Про моделювання гауссового процесу із точністю та надійністю в просторі $L_p([0,T])$
DOI:
https://doi.org/10.24144/2616-7700.2020.2(37).91-100Ключові слова:
гауссовий процес, модель, точність, надійність, спектральна щільністьАнотація
Стаття присвячена моделюванню випадкового процесу із наперд заданою
В останнi часи теорiя стохастичних процесiв та полiв широко використовується в рiзних галузях науки i не тiльки в природничих сферах, а саме її використання є важливим у фiзицi, радiофiзицi, iнформатицi, програмнiй iнженерiї, соцiологiї, бiологiї, океаналогiї, метеорологiї, фiнансовiй математицi, теорiї прийняття рiшень, системах масового обслуговування тощо. Тому актуальною проблемою для ймовiрносникiв є побудова математичної моделi випадкового процесу або поля та вивчення її аналiтичних властивостей. Проблеми чисельного моделювання стають особливо важливими завдяки потужним можливостям комп’ютерних технологiй, що дозволяють створювати програмнi засоби для моделювання та для передбачення поведiнки випадкового процесу. Пiд статистичним моделюванням ми розумiємо комп’ютерну реалiзацiю спочатку випадкової величини, а потiм вже випадкового процесу або поля при заданих характеристиках даних об’єктiв моделювання. Стаття присвячена моделюванню випадкового процесу iз наперед заданою точнiстю та надiйнiстю в банаховому просторi Lp([0, T]). Припускається, що випадковий процес є стацiонарним гауссовим iз вiдомою скiнченною коварiацiйною функцiєю. Якщо випадковий процес подано як збiжний у середньому квадратичному ряд iз випадковими доданками, то, зазвичай, у якостi моделi можна розглядати скiнченну суми перших доданкiв, тобто зрiзку ряду. Тому, перша проблема, яка виникає у статтi, як розкласти випадковий процес у ряд при вiдомiй коварiацiйнiй функцiї. Для цього у статтi використовується Теорема Карунена-Лоєва i для побудови моделi застосовуємо розклад Карунена-Лоєва випадкового процесу. У данiй роботi особливу увагу придiлено точностi та надiйностi побудованої моделi. Це означає, що спочатку ми будуємо модель, а потiм її перевiряємо за допомогою певних тестiв на адекватнiсть iз заданими вхiдними параметрами. Отже, знаючи наперед точнiсть та надiйнiсть та з використанням доведених у статтi результатiв для перевiрки адекватностi, можна стверджувати, що побудова модель буде гарно описувати початковий випадковий процес.
Посилання
- Kozachenko Yu., Kamenschykova O. (2008). Approximation of
- $SSub_varphi(Omega)$ stochastic processes in the space
- $L_p(mathbf{T})$. Probab. theory and mathem. statist., 79,
- --78.
- Kozachenko Yu.V., Pashko A.O., Rozora I.V.(2007). Simulation of Stochastic Processes. Kyiv: VPC
- Zadruga. [in Ukrainian]
- Kozachenko Yu., Rozora I., Turchyn Ye. (2011). Properties of some Random series. Communication in Statistics-Theory and Methods, 40:19-20, 3672 -- 3683.
- Kozachenko Yu., Pogoriliak O., Rozora I. and Tegza A. (2016). Simulation of Stochastic processes with given accuracy and
- reliability. London: ISTE Press Ltd, Elsevier Ltd.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Ірина Василівна Розора

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.