостi застосування цих
технологiй у прикладних задачах.

Ключовi слова: автентифiкацiя цифрових об’єктiв, розпiзнавання образiв, глибоке
навчання, нейроннi мережi, методи розпiзнавання облич.

1. Вступ. Задача автентифiкацiї цифрових об’єктiв є актуальною в багатьох
областях сучасних технологiй та дослiджень. Наприклад, розпiзнавання образiв
та обробка зображень є критичними компонентами для розробки систем авто-
матичного керування, медичних дiагностичних систем, безпекових систем та
багатьох iнших прикладних сфер. Зокрема, задачi, пов’язанi з класифiкацiєю
та аналiзом зображень у рiзних умовах освiтлення та на рiзних типах об’єктiв,
часто виникають на практицi та потребують ефективних рiшень.

З кожним роком обсяги цифрових даних, включаючи зображення та вiдео,
стрiмко зростають. Це створює потребу в ефективних методах аналiзу та кла-
сифiкацiї зображень, якi можуть працювати в режимi реального часу та обро-
бляти великi обсяги iнформацiї.

Сучаснi технологiї, зокрема глибоке навчання та нейроннi мережi, вiдкрили
новi можливостi для вирiшення задач класифiкацiї зображень. Вони дозволя-
ють досягти високої точностi та ефективностi, але водночас потребують подаль-
ших дослiджень для оптимiзацiї та адаптацiї до рiзних умов i вимог.
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Незважаючи на значнi досягнення, задачi класифiкацiї зображень стикаю-
ться з низкою викликiв, таких як обробка зображень в умовах поганого освiтле-
ння, рiзноманiтнiсть об’єктiв, потреба у великих навчальних вибiрках та висока
обчислювальна складнiсть. Це робить дослiдження в цiй сферi актуальним та
необхiдним.

2. Аналiз останнiх дослiджень i публiкацiй. Сучаснi системи розпi-
знавання та класифiкацiї зображень включають широкий спектр методiв i те-
хнологiй. Наведемо кiлька важливих напрямкiв, для яких тестувалася задача
розпiзнавання образiв (чи це одна й та сама людина чи нi), а також вiдповiднi
джерела. Використання 3D моделювання облич та DCNN для розпiзнавання
облич DeepFace. Цей метод продемонстрував добру продуктивнiсть на великих
наборах даних, таких як LFW i був першим, який застосував глибокi згортковi
нейроннi мережi для розпiзнавання облич. Однак, через велику обчислюваль-
на складнiсть, потребує багато ресурсiв для навчання та роботи i може бути
чутливим до змiн умов освiтлення та позицiй обличчя [1].

Метод який грунтується на застосуваннi DCNN та PCA для класифiкацiї
облич DeepID вiдзначився хорошою точнiстю завдяки архiтектурним варiацi-
ям та оптимiзацiї функцiй втрат, включає в себе використання рiзноманiтних
векторiв ознак для покращення розпiзнавання. Однак це потребує багато ета-
пiв налаштування та оптимiзацiї, при цьому точнiсть може знижуватись при
перекриттi облич або при значних змiнах у зовнiшностi [2].

Модифiкацiя DeepID з комбiнованими функцiями втрат DeepID2 забезпечи-
ла полiпшену точнiсть завдяки комбiнованим функцiям втрат на рiзних рiвнях
нейронної мережi, однак потребує великої кiлькостi обчислювальних ресурсiв
для тренування [3].

Використання DCNN, PCA з функцiями втрат на рiзних рiвнях DeepID2+
вiдзначився високою продуктивнiстю навiть при обмежених даних для навча-
ння, включає в себе застосування вдосконалених архiтектур та рiзноманiтних
векторiв ознак для пiдвищення точностi. При цьому метод потребує великого
обсягу навчальних даних для пiдтримки високої точностi та обчислювальних
витрат для реалiзацiї в реальному часi [4].

Використовує DCNN та триплетну функцiю втрат для вбудовування зобра-
жень FaceNet пiдвищує точнiсть розпiзнавання, демонструє високу продуктив-
нiсть на великих наборах даних та реальних зображеннях. При цьому накла-
даються вимоги до великого обсягу обчислювальних ресурсiв для навчання а
також присутня залежнiсть вiд якiсного збору триплетiв для навчання, що мо-
же бути обчислювально затратним [5].

Face++ грунтується на застосуваннi DCNN та PCA для розпiзнавання облич.
Його особливiстю є те, що вiн використовує iнновацiйнi пiдходи, такi як PCA
та DCNN, для пiдвищення точностi. Метод добре працює на рiзноманiтних на-
борах даних завдяки гнучкостi архiтектури, але можливi проблеми з узагаль-
ненням на новi типи зображень або невiдомi обличчя [6].

VGG Face є одним з найкращих методiв розпiзнавання облич, що базується
на глибоких нейронних мережах i має високу точнiсть розпiзнавання облич
на рiзних наборах даних. Метод використовує велику архiтектуру з багатьма
шарами, що дозволяє йому досягати високої точностi [7].

Iнструментарiй з вiдкритим вихiдним кодом OpenFace для розпiзнавання
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облич став популярним завдяки своїй легкiй архiтектурi та доступностi для
дослiдникiв та розробникiв. Вiн використовує глибокi навчальнi моделi, але при
цьому залишається легким у реалiзацiї [8].

3. Формалiзацiя задачi. У багатьох прикладних задачах, пов’язаних iз
автентифiкацiєю цифрових об’єктiв, виникає необхiднiсть порiвняння двох зо-
бражень для визначення їх вiдповiдностi. Найчастiше такi завдання стосуються
розпiзнавання облич людей, оскiльки ця технологiя має широкий спектр засто-
сувань у рiзних галузях. Наприклад, вона використовується в системах безпеки
для контролю доступу до примiщень чи iнформацiйних систем, у мобiльних
пристроях для розблокування за допомогою обличчя, а також у вiдеоспостере-
женнi для iдентифiкацiї осiб у реальному часi. Окрiм того, порiвняння облич є
важливим у таких сферах, як фiнансовi послуги для верифiкацiї клiєнтiв, ме-
дицина для аналiзу фiзiологiчних змiн, та розваги, де технологiї автентифiкацiї
iнтегруються в iгри або соцiальнi мережi. Автоматичне порiвняння облич за-
безпечує високу точнiсть i швидкiсть процесу, що робить цi методи критично
важливими для сучасних систем, особливо в умовах зростаючих обсягiв даних
та потреби в обробцi iнформацiї в реальному часi. Розвиток таких технологiй
сприяє пiдвищенню безпеки, зручностi користування та ефективностi роботи
багатьох систем.

Для двох вхiдних зображень облич визначити, чи є вони зображеннями однi-
єї i тiєї ж особи, повернувши рiшення у виглядi бiнарного результату: 𝑡𝑟𝑢𝑒(1)
або 𝑓𝑎𝑙𝑠𝑒(0). Вхiдними даними для даної задачi є два зображення облич: 𝑥1 та
𝑥2. Зображення 𝑥1 та 𝑥2 ∈ 𝑅𝐻𝑥𝑊𝑥𝐶 , де 𝐻 — висота зображення в пiкселях, 𝑊 —
ширина, 𝐶 — кiлькiсть кольорових каналiв. Для стандартного кодування зобра-
жень RGB кiлькiсть каналiв рiвна 3. Нам потрiбно побудувати таку функцiю
𝑓(𝑥1, 𝑥2) → {0, 1} яка мiнiмiзує кiлькiсть помилкових рiшень при визначеннi
вiдповiдностi облич та повертає значення 1, якщо на зображеннях одна особа,
або 0 – якщо рiзнi особи.

Навчальною множиною для даної задачi є множина 𝐷 = {(𝑥1𝑖, 𝑥2𝑖, 𝑦𝑖)}𝑁𝑖=1, де
𝑦𝑖 ∈ {0, 1}. Навчальною множиною для задачi автентифiкацiї цифрових об’єктiв
є набiр зображень, який використовується для навчання алгоритму розпiзнава-
ння. Цей набiр мiстить парнi зображення, де кожна пара позначена вiдповiдною
мiткою: 1 для пар, що належать однiй особi, i 0 для пар, що представляють
рiзних осiб. Метою використання такої множини є забезпечення алгоритму до-
статньої кiлькостi даних для навчання моделi розпiзнавання. Завдяки цьому
алгоритм здатен навчитися видiляти ключовi ознаки обличчя, визначати схо-
жостi й вiдмiнностi мiж зображеннями, а також адаптуватися до рiзних умов
освiтлення, ракурсiв та якостi зображень. Навчальна множина є критично ва-
жливою, оскiльки якiсть i розмаїття даних у нiй значною мiрою впливають
на точнiсть i надiйнiсть роботи моделi в реальних умовах. Вона дозволяє мi-
нiмiзувати помилки розпiзнавання, що є ключовим фактором для успiшного
застосування алгоритму у практичних завданнях.

Для розрахунку похибки методу будемо користуватись формулою:

∆ = (𝑚− 𝑟)/𝑚,

де 𝑟 — кiлькiсть коректних автентифiкацiй, 𝑚 — загальна кiлькiсть автенти-
фiкацiй. При порiвняннi функцiй автентифiкацiї при фiксованiй множинi 𝐷,
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кращою є та функцiя, яка забезпечує максимальну точнiсть, тобто мiнiмiзує
похибку. При розв’язуваннi практичних задач на обчислення функцiї аутенти-
фiкацiї дiє обмеження по часу.

4. Порiвняльна характеристика методiв розпiзнавання обличчя.
Deep Convolutional Neural Networks (DCNN) є основною архiтектурою нейро-
мереж, що використовуються для завдань розпiзнавання облич завдяки своїй
високiй точностi та можливостям генералiзацiї. В таблицi 1 наведено порiвняль-
ну характеристику точностi методiв та їх особливостi.

Таблиця 1.
Порiвняльний аналiз методiв розпiзнавання обличчя

Метод Особливостi Точнiсть (%)

DeepFace

Характеризується використанням 3D-моделювання
облич для покращення виявлення просторових
ознак, застосуванням DCNN для екстракцiї векто-
рiв ознак, з функцiєю втрат, яка базується на
softmax.

97.35± 0.25

DeepID

Застосовує метод головних компонент (PCA)
для зменшення розмiрностi ознак, використовує
softmax функцiю втрат для класифiкацiї, вирiзняє-
ться рiзноманiтнiстю в архiтектурних пiдходах для
пiдвищення точностi.

97.45± 0.26

DeepID2 Полiпшена версiя DeepID, поєднує кiлька функцiй
втрат, застосованих на рiзних рiвнях DCNN. 99.15± 0.15

DeepID2+

Покращена версiя DeepID2, яка включає додатковi
вдосконалення архiтектури, такi як використання
рiзноманiтних векторiв ознак, отриманих на рiзних
рiвнях мережi, що забезпечує бiльш повний опис
обличчя.

99.47± 0.12

FaceNet

Характеризується використанням трiплетної фун-
кцiї втрат для навчання моделi, що дозволяє мiнi-
мiзувати вiдстань мiж вбудовуваннями облич однi-
єї особи та максимiзувати вiдстань мiж вбудову-
ваннями рiзних осiб. Використовується евклiдовий
простiр, де близькiсть векторiв вiдповiдає схожостi
облич.

99.63± 0.09

Face++

Характеризується використанням DCNN для екс-
тракцiї ознак облич, застосуванням методу голов-
них компонент (PCA) для зменшення розмiрностi,
а також впровадженням iнших iнновацiйних пiдхо-
дiв для покращення точностi та ефективностi роз-
пiзнавання облич.

99.50± 0.36

VGG Face

Вiдзначається використанням DCNN з великою
кiлькiстю шарiв, що дозволяє моделi ефективно ви-
вчати складнi ознаки обличчя. Така архiтектура
сприяє досягненню високої точностi в задачах роз-
пiзнавання та верифiкацiї облич.

98.95

OpenFace

Характеризується як легка модель, що оптимiзова-
на для роботи на мобiльних платформах. Забезпе-
чує ефективне розпiзнавання облич при збережен-
нi високої продуктивностi, навiть на пристроях з
обмеженими обчислювальними ресурсами.

92.92

Тестування для них проводилося на наборi даних Labelled Faces in the Wi-
ld (LFW ) та YouTube Faces (FaceNet), якi стали стандартами для тестування
алгоритмiв розпiзнавання. Рiвень точностi, досягнутий людиною у задачi розпi-
знавання облич на цьому наборi даних складає 97.53% [5]. Найкращi результати
показали методи, що використовують глибокi згортковi нейроннi мережi в по-
єднаннi з функцiями втрат, спецiально розробленими для задачi розпiзнавання
облич, як-от триплетна функцiя втрат у FaceNet. При цьому на бiльшiсть ме-
тодiв накладаються вимоги до великого обсягу обчислювальних ресурсiв для
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навчання та обробки великої кiлькостi зображень.
5. Висновки та перспективи подальших дослiджень. Актуальнiсть

задачi класифiкацiї зображень обумовлена її важливiстю для багатьох сфер
життя та бiзнесу, необхiднiстю обробки великих обсягiв даних, швидким роз-
витком технологiй та великим потенцiалом для iнновацiй. У данiй статтi ми
розглянули рiзнi методи класифiкацiї зображень з використанням нейронних
мереж, їх переваги та недолiки. Основними критерiями порiвняння були то-
чнiсть, швидкiсть обробки, вимоги до обчислювальних ресурсiв та стiйкiсть до
варiацiй зображень. Для бiльшостi методiв неврахованими факторами залиша-
ються такi характеристики як перекриття обличчя, етнiчна рiзноманiтнiсть,
якiсть зображення та чутливiсть до змiни освiтлення.

Незважаючи на досягнутi успiхи, методи все ще мають простiр для покраще-
ння. Подальшi дослiдження можуть бути спрямованi на вдосконалення алгори-
тмiв для кращої генералiзацiї на нових наборах даних, пiдвищення стiйкостi до
змiн освiтлення, виразiв облич та позицiй. Також важливим напрямком є роз-
робка бiльш ефективних моделей, якi б вiдповiдали вимогам реального часу,
особливо в умовах обмежених ресурсiв. Цi напрямки можуть значно вплинути
на рiзнi аспекти нашого життя, допомогти усунути наявнi недолiки та розши-
рити можливостi застосування цих технологiй в реальних умовах.
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Shkiria S. V., Kornyk O. V. Analysis of digital object authentication methods.

The article addresses the problem of digital object authentication, which is of great
importance for many modern technologies and studies, particularly in image recognition
and processing. It describes the challenges associated with image analysis and classification
in the context of increasing volumes of digital data, as well as the need to develop efficient
methods capable of operating in real-time.

Modern technologies, such as deep learning and neural networks, have opened new
opportunities for solving these tasks, providing high accuracy and performance. However,
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unresolved issues remain, including image processing under poor lighting conditions, object
diversity, the need for large training datasets, and high computational complexity.

The article analyzes contemporary face recognition methods, including DeepFace, DeepID,
FaceNet, VGG Face, and OpenFace. A comparative analysis of their accuracy, features,
and computational resource requirements is provided. Particular attention is given to the
use of deep convolutional neural networks (DCNN) in combination with specialized loss
functions, which ensure high recognition accuracy.
The proposed directions can significantly expand the applicability of these technologies in
applied problems.

Keywords: Digital object authentication, Image recognition, Deep learning, Neural net-
works, Face recognition methods.
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