Про оцiнку ймовiрностi перевищення лiнiї зваженою сумою субгауссових випадкових процесi
DOI:
https://doi.org/10.24144/2616-7700.2020.2(37).122-129Ключові слова:
sub-Gaussian random process, supremum distribution, method of metric entropy, Wiener processАнотація
Субгауссові випадкові величини мажоруються за розподілом центрованими гауссовими випадковими величинами, а тому є їхнім природним узагальненням. У цій роботі розглядається задача оцінювання ймовірності перевищенням рівня, що заданий деякою прямою $ct$,$\ c>0$, траєкторіями зваженої суми субгауссових випадкових процесів $X_i$, $i=\overline{1,n}$, визначених на компактній множині $B$, із певними ваговими функціями $w_i(t)$. А саме, будуються оцінки зверху імовірностей вигляду $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{sup}}_{t\mathrm{\in }B} \left(\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right)\ }\mathrm{>}x\right\}$, $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{inf}}_{t\mathrm{\in }B} \left(\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right)\ }\mathrm{<-}x\right\}$ чи \linebreak $\boldsymbol{\mathrm{P}}\left\{{\mathop{\mathrm{sup}}_{t\mathrm{\in }B} \left|\sum^n_{i=1}{w_i\left(t\right)X_i(t)}\mathrm{-}ct\right|\ }\mathrm{>}x\right\}$. Така задача має безпосереднє застосування в \linebreak теорії черг при оцінюванні ймовірності переповнення буфера $x>0$ скінченного розміру у системі з одиничним сервером і лінійною інтенсивністю обслуговування, а також у страховій математиці при оцінюванні ймовірності банкрутства відповідного процесу ризику. Використовуючи метод метричної ентропії, узагальнено і покращено попередні результати, отримані автором у роботі [4] для більш загального класу $\Phi$-субгауссових випадкових процесів. Як приклад, отриману оцінку застосовано до усередненої суми субгауссових вінерівських випадкових процесів -- випадкових процесів, що мають таку саму коваріаційну функцію, як і (гауссівський) вінерівський процес, але із субгауссовими траєкторіями.Посилання
- Buldygin, V.V., Kozachenko, Yu.V. Metric characterization of random variables and random processes. AMS: Providence, Rhode Island, 2000. 257 p.
- Kozachenko, Yu.V., Pogorilyak, O.O., Rozora, I.V., Tegza. A.M. Simulation of stochastic processes with given accuracy and reliability. Elsevier, 2016. 346 p.
- Vasylyk, O., Kozachenko, Yu., Yamnenko, R. φ-subgaussovi vypadkovi procesy: monographiya. Kyiv: VPC “Kyivskyi universytet”, 2008. 231 p. [in Unkrainian]
- Kozachenko, Yu. Vasylyk, O., Yamnenko, R. Upper estimate of overrunning by Sub_φ (Ω) random process the level specified by continuous function. Random Operators and Stochastic Equations. 2005. Vol. 13, N 2. P. 111−128.
- Yamnenko, R., Kozachenko, Yu., Bushmitch, D. Generalized sub-Gaussian fractional Brownian motion queueing model. Queueing Systems. 2014. Vol. 77, N 1. P. 75–96.
##submission.downloads##
Опубліковано
2020-11-27
Як цитувати
Ямненко, Р. Є., & Юрченко, Н. В. (2020). Про оцiнку ймовiрностi перевищення лiнiї зваженою сумою субгауссових випадкових процесi. Науковий вісник Ужгородського університету. Серія «Математика і інформатика», 2(37), 122–129. https://doi.org/10.24144/2616-7700.2020.2(37).122-129
Номер
Розділ
Математика та статистика
Ліцензія
Авторське право (c) 2020 Rostyslav E. Yamnenko, Nataliia Yurchenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.