Це застарівша версія, яка була опублікована 2019-07-02. Прочитайте найбільш нову версію.

Стiйкiсть iнварiантного многовиду нелiнiйної системи диференцiальних рiвнянь

Автор(и)

DOI:

https://doi.org/10.24144/2616-7700.2019.1(34).7-11

Ключові слова:

нелiнiйна система диференцiальних рiвнянь, iнварiантний многовид, асимптотична стiйкiсть, m-вимiрний тор, n-вимiрний Евклiдiв простiр, ω-гранична множина, iтерацiйний метод

Анотація

Теорiя розширень динамiчних рiвнянь на торi є важливим роздiлом теорiї звичайних диференцiальних рiвнянь, який iнтенсивно розвивається та має важливе прикладне застосування до рiзноманiтних задач науки та технiки. Дана теорiя описуєпроцеси, що носять коливний характер.

Одним з важливих питань математичної теорiї багаточастотних коливань є проблема iснування та стiйкостi iнварiантних тороїдальних многовидiв, питання грубостi iнварiантного многовиду, його збереження при малих збуреннях для систем диференцiальних рiвнянь, якi визначенi у прямому добутку тора та евклiдового простору. Такiмноговиди служать носiями багаточастотних коливань у системi. Основи цiєї теорiї були розробленi А. М. Самойленком.

У данiй статтi дослiджено клас диференцiальних рiвнянь, визначених у прямому добутку m-вимiрного тора i n-вимiрного евклiдового простору, для якого мають мiсце умови iснування асимптотично стiйкого iнварiантного тороїдального многовиду. Формулюються та доводяться достатнi умови для iснування та асимптотичної стiйкiсть iнварiантного тора одного класу нелiнiйних розширень динамiчних систем на торi, що має специфiчнi властивостi в ω-граничнiй множинi Ω вздовж траєкторiй ϕ_t (ϕ).

Наведено двi теореми, якi встановлюють умови iснування асимптотично стiйких iнварiантних множин для лiнiйного розширення динамiчної системи на торi та вiдповiдної збуреної системи. Iнварiантний многовид нелiнiйної системи шукаємо iтерацiйним методом.

Біографія автора

С. І. Балога, ДВНЗ «Ужгородський нацiональний унiверситет», Ужгород

доцент кафедри комп’ютерних систем та мереж,
кандидат фiзико-математичних наук

Посилання

  1. Mitropolsky Yu. A., Samoilenko A. M., & Kulyk V. L. (1990). Investigation of dichotomy of linear system of differential equations via Lyapunov functions. Kyiv: Naukova dumka.
  2. Samoilenko A. M. (1987). Elements of mathematical theory of multifrequency oscillations. Invariant torus. Moskow: Nauka [in Russian].
  3. Perestyuk N. A., & Baloha S. I. (2008). Existence of an invariant torus for a class of systems of differential equations. Nonlinear Oscillations, 11, 4, 520–529 [in Ukrainian].
  4. Baloha S. I. (2018). Invariant manifolds of one class of systems differential equations. Scientific Bulletin of Uzhhorod University, series of mathematics and informatics, 33, 2, 14–18 [in Ukrainian].

##submission.downloads##

Опубліковано

2019-07-02

Версії

Як цитувати

Балога, С. І. (2019). Стiйкiсть iнварiантного многовиду нелiнiйної системи диференцiальних рiвнянь. Науковий вісник Ужгородського університету. Серія «Математика і інформатика», 1(34), 7–11. https://doi.org/10.24144/2616-7700.2019.1(34).7-11

Номер

Розділ

Математика та статистика