Cauchy problems and invariant measures for one stochastic functional-differential equation
DOI:
https://doi.org/10.24144/2616-7700.2018.2(33).120-135Анотація
We deal with Cauchy problem for one stochastic functional-differential equation. We study the existence, uniqueness and continuous dependence on initial function of so-called mild solution to this problem. We have also obtained its Markovian and Feller property and obtained sufficient conditions of invariant measure existence in terms of coefficients.Посилання
- S.Assing, R.Manthey. Invariant measures for stochastic heat equations with unbounded coefficients. // Stochastic Processes and their Applications. – 2003. – 107. – P. 237 – 256.
- Ye. F. Carkov. Sluchajnye vozmusheniya differencial’no-funkcionalnyh uravneny [Random perturbations of functional differential equations] (in Russian). – Zinatne, Riga, 1989.
- G.DaPrato, J.Zabczyk. Invariant Measure for Stochastic Heat Equation. // Probab. and Math. Statistics. – 1998. – 18, №2. – P. 271 – 288.
- G.DaPrato, J.Zabczyk. Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications. – Vol. 45, Cambridge University Press, 1992.
- M.Scheutzow, O.Butkovsky. Invariant measures for stochastic functional differential equations. // Electron. J. Probab. – 2017. – 22, №98. – P. 1 – 23.
##submission.downloads##
Опубліковано
2019-06-13
Як цитувати
Stanzhytskyi, A. N., & Tsukanova, A. O. (2019). Cauchy problems and invariant measures for one stochastic functional-differential equation. Науковий вісник Ужгородського університету. Серія «Математика і інформатика», 2(33), 120–135. https://doi.org/10.24144/2616-7700.2018.2(33).120-135
Номер
Розділ
Статті
Ліцензія
Авторське право (c) 2019 A. N. Stanzhytskyi, A. O. Tsukanova
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.