DOI: https://doi.org/10.24144/2616-7700.2017.2(31).129-136

TRANSITION GRAPHS OF ITERATIONS OF INITIAL (2, 2)-AUTOMATA

V. М. Skochko

Анотація


The iterations of an automaton A naturally produces a sequence of nite graphs GA(n) which describe the transitions in A(n) = A ◦ A ◦ . . . ◦ A (n times). We consider combinatorial properties of the graphs GA(n) for initial invertible automata with two states over the binary alphabet. We compute the chromatic number and girth of the graphs GA(n) and show that all of them are imbalance graphic.

Повний текст:

PDF (English)

Посилання


Albertson M. O. The irregularity of a graph // Ars Comb. 46. – 1997. – 46. – P. 219-225

Bartholdi, L., Grigorchuk, R. On the spectrum of Hecke type operators related to some fractal groups // Proc. Steklov Inst. Math. – 2000. – 231. – P. 1–41.

Bondarenko I. Growth of Schreier graphs of automaton groups // Math. Ann. – 2012. – 354.– P. 765–785.

Bondarenko I., D’Angeli D., Nagnibeda T. Ends of Schreier graphs and cut-points of limit spaces of self-similar groups // Journal of Fractal Geometry – 2017. – Number 4. – P. 369-424.

Grigorchuk R.I., Linnell P., Schick T., Zuk A. On a question of Atiyah // C. R. Acad. Sci. Paris S´er. I Math. – 2000. — 331, N9. – P. 663–668.

Grigorchuk R., Nekrashevych V., Sushchanskii V. Automata, dynamical systems and groups // Tr. Mat. Inst. Steklova – 2000. – 231. – P. 134–214.

Harary, F. Graph Theory — Boston: Addison-Wesley, 1969

Kozerenko S., Skochko V. On graphs with graphic imbalance sequences // Algebra Discrete Math. – 2014. – 18, 1. – P. 97–108.

Nekrashevych, V. Self-similar groups — Mathematical Surveys and Monographs, vol.117, American Mathematical Society, Providence, 2005.

Skochko V. The growth function of initial invertible 2-state automata over a binary alphabet

// Bulletin of Taras Shevchenko National University of Kyiv. Series Physics & Mathematics – 2017. – 2. – P. 9–14.


Посилання

  • Поки немає зовнішніх посилань.


Copyright (c) 2019 V. М. Skochko