Про центральнi ряди деяких чернiковських p-груп
DOI:
https://doi.org/10.24144/2616-7700.2020.2(37).36-44Ключові слова:
чернiковська група, гiперцентральна група, центральний ряд, матричне зображення групи, незвiдна компонента зображенняАнотація
В цій роботі досліджується структура центрального ряду черніковської \(p\)-групи \(G\), яка містить максимальну повну абелеву підгрупу \(M\) індексу \(p\). Добре відомо, що така група є гіперцентальною групою. З іншого боку із теорії розширень груп також добре відомо, що будову цієї групи можна визначити за допомогою певного цілочислового $p$-адичного матричного зображення $\Gamma$ фактор-групи $G/M$ та елементом із другої групи гомологій \(H^2(G/M,M)\). Якщо група \(G\) має центральний ряд
\(Z_1\subset Z_2\subset \ldots \subset Z_{\omega}\subset \ldots \subset G\),
який є композиційним рядом, то число трансфінітних чисел множини індексів членів цього ряду будемо називати трансфінітною довжиною цього композиційного ряду. Вважатимемо, що \(G\) є адитивною групою, а \(\Gamma\) --- матричне цілочислове \(p\)-адичне зображення фактор-групи \(G/M\), індуковане гомоморфізмом \(f:g\to f_g\), \(g\in G\), із групи \(G\) в групу автоморфізмів \(\mathrm{Aut}\,M\), де \(f_g(m)=-g+m+g\), \(m\in M\). Нами показано, що трансфінітна довжина композиційного ряду групи \(G\) дорівнює кратності незвідної компоненти \(g+M\to 1\) зображення \(\Gamma\), якщо \(G\) є абелевою групою, і на одиницю більше цього числа, якщо ж \(G\) --- неабелева група.
Нехай $\mathbb{C}_{p^\infty}$ --- адитивна квазіциклічна $p$-група, а $\mathbb{C}_{p^\infty}^n$ --- зовнішня пряма сума $n$ екземплярів квазіциклічної $p$-групи $\mathbb{C}_{p^\infty}$ для деякого натурального числа $n$. Добре відомо \cite{Kurosh}, що група
$\mathrm{Aut}\,\mathbb{C}_{p^\infty}^n$ ізоморфна повній лінійній групі $\mathrm{GL}(n,\mathbb{Z}_p)$, де $\mathbb{Z}_p$ --- кільце цілих $p$\nobreakdash-адичних чисел. Тому надалі для довільної матриці $A\in \mathrm{GL}(n,\mathbb{Z}_p)$ та довільного елемента $c\in \mathbb{C}_{p^\infty}^n$ через $A(c)$ позначатимемо образ елемента $c$ при автоморфізмі, що відповідає матриці $A$. Нехай $\{a_r\:|$ $r\in\mathbb{N}_0\}$ --- множина всіх твірних елементів групи $C_{p^\infty}$, де $\mathbb{N}_0=\mathbb{N}\cup \{0\}$, причому $pa_0=0$, $pa_r=a_{r-1}$ для довільного $r\in\mathbb{N}$.
Розглянемо циклічну адитивну групу $H$ порядку $p$ з твірним елементом $h$ і деяке матричне зображення $\Gamma$ цієї групи степеня $n$ над кільцем $\mathbb{Z}_p$. Образ будь-якого елемента $h'$ групи $H$ позначатимемо через $\Gamma_{h'}$. Визначимо дію $\cdot$ групи $H$ на групі $\mathbb{C}_{p^\infty}^n$ за правилом \(h'\cdot c=\Gamma_{h'}(c)\) для довільних елементів $h'\in H$ і $c\in \mathbb{C}_{p^\infty}^n$.
Підкреслимо, що ядро $\mathrm{Ker}\,\Gamma$ є підгрупою стабілізатора кожного елемента із $\mathbb{C}_{p^\infty}^n$.
Нескладно переконатися, що множина
\[\mathfrak{z}(\Gamma)=\{c\in\mathbb{C}_{p^\infty}^n\:|\:h\cdot c=c\}\]
є підгрупою групи $\mathbb{C}_{p^\infty}^n$. Для матричного зображення $\Gamma$ групи $H$ та деякого елемента $c\in\mathfrak{z}(\Gamma)$ побудуємо групу $G(\Gamma, c)$ наступним чином:
\[G(\Gamma, c)= H\times \mathbb{C}_{p^\infty}^n,\]
а бінарна операція $+$ задається так
\[
(ih,c_1)+(jh,c_2)=((i+j)h,\; \mu_{i,j}c+jh\cdot c_1+c_2),
\]
де $i$, $j\in\{0,1,\ldots,p-1\}$, $c_1, c_2\in \mathbb{C}_{p^\infty}^n$, \[\mu_{i,j}=\left\{\begin{array}{ll}0,&\text{якщо } i+j<p,\\1,&\text{якщо } i+j\ge p.\end{array}\right.\]
В \cite{Hall} доведено, що таким чином побудована група є циклічним розширенням групи $\mathbb{C}_{p^\infty}^n$ за допомогою групи $H$, а як наслідок, є черніковською $p$-групою.
В [1] описані з точністю до ізоморфізму всі черніковські $p$-групи, фактор-група яких за максимальною повною абелевою підгрупою є циклічною групою порядку $p$. Вони вичерпуються наступними групами:
\[
G(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,0), \quad G(\Gamma_1+n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,\mathfrak{c}^{(n_1(p-1)+n_2+n_3p)})
\]
де
\[\Gamma_1:h\to\tilde\varepsilon,\qquad \Gamma_2:h\to 1,\qquad \Gamma_3:h\to\begin{pmatrix}\tilde\varepsilon&\langle1\rangle\\0&1\end{pmatrix}\]
--- всі попарно нееквівалентні нерозкладні матричні зображення циклічної групи \(H\) над кільцем \(\mathbb{Z}_p\);
\(\tilde\varepsilon\), \(\langle1\rangle\) --- відповідно \((p-1)\times(p-1)\)- та \((p-1)\times 1\)-матриці над кільцем \(\mathbb{Z}_p\) вигляду:
\[
\tilde\varepsilon=\begin{pmatrix}0&0&\ldots&0&-1\\1&0&\ldots&0&-1\\
0&1&\ldots&0&-1\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&\ldots&1&-1\end{pmatrix},\quad
\langle1\rangle= \begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix};\]
\(n_1\), \(n_2\), \(n_3\in\mathbb{N}_0\); \(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3\) --- розкладне матричне зображення групи \(H\) з \(n_i\) екземплярами нерозкладного зображення \(\Gamma_i\) для \(i\in\{1,2,3\}\);
\[
\mathfrak{c}^{(k)}=((p-1)a_0,(p-2)a_0,\ldots,a_0,\underbrace{0,\ldots,0}_{k\text{ раз}}),\quad k \in\mathbb{N}_0.
\]
В роботі для кожної з груп \[G(n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,0),\quad G(\Gamma_1+n_1\Gamma_1+n_2\Gamma_2+n_3\Gamma_3,\mathfrak{c}^{(n_1(p-1)+n_2+n_3p)})\] побудовано композиційний центральний ряд.
Посилання
- Kurosh, A. G. (1967). Teoriia grupp [Group theory]. Moskva: Nauka [in Russian]
- Kholl, M. (1966). Teoriia grupp [Group theory]. Moskva: Mir [in Russian]
- Gudivok, P. M., Vashchuk, F. G., & Drobotenko, V. S. (1992). Chernikovskiye p-gruppy i tselochislennyye p-adicheskiye predstavleniya konechnykh grupp [Chernikov p-groups and integral p-adic representations of finite groups], Ukrain. Mat. Zh., 44, 742–753. [in Russian]
- Chernikov, S. N. (1980). Gruppy s zadannymi svoystvami sistemy podgrupp [Groups with given properties of systems of subgroups]. Moskva: Nauka [in Russian]
- Baumslag, G., & Blackburn, N. (1960). Groups with cyclic upper central factors. Proceedings of the London Mathematical Society, 10, 531–544.
- Hartley, B. (1977). A dual approach to Chernikov modules. Mathematical Proceedings of the Cambridge Philosophical Socciety, 215–239.
- Makleyn, S. (1966). Gomologiya [Homology]. Moskva: Mir [in Russian].
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Д. Ю. Бiлецька, I. В. Шапочка

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.